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Objective: Cervical cancer ranks among themost prevalentmalignancies impacting

women globally. Disulfidptosis represents a recently identified pathway of cellular

demise, although its role in the context of cervical cancer is not well elucidated. This

research investigates the significance of Disulfidptosis-Related Genes (DRGs) within

cervical cancer. Furthermore, it aims to analyze the differences in prognosis and

immune infiltration among different molecular subtypes.

Methods: We compiled genes associated with cervical cancer and disulfidptosis

from a variety of databases to perform a differential expression analysis.

Subsequently, the samples are grouped through consensus clustering. To

evaluate immune cell infiltration, we employed CIBERSORT. Additionally,

immune checkpoint genes (ICGs) were gathered from existing literature and

databases, enabling statistical analyses of two subtype samples of cervical cancer

(CESC). Following our analyses using GO, KEGG, and GSEA to compare the

differences between the two subtypes. Lastly, a prognostic risk model was

constructed using LASSO regression and validated using ROC.

Results: This study identified seven key genes: PCBP3, ARNT, ANP32E, DSTN,

CD2AP, EPAS1, and ACTN1.The consensus clustering analysis showed differences

in immune cell infiltration and DFS(disease-free survival) among the various

clusters. The immune checkpoint gene CXCL1 displayed highly significant

statistical differences between subtype A (Cluster 1) and subtype B (Cluster 2)

in cervical cancer (CESC) samples. The gene set enrichment analysis identified

the negative regulation of peptidase activity and the IL-17 signaling pathway,

which link to subtype-specific differentially expressed genes (DEGs).

Conclusion: Statistical analysis of the various subtypes of CESC samples

highlighted the importance of subtype-specific therapeutic targets. Additionally, it

seeks to enhance the accuracy of prognostic predictions, thereby establishing a

foundation for the formulation of personalized treatment approaches.
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1 Introduction

In 2022, there were over 662,000 new cases reported globally,

resulting in around 349,000 deaths (1). Annually, cervical cancer is

responsible for nearly 350,000 fatalities among women (2).

Although various strategies such as vaccination, screening, and

treatment have been introduced, many challenges remain that

impede the effective implementation of these interventions (3, 4).

It is critical to urgently explore the characteristics of cervical cancer

patients and to identify essential prognostic markers and potential

therapeutic targets (5–7). Therefore, it is essential to explore

optimal treatment approaches by studying the molecular

characteristics and prognostic models of cervical cancer subtypes.

Increasing attention is being given to the mechanisms of cell

death in contemporary cancer research (8). Notably, the

significance of SLC7A11 in disulfidptosis has gained substantial

attention (9). Researchers are exploring the cell death mechanism

associated with the increased expression of SLC7A11 under glucose

deprivation conditions. This specific form of cell death is primarily

associated with an imbalance in the intracellular NADPH/NADP+

ratio and the excessive accumulation of disulfides. When NADPH

levels are diminished, the conversion of cysteine within the cells

becomes ineffective, resulting in heightened disulfide stress that

ultimately initiates cell death. Disulfidptosis is a newly discovered

mechanism of cell death. Identifying Disulfidptosis-Related Genes

mechanisms of cell death provides new insights for cancer therapy,

especially in targeting tumors that exhibit elevated expression of

SLC7A11 (10, 11). This insight introduces new targeted therapeutic

strategies for cancer treatment, revealing potential avenues for

intervention. However, the influence of disulfidptosis on cervical

cancer remains poorly understood, highlighting the imperative for

further investigation in this domain. While prior studies have

pinpointed various genes linked to cervical cancer (12, 13), the

characteristics of these genes across different subtypes have not been

exhaustively examined or comprehended. This study is primarily

centered on cervical cancer and genes associated with disulfidptosis.

Through the exploration of these associations, our objective is to

deepen our comprehension of the molecular pathways involved in

cervical cancer. We are conducting research to identify prognostic

markers that can assist in diagnosing cervical cancer and assessing

their clinical significance. By studying the relationship between

cervical cancer and disulfidptosis-related genes, we aim to identify

precise treatment targets. We analyzed disulfidptosis-related genes

in cervical cancer subtypes using the R package limma for

differential expression and consistency clustering to delineate

the subtypes.

This methodological approach is advantageous as it

systematically reveals gene expression patterns and their

correlations with clinical features, thereby enriching our

understanding of the underlying biological mechanisms.

Moreover, we seek to examine the biological distinctions among

the different molecular subtypes. By integrating these

methodologies, our goal is to refine the classification of patients

based on their molecular attributes. Such refinement may foster the

creation of more personalized therapeutic strategies, potentially
Frontiers in Oncology 02
leading to improved clinical outcomes for individuals diagnosed

with cervical cancer.
2 Methods

2.1 Data acquisition

The cervical cancer (CESC) dataset was procured from TCGA

(the cancer genome atlas) database using the “TCGAbiolinks”

package (14). This dataset served as our testing set for analysis.

This dataset served as our primary analysis set, encompassing 245

cervical cancer samples along with clinical data, in addition to three

control samples presented in Counts format. The dataset was

standardized to the FPKM format. Clinical information was

sourced from the UCSC Xena database (15), with specific details

outlined in Table 1. Due to the restricted number of control samples

available within the TCGA cervical cancer dataset, we

supplemented our analysis with normal tissue samples extracted

from the Genotype-Tissue Expression (GTEx) database (16). After

procuring ten control samples in counts-format sequencing data,

we integrated the FPKM-format sequencing data from both TCGA

and GTEx, thereby establishing a comprehensive cervical cancer

dataset designated as GTEX-TCGA-CESC. The final analysis

incorporated 245 cervical cancer samples paired with clinical

information alongside 13 control samples, yielding a robust test set.

We used the “GEOquery” R package (17) to retrieve the cervical

cancer dataset GSE44001 (18) from the gene expression omnibus

database(GEO) (19). As detailed in Table 2, the GSE44001 dataset

includes samples of human cervical tissue and is associated with the

GPL14951 platform, which comprises 262 non-recurrent and 38

recurrent cervical cancer samples included in our study.

Additionally, we accessed the genecards database (20), from

which we obtained a list of genes associated with disulfidptosis,

referred to as Disulfidptosis-Related Genes (DRGs).By utilizing

“Disulfidptosis” as the search keyword, we focused on “Protein

Coding” genes, identifying a total of eight DRGs. Furthermore, we

conducted a literature search for “Disulfidptosis” on the PubMed

website (21), which yielded 106 DRGs. By integrating the data, we

identified 108 DRGs detailed in Supplementary Table S1, and we

normalized the GSE44001 dataset using the “limma” R

package (22).
TABLE 1 Baseline table with CESC patients characteristics.

Characteristics Overall

Age, median (IQR) 46 (37, 55)

Stage, n (%)

Stage I 142 (58%)

Stage III 34 (13.9%)

Stage II 56 (22.9%)

Stage IV 13 (5.3%)
CESC, Cervical Cancer.
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2.2 Differentially expressed genes related
to cervical cancer

The GTEx-TCGA-CESC dataset is divided into the CESC group

and the Control group. Thresholds were set (p < 0.05,|logFC| > 0.58)

to identify DEGs, the “limma” and “ggplot2” packages were used here.
2.3 Identification of prognostic genes
related to cervical cancer via univariate
Cox survival analysis

To construct a prognostic risk model for the cervical cancer

dataset, we first performed Cox regression analysis to evaluate the

impact of genes on prognosis.

Next, we identified independent prognostic factors, which we

referred to as Cox genes. We screened for significantly expressed

genes in GSE44001 using differential analysis (p < 0.05, |logFC| >

0.58), referred to as differentially expressed genes (DEGs).

Subsequently, we compared the DEGs with genes related to

disulfide bond death and Cox prognostic genes. We used a Venn

diagram to display their intersection to highlight key genes.

Throughout the analysis, we utilized the “survival” and

“pheatmap” packages in R.
2.4 Development of TCGA cervical cancer
subtypes

We identified different disease subtypes in CESC samples from

the GTEx-TCGA-CESC dataset by applying consensus clustering

with the R package ConsensusClusterPlus (23), emphasizing key

genes. During this procedure, the cluster count was established

within a range of 2 to 9. A total of 80% of the overall samples

underwent resampling 50 times, employing the parameters

clusterAlg = “pam” and distance = “euclidean”. Following this,

the variations in expression levels of crucial genes across distinct

disease subtypes were examined utilizing expression value heat

maps alongside group comparison plots.
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2.5 Kaplan-Meier survival analysis and
correlation analysis of distinct molecular
subtypes in cervical cancer

First, we developed a clinical feature distribution map that

shows the clinical characteristics of different molecular subtypes

and the expression of intersecting genes. To assess the difference in

disease-free survival (DFS) between samples of cervical squamous

cell carcinoma (CESC) subtype A (cluster 1) and subtype B (Cluster

2) at different time intervals in the cervical cancer dataset, we

performed Kaplan-Meier (KM) curve (24) analysis using the

“survival” package in R. Additionally, the Spearman correlation

coefficient was used to evaluate expression levels in CESC samples

derived from the GTEx-TCGA-CESC dataset. Conclusions were

illustrated in a correlation heatmap.
2.6 Analysis of immune infiltration

CIBERSORT (25) utilizes linear support vector regression to

analyze transcriptomic expression matrices, allowing for the

estimation of immune cell composition and abundance in mixed

samples. We applied the CIBERSORT algorithm to merge the

immune cell characteristic gene matrix and filtered the results to

keep only immune cells with enrichment scores above zero. This

process resulted in an immune cell infiltration matrix for samples in

the cervical cancer dataset. We used the Spearman method to

calculate the correlation between immune cells and examined

their relationships with key genes. To improve result

visualization, we utilized the “ggplot2” and “pheatmap” packages.
2.7 Analysis of immune checkpoints, IPS,
and TIDE

Immune checkpoint genes (ICGs) represent important ligand-

receptor pairs that significantly regulate immune responses, help

maintain immune homeostasis, and prevent autoimmunity. Cancer

therapy has seen significant success with treatments that target

these genes. This is particularly true for solid tumors. We identified

six immune checkpoint genes (ICGs)—CXCL1, CXCL10, CXCL11,

CCL8, CCL13, and CCL18 (26)—and 28 immunogenic cell death

(ICD) genes (27) from the published literature, the specific gene

names are listed in Supplementary Table S2. We employed the

Mann-Whitney U test to analyze the expression levels of ICGs and

ICD genes across various CESC subtypes in the cervical cancer

dataset (GTEx-TCGA-CESC).
2.8 GSEA

Perform differential analysis on the cervical cancer dataset

(GTEx-TCGA-CESC) using “Limma” to compare subtype A
TABLE 2 GEO microarray chip information.

GSE44001

Platform GPL14951

Species Homo sapiens

Tissue Cervical

Samples in CESC group 262

Samples in Control group 38

Reference PMID: 24145113
GEO, Gene Expression Omnibus; CESC, Cervical Cancer.
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(Cluster 1) with subtype B (Cluster 2). Then, create a volcano plot

using “ggplot2” to illustrate the differentially expressed genes

(SSDEGs) with |log2FC| > 0.58 and adj.p-value < 0.05. Next, use

“pheatmap” to generate a heatmap of the expression of these genes.

Finally, conduct gene set enrichment analysis (GSEA) using

“clusterProfiler” R package (28). The analysis parameters include

a seed of 2020, gene set size limits between 10 and 500. Gene set

enrichment analysis (GSEA) was performed using the gene set

c2.all.v2022.1.Hs.symbols.gmt obtained from the Molecular

Signatures Database (MSigDB) (29). The screening criteria for

GSEA were adj.p < 0.05. The p-value correction method used was

Benjamini-Hochberg (BH).
2.9 Gene ontology and Kyoto encyclopedia
of genes and genomes pathway
enrichment analysis

Gene Ontology (GO) analysis (30) is a widely used method for

functional enrichment studies that include Biological Process (BP),

Cellular Component (CC), and Molecular Function (MF).

Researchers widely use the Kyoto Encyclopedia of Genes and

Genomes (KEGG) (31) database to store information about

genomes, biological pathways, diseases, and drugs. We employed

the R package “clusterProfiler” to conduct GO and KEGG

enrichment analyses on subtype-specific SSDEGs. We set entry

screening criteria of adjusted p-values (adj.p) < 0.05 and a false

discovery rate (FDR) value (q value) < 0.25, using the Benjamini-

Hochberg (BH) correction method.
2.10 Construction of prognostic risk model
for cervical cancer

We began by conducting univariate Cox regression analysis on

the cervical cancer dataset (GTEx-TCGA-CESC) to identify

variables with a p-value less than 0.05 for the subsequent

multivariate Cox regression analysis. We performed LASSO

regression analysis on the subtype differential genes (SSDEGs)

identified in the univariate Cox regression model, using family =

“cox” as a parameter to select genes for the prognostic risk model. In

our analysis, we utilized the R packages “survival” and “glmnet”.

Finally, we calculated the risk score (RiskScore) using the following

formula based on the risk coefficients obtained from the LASSO

regression analysis:

Riskscore  =  o
i
Coefficient (genei)*mRNA Expression (genei)
2.11 Prognostic analysis of cervical cancer
prognostic risk model

The dataset categorizes cervical cancer samples into high-risk

(HighRisk) and low-risk (LowRisk) groups according to the median
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risk score. We plot time-dependent ROC curves based on the LASSO

risk score (RiskScore) and disease-free survival (DFS). The area under

the curve (AUC) is then calculated to predict the 1, 2, and 3-year

survival outcomes for the cervical cancer (CESC) group. We perform

Kaplan-Meier (KM) curve analysis to assess differences in disease-free

survival (DFS).We visualize the results of univariate and multivariate

Cox regression analyses with a forest plot, followed by presenting the

multivariate Cox regression results in a nomogram to illustrate the

relationship between risk score (RiskScore) and clinical information.

The results of the multivariate Cox regression analysis are presented in

a nomogram to show the relationship between the risk score

(RiskScore) and clinical information included in the multivariate

Cox regression model. We visualize the results of univariate and

multivariate Cox regression analyses with a forest plot, followed by

presenting the multivariate Cox regression results in a nomogram to

illustrate the relationship between risk score (RiskScore) and clinical

information. Through calibration analysis, we draw the calibration

curve to evaluate the predictive accuracy and discrimination of the

prognostic risk model using the LASSO risk score (RiskScore). We

utilize the risk score (RiskScore) to create a Decision Curve Analysis

(DCA) plot to assess the accuracy and discrimination of the

prognostic risk model for cervical cancer (CESC). In this study, we

used the packages “survivalROC,” “survival,” “rms,” and “ggDCA.”
2.12 Model validation of GSE44001 in
dataset

We validated our model using the GSE44001 dataset and

calculated the LASSO risk score (RiskScore) from the model’s

coefficients. This score was crucial for assessing the prognostic

risk model’s accuracy in cervical squamous cell carcinoma (CESC).

Next, plot the time-dependent ROC curves using the LASSO risk

score (RiskScore) and DFS to predict the survival outcomes, defined

as the likelihood of survival without disease recurrence, for CESC

groups at 1, 2, and 3 years.
2.13 Gene set variation analysis

To assess the accuracy of the prognostic risk model for cervical

cancer (CESC), we first calculated the risk score (RiskScore) using

gene expression and LASSO coefficients derived from the GSE44001

dataset. We utilized the R package “survivalROC” to create time-

dependent ROC curves, which illustrate the diagnostic performance

of our prognostic risk model over time. We calculated the area

under the ROC curve (AUC) to predict the survival rates of the

cervical cancer (CESC) group at 1, 2, and 3 years.
2.14 Statistical analysis

The independent Student’s T-Test and Mann-Whitney U test

are used to compare two groups, while the Kruskal-Wallis test is

used for comparisons involving three or more groups. The results
frontiersin.org
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are calculated using Spearman correlation analysis to determine the

correlation coefficients between different molecules, with a p value <

0.05 considered statistically significant.
3 Results

3.1 Technology roadmap

Flow Chart for the Comprehensive Analysis as shown in

Figure 1.
3.2 Differentially expressed genes related
to cervical cancer

The GTEx-TCGA-CESC dataset was separated into cervical

cancer and control groups for differential analysis. We identified

9,220 DEGs that met the criteria of |logFC| > 0.58 and adjusted p-

value < 0.05. Among them, 4,004 genes were upregulated and 5,176

genes were downregulated, as shown in a volcano plot (Figure 2A).

To construct a prognostic risk model for CESC, we performed

univariate Cox regression analysis using clinical information from

the CESC group, analyzing a total of 4,800 genes (P less than 0.05).

Detailed information is provided in Supplementary Table S3. We

identified key genes by analyzing the intersection of DEGs, DRGs,

and genes from the univariate Cox analysis that met the specified
Frontiers in Oncology 05
threshold. A Venn diagram was created for visualization

(Figure 2B), identifying seven key genes: PCBP3, ARNT, ANP32E,

DSTN, CD2AP, EPAS1, and ACTN1.Finally, we analyzed the

expression levels of key genes across different sample groups and

created a heatmap using the R package pheatmap (Figure 2C).
3.3 Construction of TCGA Cervical Cancer
Subtypes

This study examined disease subtypes in the cervical cancer

dataset (GTEx-TCGA-CESC) by analyzing the expression levels of

seven key genes. Through consistent clustering analysis, we

identified two subtypes: subtype A (Cluster 1, 75 samples) and

subtype B (Cluster 2, 170 samples) (Figures 3A–C). Additionally,

the 3D t-SNE clustering diagram demonstrates significant

differences between the two subtypes (Figure 3D). Next, use the R

package “pheatmap” to draw a heatmap showing the expression

differences of key genes in the two subtypes of CESC (Figure 3E).

Finally, to further validate the expression differences of key genes in

the CESC disease subtypes, a grouped comparison chart (Figure 3F)

is presented to display the expression levels of key genes, illustrating

the differential analysis results between the two subtypes of CESC.

The comparison chart shows that the expression of PCBP3 is

statistically significant (p < 0.05), while the expressions of

ACTN1, ANP32E, ARNT, CD2AP, DSTN, and EPAS1 are highly

significant (p < 0.001).
FIGURE 1

Flow chart for the comprehensive analysis. TCGA, The Cancer Genome Atlas; CESC, Cervical Cancer; DEGs, Differentially Expressed Genes; DRGs,
Disulfidptosis-Related Genes; Unicox, Univariate Cox; GSEA, Gene Set Enrichment Analysis; ROC, Receiver Operating Characteristic; GO, Gene
Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; SSDEGs, Subtype-specific differentially expressed genes; ICG, Immune Checkpoint
Genes; ICD, Immunogenic Cell Death; GSVA, Gene Set Variation Analysis.
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3.4 KM survival analysis and correlation
analysis of different molecular subtypes in
cervical cancer

We plotted the distribution of clinical characteristics for different

subtypes (Figure 4A). This plot illustrates the expression of intersecting

genes, which aids in understanding the biological features of these

subtypes. We conducted a prognostic Kaplan-Meier curve analysis

based on disease-free survival and subtype grouping from the cervical

cancer dataset (Figure 4B). The results indicate that there is a

statistically significant difference in DFS between the two subtypes (p

< 0.01). We assessed the correlations of seven key genes in the cervical

cancer dataset and created a heatmap (Figure 4C), which reveals that

these genes primarily show positive correlations.
3.5 Immune infiltration analysis of cervical
cancer subtypes

We used the CIBERSORT algorithm to calculate the abundance

of 22 types of immune cell infiltration in the GTEx-TCGA-CESC

cervical cancer dataset. A bar chart (Figure 5A) displayed the
Frontiers in Oncology 06
proportions of immune cells, while a comparison chart

(Figure 5B) illustrated the differences in immune cell infiltration

abundance between groups. The results showed that five types of

immune cells were statistically significant (p < 0.05): CD8 T cells,

resting memory CD4 T cells, activated memory CD4 T cells,

follicular helper T cells, and resting NK cells. Following this, we

illustrated the correlation of infiltration abundance among these

five immune cell types using a correlation heatmap (Figure 5C).

Most immune cells exhibited strong correlations, particularly CD8

T cells, which had a correlation coefficient (r) of -0.463 with resting

memory CD4 T cells (p < 0.05). Finally, we presented a correlation

bubble chart (Figure 5D) to illustrate the relationship between key

genes and immune cell infiltration abundance. Notably, the gene

DSTN had an r = -0.285 with CD8 T cells, p < 0.05.
3.6 ICG&ICD analysis

For the immune checkpoint genes (ICG) and immunogenic cell

death genes (ICD) analysis, we compiled relevant genes from

existing literature and the GeneCards database. By cross-

referencing these with all genes in the GTEx-TCGA-CESC
FIGURE 2

Differential gene expression analysis. (A) Volcano plot of differentially expressed genes analysis between the CESC group and the Control (Control)
group in the GTEx-TCGA-CESC. (B) DEGs, DRGs and univariate Cox gene intersection Venn diagram in the GTEx-TCGA-CESC. (C) Heat map of Key
Genes in the GTEx-TCGA-CESC. The CESC group is purple, and the Control (Control) group is yellow. In the heat map, red represents high
expression and blue represents low expression.
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dataset, we constructed a matrix that included six ICG—specifically

CXCL1, CXCL10, CXCL11, CCL8, CCL13, and CCL18—alongside

their respective expression levels. The immune checkpoint gene

CXCL1 shows statistically significant differences between subtype A

(Cluster 1) and subtype B (Cluster 2) in cervical cancer (CESC)

samples (p value < 0.001) (Figure 6A).

We evaluated the statistical differences in immunogenic cell

death (ICD) genes between subtype A (Cluster 1) and subtype B

(Cluster 2) (Figure 6B). The results revealed that several ICD genes,

including FPR2, HSPA4, IL33, PANX1, and ROCK1, demonstrated

notable differences between the two subtypes, each with p-values

less than 0.001. Furthermore, HMGB1 and TLR4 revealed

significant differences between subtype A (Cluster 1) and subtype

B (Cluster 2), with p-values less than 0.05.
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3.7 GSEA for subtype grouping

The analysis of the cervical cancer dataset (GTEx-TCGA-

CESC) found 677 genes that are differentially expressed (p < 0.05

and |logFC| > 0.58). Among them, 489 were upregulated and 188

were downregulated. We created a volcano plot (Figure 7A) and a

heatmap (Figure 7B) to visualize the data. Gene set enrichment

analysis (GSEA) revealed the relationships of all genes with

biological processes, cellular components, and molecular

functions (Figure 7C). The specific results are shown in Table 3.

The analysis also indicated significant enrichment in specific

signaling pathways, highlighting the upregulation of HCC

precursor Wnt (Figure 7D), Nfkb target keratinocytes (Figure 7E),

TNF targets (Figure 7F), and Tgfb Emt (Figure 7G).
FIGURE 3

Consensus clustering analysis for CESC. (A) Consensus clustering results of CESC samples in the GTEx-TCGA-CESC. B-C. Consistency cumulative
distribution function (CDF) plot (B) and Delta plot (C) of consistency clustering analysis. (D) 3D t-SNE cluster map of two disease subtypes of cervical
cancer (CESC). (E) Heat map of expression values of Key Genes in CESC subtypes. (F) Group comparison map of Key Genes between the two
subtypes of CESC. PCA, Principal Component Analysis. * represents p value < 0.05, statistically significant; *** represents p value < 0.001, highly
statistically significant. Orange is subtype A (Cluster1) and purple is subtype B (Cluster2).
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3.8 GO and pathway (KEGG) enrichment
analysis

This study examined the relationship between 677 subtype

differentially expressed genes (SSDEGs) and cervical cancer

(CESC) through GO/KEGG enrichment analysis. Table 4 shows

the GO/KEGG enrichment analysis results for 78 differentially

expressed subtype genes (SSDEGs).

The results indicate that these 78 genes are mainly enriched in

various biological processes, such as negative regulation of

endopeptidase activity; cellular components, such as secretory

granule lumen; and molecular functions, such as protease

binding. They also show enrichment in multiple biological

pathways. The analysis results are visualized through a bubble

chart (Figure 8A) and a network diagram (Figures 8B–E),

showcasing the annotations of related molecules and the number

of molecules in each entry.
3.9 Construction of prognostic risk model
for cervical cancer

The findings revealed that 45 SSDEGs exhibited statistical

significance (p-values < 0.05) within the univariate Cox regression
Frontiers in Oncology 08
framework, as presented in Supplementary Table S4. We

subsequently conducted LASSO regression analysis and

constructed a LASSO regression model. We generated a trajectory

plot for the LASSO variables (Figure 9A) alongside the diagram

illustrating the LASSO regression model (Figure 9B) for enhanced

visualization. The LASSO regression model culminated in the

identification of 13 pertinent genes: STX7, RPS28, TC2N,

ARHGAP29, GALNT7, MAP4K1, FOXA1, PMEPA1, S100P,

FBN1, CHIT1, SMOC1, and SERPINA3. The calculation of the

RiskScore was performed using the equation provided:

RiskScore = STX7  ∗  (0:106) + RPS28  ∗  ( − 0:013) + TC2N   ∗  (0:0285) + ARHGAP29  ∗  

(0:156) + GALNT7  ∗  (0:055) +MAP4K1  ∗  ( − 0:074) + FOXA1  ∗  (0:019) + PMEPA1  ∗  

(0:072) + S100P  ∗  (0:046) + FBN1  ∗  (0:066) + CHIT1  ∗  ( − 0:051) + SMOC1  ∗  (0:024)+
SERPINA3  ∗  (0:032) :

Finally, we performed multivariate Cox analysis on the genes from

the LASSO regression model and created a forest plot (Figure 9C).
3.10 Prognostic analysis of cervical cancer
prognostic risk model

First, we created ROC curves that vary over time for the CESC

samples in the GTEx-TCGA-CESC dataset (Figure 10A). These

curves indicated a moderate accuracy for the prognostic risk model,
FIGURE 4

KM survival analysis of CESC. (A) Distribution of clinical features in different subtypes. (B) Prognostic KM curves for disease-free survival (DFS) of
CESC samples based on subtype grouping in the GTEx-TCGA-CESC. (C) Correlation heatmap of Key Genes in the GTEx-TCGA-CESC. KM, Kaplan-
Meier method.
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with AUC values between 0.7 and 0.9 for 1, 2, and 3 years. Next, we

conducted a Kaplan-Meier curve analysis for DFS in the CESC

samples from the GTEx-TCGA-CESC dataset (Figure 10B). This

analysis revealed a highly significant difference in DFS between the

High-Risk and Low-Risk groups, with a p-value of less than

0.001.The forest plots (Figures 10C, D) illustrate the univariate

and multivariate Cox regression analysis results, while detailed

findings are presented in Table 5. These plots highlight the
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significance of RiskScore and clinical staging, both of which have

p-values less than 0.01. We constructed a nomogram (Figure 10E)

that illustrated the contributions of RiskScore, age, and clinical

staging to the prognostic risk model.

In addition, we conducted a prognostic calibration analysis of

the prognostic risk model for cervical cancer (CESC) for 1 year, 2

years, and 3 years, and plotted the calibration curves (Figures 11A–

C). The results show that the prognostic risk model for cervical
FIGURE 5

Immune infiltration analysis by CIBERSORT algorithm. (A, B) The proportion of immune cells in CESC samples in the GTEx-TCGA-CESC bar graph (A)
and group comparison graph (B). (C) Correlation heat map of immune cells in CESC samples in the GTEx-TCGA-CESC. (D) Bubble plot of
correlation between immune cell infiltration abundance and Key Genes in CESC samples in GTEx-TCGA-CESC dataset. ns stands for p value ≥ 0.05,
not statistically significant; * represents p value < 0.05, statistically significant; ** represents p value < 0.01 and highly statistically significant. The
absolute value of correlation coefficient (r value) below 0.3 was weak or no correlation, between 0.3 and 0.5 was weak correlation, between 0.5 and
0.8 was moderate correlation, and above 0.8 was strong correlation. Orange is subgroup A (Cluster1), purple is subgroup B (Cluster2). Positive
correlations are shown in red and negative ones in blue. The depth of the color represents the strength of the correlation.
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cancer (CESC) has the best clinical predictive effect for 3 years.

Finally, we evaluated the clinical utility of the prognostic risk model

for cervical cancer (CESC) at 1, 2, and 3 years through decision

curve DCA and presented the results (Figures 11D–F).
3.11 Model validation for dataset GSE44001

Based on the risk coefficient calculation of the dataset GSE44001

using LASSO regression analysis. Subsequently, we plotted the

time-dependent ROC curve (Figure 12) for the cervical cancer

group (CESC) in the cervical cancer dataset. The results indicate

that the prognostic risk model for cervical cancer (CESC) presents

AUC values between 0.5 and 0.7 across 1, 2, and 3 years.
3.12 GSVA

Gene set variation analysis (GSVA) was conducted on all genes

from cervical cancer (CESC) samples in the GTEx-TCGA-CESC

dataset. This analysis aimed to identify differences in the

c2.cp.v2023.2.Hs.symbols.gmt gene set between subtype B

(Cluster 2) and subtype A (Cluster 1).Detailed information

regarding the gene set analysis is presented in Table 6. Next, the
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top 20 pathways were selected based on an adj.p < 0.05. These

pathways were sorted in descending order by the absolute value of

logFC. The differential expression of these pathways between

subtype B (Cluster 2) and subtype A (Cluster 1) was then

visualized in Figure 13A.

The disparities were then validated using the Mann-Whitney U

test, and the comparative results were illustrated in the diagram

presented in Figure 13B. The gene set variation analysis (GSVA)

revealed that the MEDICUS VARIANT MUTATION

INACTIVATED PINK1 TO ELECTRON TRANSFER IN

COMPLEX I, MEDICUS REFERENCE ELECTRON TRANSFER

IN COMPLEX I, MEDICUS VARIANT MUTATION CAUSED

ABERRANT TDP43 TO ELECTRON TRANSFER IN COMPLEX I,

MEDICUS VARIANT MUTATION CAUSED ABERRANT SNCA

TO ELECTRON TRANSFER IN COMPLEX I, OXIDATIVE

PHOSPHORYLATION, MEDICUS REFERENCE ELECTRON

TRANSFER IN COMPLEX IV, MEDICUS ENV FACTOR

ARSENIC TO ELECTRON TRANSFER IN COMPLEX IV,

MEDICUS VARIANT MUTATION CAUSED ABERRANT HTT

TO ELECTRON TRANSFER IN COMPLEX III, MEDICUS

REFERENCE ELECTRON TRANSFER IN COMPLEX III,

MITOCHONDRIAL COMPLEX III ASSEMBLY, BIOCARTA SM

PATHWAY , R IBOSOME , MEDICUS REFERENCE

TRANSLATION INITIATION, EUKARYOTIC TRANSLATION

ELONGATION, CYTOPLASMIC RIBOSOMAL PROTEINS,
FIGURE 6

Immune checkpoint genes, immunogenic cell death genes analysis. (A) Group comparison of ICG between subtype A (Cluster1) and subtype B
(Cluster2) of CESC samples from the GTEx-TCGA-CESC. (B) Group comparison of ICD genes between subtype A (Cluster1) and subtype B (Cluster2)
of CESC samples from the GTEx-TCGA-CESC. ns represents p value ≥ 0.05, not statistically significant; * represents p value < 0.05, statistically
significant; ** represents p value < 0.01, highly statistically significant; *** represents p value < 0.001 and extremely statistically significant. Orange is
subtype A (Cluster1) and purple is subtype B (Cluster2).
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RESPONSE OF EIF2AK4 GCN2 TOAMINO ACID DEFICIENCY,

SARS COV 1 MODULATES HOST TRANSLATION

MACHINERY, MEDICUS PATHOGEN SARS COV 2 NSP1 TO

TRANSLATION INITIATION, and MFAP5 EFFECT ON

PERMEABILITY AND MOTILITY OF ENDOTHELIAL CELLS

VIA CYTOSKELETON REARRANGEMENT, MEDICUS

REFERENCE REGULATION OF GF RTK RAS ERK

SIGNALING PATHWAY ADAPTOR PROTEINS in the subtype
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B (Cluster 2) and subtype A (Cluster 1) groups were

statistically significant.
4 Discussion

In recent years, considerable attention has been directed

towards the rates of occurrence and mortality associated with
FIGURE 7

GSEA for risk group. (A) Volcano plot of differentially expressed genes analysis of subtype A (Cluster1) and subtype B (Cluster2) in CESC samples in the
GTEx-TCGA-CESC. (B) Heat map of expression values of differentially expressed genes of subtype A (Cluster1) and subtype B (Cluster2) of cervical cancer
(CESC) samples. (C) Four biological functions mountain map display of GSEA of GTEx-TCGA-CESC. D-G. GSEA showed that genes in the GTEx-TCGA-
CESC were significantly enriched in HCC Progenitor Wnt Up (D), Nfkb Targets Keratinocyte Up (E), and NFKB targets keratinocyte UP (E). TNF Targets Up
(F), Tgfb Emt Up (G). In the heat map, orange represents subtype A (Cluster1) and purple represents subtype B (Cluster2). In the heat map, red represents
high expression and blue represents low expression. The redder the color, the smaller the adj.p value, and the bluer the larger the adj.p value. The
screening criteria of GSEA were adj.p < 0.05 and FDR value (q value) < 0.25, and the p value correction method was Benjamini-Hochberg (BH).
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CESC.A report from the American Cancer Society, the annual

incidence of cervical cancer among women aged 30 to 44 in the

United States increased by 1.7% from 2012 to 2019 (32). Despite

advancements in cervical cancer treatment (33), numerous factors

continue to influence the options available, such as tumor size,

invasion depth, and lymphovascular invasion. Consequently, the

exploration of new biological targets is critical for driving

breakthroughs in healthcare.

This study amalgamated diverse omics data related to cervical

cancer, identifying seven pivotal genes: PCBP3, ARNT, ANP32E,

DSTN, CD2AP, EPAS1, and ACTN1. Moreover, consensus

clustering analysis unveiled two distinct subtypes of cervical

cancer, designated as Cluster 1 and Cluster 2, which displayed

remarkable differences in disease-free survival. The prognostic risk

model established through LASSO regression analysis identified 13

genes—STX7, RPS28, TC2N, ARHGAP29, GALNT7, MAP4K1,

FOXA1, PMEPA1, S100P, FBN1, CHIT1, SMOC1, and SERPINA3

—that exhibited strong predictive capabilities at multiple time

intervals. These discoveries furnish novel insights into

personalized treatment strategies for cervical cancer and establish

a foundation for further investigation into the possible involvement

of disulfide-dependent mechanisms of cell death in cancer therapy.

The identification of DEGs in cervical squamous cell carcinoma

(CESC) elucidates the underlying mechanisms of the tumor.
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Among the seven key genes we identified, PCBP3 is notable for

its role in regulating both cell proliferation and apoptosis,

potentially promoting tumor growth by stabilizing mRNA that

encourages cell division, making it a promising target for therapy

(34). Another important gene, ARNT, is integral to the hypoxia-

inducible factor (HIF) signaling pathway, which allows cells to

adapt to low-oxygen conditions commonly found in solid tumors

(35, 36). The increased expression of ARNT in cervical cancer

suggests that the tumor is responding to its microenvironment,

facilitating processes like angiogenesis and metabolic changes that

support tumor survival and growth. Additionally, ANP32E has been

implicated in breast cancer, where it inhibits cell proliferation and

encourages apoptosis; thus, its downregulation may lead to more

aggressive tumor behavior (37–39). The differences in ANP32E

expression in esophageal cancer, when compared to other cancers,

may indicate a potential therapeutic target (40), offering critical

insights for the formulation of treatment strategies in

cervical cancer.

Consensus clustering analysis has identified two subtypes of

cervical cancer, which significantly enhances our understanding of

the disease’s heterogeneity. Each subtype exhibits unique clinical

characteristics, underscoring the necessity for treatments tailored to

each specific subtype. Kaplan-Meier analysis has shown significant

differences in disease-free survival rates, indicating that these
TABLE 3 Results of GSEA for GTEx-TCGA-CESC.

ID setSize enrichmentScore NES pvalue p.adjust qvalue

DACOSTA_UV_RESPONSE_VIA_ERCC3_COMMON_DN 451 0.76 1.81 1.00E-10 8.65E-09 6.65E-09

ZWANG_CLASS_3_TRANSIENTLY_INDUCED_BY_EGF 223 0.76 1.80 1.00E-10 8.65E-09 6.65E-09

FOROUTAN_TGFB_EMT_UP 190 0.76 1.78 1.00E-10 8.65E-09 6.65E-09

FOROUTAN_PRODRANK_TGFB_EMT_UP 183 0.75 1.77 1.00E-10 8.65E-09 6.65E-09

BILD_CTNNB1_ONCOGENIC_SIGNATURE 77 0.79 1.76 2.20E-09 1.41E-07 1.08E-07

HUANG_DASATINIB_SENSITIVITY_UP 77 0.79 1.76 2.57E-09 1.60E-07 1.23E-07

GABRIELY_MIR21_TARGETS 278 0.74 1.76 1.00E-10 8.65E-09 6.65E-09

LIN_SILENCED_BY_TUMOR_MICROENVIRONMENT 101 0.77 1.76 2.80E-10 2.21E-08 1.70E-08

ANASTASSIOU_MULTICANCER_INVASIVENESS_SIGNATURE 64 0.80 1.76 7.30E-08 3.43E-06 2.64E-06

DAZARD_RESPONSE_TO_UV_NHEK_DN 290 0.74 1.76 1.00E-10 8.65E-09 6.65E-09

WP_MIRNA_TARGETS_IN_ECM_AND_MEMBRANE_RECEPTORS 42 0.84 1.75 9.37E-07 3.15E-05 2.42E-05

REACTOME_NON_INTEGRIN_MEMBRANE_ECM_INTERACTIONS 59 0.80 1.75 1.10E-07 4.96E-06 3.81E-06

AMIT_SERUM_RESPONSE_60_MCF10A 56 0.80 1.74 4.52E-07 1.73E-05 1.33E-05

GENTILE_UV_RESPONSE_CLUSTER_D4 53 0.81 1.74 4.80E-07 1.79E-05 1.38E-05

DE_YY1_TARGETS_DN 91 0.77 1.73 6.82E-09 3.95E-07 3.04E-07

SIMBULAN_UV_RESPONSE_IMMORTALIZED_DN 31 0.87 1.73 3.05E-06 8.71E-05 6.70E-05

RODRIGUES_THYROID_CARCINOMA_DN 75 0.77 1.73 3.44E-08 1.70E-06 1.31E-06

PHONG_TNF_TARGETS_UP 63 0.78 1.72 4.66E-07 1.75E-05 1.35E-05

HINATA_NFKB_TARGETS_KERATINOCYTE_UP 84 0.67 1.52 2.26E-04 3.32E-03 2.55E-03

MEBARKI_HCC_PROGENITOR_WNT_UP_BLOCKED_BY_FZD8CRD 116 0.64 1.49 1.45E-04 2.32E-03 1.78E-03
fr
GSEA, Gene Set Enrichment Analysis; TCGA, The Cancer Genome Atlas; CESC, Cervical Cancer.
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molecular subtypes are associated with varying clinical outcomes

(41–43). Additionally, variations in the expression of pivotal genes

such as PCBP3, ACTN1, and EPAS1 highlight the biological

diversity within these subtypes. In relation to the immune

microenvironment, CIBERSORT analysis has uncovered

differences in immune cell infiltration. Specifically, a negative

correlation exists between certain genes and immune cells,

implying that these genes may influence the regulation of

immune responses (44–46). Exploring the immune characteristics

of these cervical cancer subtypes could be instrumental in

developing effective immunotherapy strategies.

The prognostic risk model developed using 13 genes identified

through LASSO regression demonstrates significant potential for

clinical application, effectively stratifying patients based on their

risk characteristics. To assess the model’s ability to predict patient

prognosis, we used the AUC as a metric, where a higher AUC value

signifies better classification performance and greater comparability

of features. The prognostic model for bladder cancer developed by

Deng et al. is associated with disulfide-induced apoptosis. The

prognostic model for bladder cancer developed by Deng et al. is

associated with disulfidptosis, and they reported higher AUC values

(47). Similarly, the renal cell carcinoma model involving

disulfidptosis also reported high AUC values (48).
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We also conducted calibration analyses of the risk assessment

prognostic assessment model for cervical cancer (CESC) over

periods of 1 to 3 years, with results indicating that the model’s

predictions were most accurate at the 3-year mark. We evaluated

the clinical utility of the CESC model using Decision curve analysis

to assess its performance over one, two, and three years. Here, we

present the results. Our findings show a decline in effectiveness over

three, two, and one-year periods, confirming that the prognostic

model based on DRGs is reliable and accurate. This indicates that

the prognostic model based on Diagnosis-Related Groups (DRGs)

is both reliable and accurate.

When the model’s line remains above both “All Positive” and

“All Negative” for a wider range, it indicates greater net benefits and

improved performance. The LASSO regression model we developed

has the highest clinical predictive performance at three years,

followed by two years, and the lowest at one year. Our research

indicates that DRGs have potential targeted therapeutic effects for

high-risk cervical cancer patients.

GSEA analysis revealed several significantly enriched pathways,

particularly the HCC Progenitor Wnt Upregulated and NF-kB
Targets Keratinocyte Upregulated pathways. The Wnt signaling

pathway is integral to cellular proliferation and differentiation;

however, its aberrant activation can result in tumorigenesis and
TABLE 4 Results of GOKEGG.

ONTOLOGY ID Description GeneRatio BgRatio pvalue p.adjust qvalue

BP GO:0010951
negative regulation of
endopeptidase activity 4/29 128/18870 4.21E-05 1.30E-02 9.14E-03

BP GO:0010466
negative regulation of
peptidase activity 4/29 137/18870 5.48E-05 1.30E-02 9.14E-03

BP GO:0050921 positive regulation of chemotaxis 4/29 145/18870 6.84E-05 1.30E-02 9.14E-03

BP GO:0052548 regulation of endopeptidase activity 5/29 288/18870 7.03E-05 1.30E-02 9.14E-03

BP GO:0052547 regulation of peptidase activity 5/29 312/18870 1.03E-04 1.43E-02 1.01E-02

CC GO:0034774 secretory granule lumen 4/30 322/19886 1.33E-03 4.16E-02 3.31E-02

CC GO:0060205 cytoplasmic vesicle lumen 4/30 325/19886 1.37E-03 4.16E-02 3.31E-02

CC GO:0031983 vesicle lumen 4/30 326/19886 1.39E-03 4.16E-02 3.31E-02

MF GO:0002020 protease binding 4/30 142/18496 7.81E-05 5.85E-03 3.97E-03

MF GO:0004866 endopeptidase inhibitor activity 4/30 168/18496 1.50E-04 5.85E-03 3.97E-03

MF GO:0030414 peptidase inhibitor activity 4/30 175/18496 1.75E-04 5.85E-03 3.97E-03

MF GO:0061135 endopeptidase regulator activity 4/30 184/18496 2.12E-04 5.85E-03 3.97E-03

MF GO:0008237 metallopeptidase activity 4/30 185/18496 2.17E-04 5.85E-03 3.97E-03

KEGG hsa05146 Amoebiasis 4/12 103/8876 7.88E-06 4.34E-04 2.99E-04

KEGG hsa05219 Bladder cancer 3/12 41/8876 1.96E-05 5.38E-04 3.71E-04

KEGG hsa05120
Epithelial cell signaling in Helicobacter
pylori infection 3/12 71/8876 1.02E-04 1.88E-03 1.29E-03

KEGG hsa04657 IL-17 signaling pathway 3/12 95/8876 2.44E-04 2.68E-03 1.85E-03

KEGG hsa05323 Rheumatoid arthritis 3/12 95/8876 2.44E-04 2.68E-03 1.85E-03
GO, Gene Ontology; BP, Biological Process; CC, Cellular Component.
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metastasis (49–51). Consequently, inhibiting Wnt signaling

presents potential new therapeutic strategies. Additionally, the

NF-kB pathway is crucial for regulating inflammatory responses

and cell survival, contributing to tumor progression and the
Frontiers in Oncology 14
resistance of cancer cells to apoptosis (52). Targeting these

pathways may not only inhibit tumor growth but also increase

the sensitivity of cancer cells to existing treatments. Nevertheless,

the interplay between these signaling pathways, along with their
frontiersin.or
FIGURE 8

GO and KEGG enrichment analysis. (A) Bubble plot of GO and KEGG enrichment analysis results of subtyped differential genes (SSDEGs): BP, CC, MF
and KEGG). GO terms and KEGG terms are shown on the abscissa. B-E. GO and KEGG enrichment analysis results of subtype differential genes
(SSDEGs) network diagram showing BP (B), CC (C), MF (D) and KEGG (E). The orange nodes represent items, the green nodes represent molecules,
and the lines represent the relationship between items and molecules. The bubble size in the bubble plot represents the number of genes, and the
color of the bubble represents the size of the adj.p, the redder the color, the smaller the adj. P-value, and the bluer the color, the larger the adj. P-
value. The screening criteria for GO and KEGG enrichment analysis were adj.p < 0.05 and FDR value (q value) < 0.25, and the p value correction
method was Benjamini-Hochberg (BH).
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interconnections with other pathways, necessitates further

exploration. For instance, the activation of the NF-kB pathway

may augment Wnt signaling, potentially creating a feedback loop

that fosters tumorigenesis (53). This observation implies that multi-

targeted approaches could be more efficacious than single-target

strategies, highlighting the intricate nature of tumor biology and the
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need for integrated methodologies in drug development. The

modulation of pathway activity—whether through inhibition or

activation—can markedly affect tumor cell behavior.

Specifically, cell migration and invasion can be reduced by

suppressing Wnt signaling (54–56). A thorough understanding of

these dynamics is essential for devising effective treatment strategies
TABLE 5 Results of Cox analysis.

Characteristics Total (N)
HR (95% CI)
Univariate analysis

P value
Univariate analysis

HR (95% CI)
Multivariate analysis

P value
Multivariate analysis

Age 245

<= 60 206 Reference

> 60 39 1.157 (0.559-2.395) 0.694

Stage 245

Stage I 142 Reference Reference

Stage II 56 0.681 (0.311-1.492) 0.337 0.745 (0.339-1.636) 0.464

Stage IV 13 4.729 (2.150-10.402) < 0.001 7.499 (3.292-17.083) < 0.001

Stage III 34 0.443 (0.135-1.456) 0.180 0.595 (0.180-1.965) 0.394

Risk.Score 245 7.098 (3.997-12.606) < 0.001 8.674 (4.685-16.060) < 0.001
HR > 1 indicates that the variable is a risk factor, and HR < 1 is a protective factor. Univariate p values < 0.1 were included in the analysis.
FIGURE 9

Cox regression analysis. (A, B). Plots of variable trajectories of the LASSO regression model (A) and prognostic model (B). (C) Forest Plot of subtype A
(Cluster1) and subtype B (Cluster2) of CESC samples in the multivariate Cox regression model of 13 LASSO regression model genes in the GTEx-
TCGA-CESC. LASSO (Least Absolute Shrinkage and Selection Operator).
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that can navigate resistance mechanisms and improve

patient outcomes.

This study’s analysis of immune infiltration underscores the

importance of the interactions among various immune cells, which

could have significant implications for treatment strategies in

cervical cancer. Immunoinfiltration analysis showed a significant

negative correlation between CD8 T cells and resting memory CD4

T cells in different groups (r = -0.463). CD8 T cells can act as key

effector cells responsible for targeting and eliminating tumor cells.

Resting memory CD4 T cells play a key role in regulating immune

responses and maintaining immune memory (57, 58). There is

competition between CD8 T cells and resting memory CD4 T cells,
Frontiers in Oncology 16
which may affect the efficacy of immunotherapy. Additionally, the

negative correlation between DSTN and CD8 T cells (r = -0.285)

indicates that DSTN may regulate the infiltration process of

immune cells. Since DSTN is related to cytoskeletal dynamics, it

may influence the movement and efficacy of CD8 T cells in the

tumor microenvironment. Understanding the relationship between

essential genes and immune cell infiltration may help identify

biomarkers for personalized immunotherapy (59). This research

underscores the urgent need to explore the interactions among

immune cells and their effects on anti-tumor responses to refine

existing immunotherapies and enhance their effectiveness in

treating cervical cancer. Future research should focus on
FIGURE 10

Prognostic analysis. (A) Time-dependent ROC curves of the CESC group in the GTEx-TCGA-CESC. (B) Prognostic KM curve between RiskScore high
and low groups and d DFS of the CESC sample. (C, D) Forest Plot of RiskScore and clinical information in univariate Cox regression model (C) and
multivariate Cox regression model (D). (E) Nomogram of RiskScore and clinical information in univariate and multivariate Cox regression model. p
value < 0.001, highly statistically significant.
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exploring combination strategies that increase CD8 T cells while

reducing resting memory CD4 T cells, ultimately improving patient

prognosis (60, 61).

Our model requires further experimental validation to assess

its clinical applicability. To create a stronger predictive model, the

role of DRGs in cervical cancer prognosis and their correlation

with clinical features must be experimentally validated. Although

our data provide valuable insights, it is crucial to obtain
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additional experimental evidence to substantiate these findings

and enhance the application of these two genes in targeted

therapy for cervical cancer. Furthermore, relying on a single

dataset for analysis may introduce biases, as it might not

accurately represent a wider population or account for

variations across different contexts. Such limitations highlight

the imperative for additional research to corroborate the results

and augment their clinical significance.
FIGURE 11

Prognostic analysis. (A–C). Calibration curve of 1 year (A), 2 years (B), and 3 years (C) of the prognostic risk model for CESC. D-F. 1-year (D), 2-year
(E), and 3-year (F) decision curve analysis (DCA) plots of the prognostic risk model for CESC.
FIGURE 12

Prognostic analysis. Time-dependent ROC curve of the CESC group in dataset GSE44001. ROC, Receiver Operating Characteristic Curve; AUC, Area
Under the Curve.
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FIGURE 13

GSVA analysis. (A, B). Heat map (A) and group comparison map (B) of gene set variation analysis (GSVA) results between subtype B (Cluster2) group
and subtype A (Cluster1) group of cervical cancer (CESC) samples in the TCGA-CESC. GSVA, Gene Set Variation Analysis. *** represents p value <
0.001, highly statistically significant. Purple represents subgroup B (Cluster2) and orange represents subgroup A (Cluster1). The screening criteria for
gene set variation analysis (GSVA) was adj.p < 0.05, and the p value correction method was Benjamini-Hochberg (BH). In the heat map, blue
represents low enrichment and red represents high enrichment.
TABLE 6 Results of GSVA.

Pathway logFC AveExpr t P.Value adj.P.Val B

KEGG MEDICUS REFERENCE ELECTRON TRANSFER IN COMPLEX I -0.56051 -0.00539 -6.88 4.34E-11 2.20E-08 14.82

KEGG MEDICUS VARIANT MUTATION INACTIVATED PINK1 TO ELECTRON
TRANSFER IN COMPLEX I

-0.56009 -0.0041 -6.94 2.90E-11 2.20E-08 15.21

KEGG MEDICUS ENV FACTOR ARSENIC TO ELECTRON TRANSFER IN COMPLEX IV -0.55983 -0.02649 -7.06 1.42E-11 1.52E-08 15.89

KEGG MEDICUS REFERENCE TRANSLATION INITIATION -0.55751 -0.00503 -5.36 1.76E-07 5.41E-06 6.91

(Continued)
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5 Conclusion

We identified seven key genes and constructed two distinct

subtypes of cervical cancer. By utilizing thirteen genes, we

developed a prognostic risk model that demonstrates strong

predictive capabilities over time. This model holds significant

promise for clinical applications. Future work should focus on

expanding the sample size and conducting cross-platform

validation to ensure that the conclusions are robust and reliable.
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TABLE 6 Continued

Pathway logFC AveExpr t P.Value adj.P.Val B

KEGG MEDICUS REFERENCE ELECTRON TRANSFER IN COMPLEX III -0.55563 -0.02906 -5.86 1.38E-08 8.60E-07 9.32

KEGG MEDICUS VARIANT MUTATION CAUSED ABERRANT TDP43 TO ELECTRON
TRANSFER IN COMPLEX I

-0.55099 -0.00589 -6.84 5.48E-11 2.38E-08 14.60

WP MITOCHONDRIAL COMPLEX III ASSEMBLY -0.54996 -0.03923 -6.59 2.34E-10 4.62E-08 13.21

KEGG MEDICUS PATHOGEN SARS COV 2 NSP1 TO TRANSLATION INITIATION -0.54622 -0.00867 -5.24 3.23E-07 8.34E-06 6.33

KEGG RIBOSOME -0.54398 -0.00693 -5.42 1.31E-07 4.49E-06 7.18

BIOCARTA SM PATHWAY -0.53856 -0.01842 -5.47 1.01E-07 3.62E-06 7.43

REACTOME EUKARYOTIC TRANSLATION ELONGATION -0.53642 -0.00788 -5.37 1.69E-07 5.29E-06 6.94

KEGG MEDICUS REFERENCE ELECTRON TRANSFER IN COMPLEX IV -0.53455 -0.02004 -6.49 4.11E-10 6.72E-08 12.67

KEGG MEDICUS VARIANT MUTATION CAUSED ABERRANT SNCA TO ELECTRON
TRANSFER IN COMPLEX I

-0.53331 0.000449 -6.61 2.09E-10 4.54E-08 13.32

KEGG MEDICUS VARIANT MUTATION CAUSED ABERRANT HTT TO ELECTRON
TRANSFER IN COMPLEX III

-0.52911 -0.01911 -5.87 1.31E-08 8.28E-07 9.38

KEGG MEDICUS REFERENCE REGULATION OF GF RTK RAS ERK SIGNALING
PATHWAY ADAPTOR PROTEINS

0.526745 -0.02655 6.88 4.32E-11 2.20E-08 14.83

REACTOME RESPONSE OF EIF2AK4 GCN2 TO AMINO ACID DEFICIENCY -0.52632 -0.01099 -5.58 6.00E-08 2.53E-06 7.93

WP CYTOPLASMIC RIBOSOMAL PROTEINS -0.52282 -0.00643 -5.32 2.23E-07 6.48E-06 6.68

REACTOME SARS COV 1 MODULATES HOST TRANSLATION MACHINERY -0.52162 -0.01123 -5.09 6.73E-07 1.54E-05 5.64

WP OXIDATIVE PHOSPHORYLATION -0.51567 -0.00306 -6.78 7.58E-11 2.71E-08 14.29

WP MFAP5 EFFECT ON PERMEABILITY AND MOTILITY OF ENDOTHELIAL CELLS VIA
CYTOSKELETON REARRANGEMENT

0.515332 -0.03125 7.20 6.29E-12 1.52E-08 16.67
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