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Comprehensive single-cell
sequencing reveals the tumor
microenvironment and tumor-
specific characteristics in trachea
squamous cell carcinoma

Hongwu Wang*!, Hongli Li', Heng Zou, Han Meng, Yan Liu,
Chengjun Ban, Weixia Yu, Miao Cheng and Jun Teng

Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China

Trachea squamous cell carcinoma (TSCC) is a subtype of lung cancer. A thorough
investigation of the tumor microenvironment of TSCC is crucial for the
development of cancer therapeutics and predicting clinical responses. In this
study, we utilized single-cell RNA sequencing to analyze seven TSCC samples
(including five malignant and two non-malignant samples) and obtained 70,682
high-quality cells. Based on the expression levels of marker genes, we identified 7
major cell types within the samples. By comparing malignant samples that
received chemotherapy with those that did not, we identified critical
transcriptional regulators responsible for T cell state transition in response to
chemotherapy. Additionally, we found specific transcriptional regulators and
differentially expressed genes between malignant and non-malignant groups.
We identified more particularly abundant specifical intercellular communication
in the malignant sample group and that may significantly influence the
progression and spread of cancerous cells. Overall, our study provides the first
single-cell atlas that comprehensively explains TSCC development and
chemotherapy effects, thereby laying a new molecular foundation for
therapeutic research in TSCC.

KEYWORDS

single-cell sequencing, tumor microenvironment, cell-cell interaction, chemotherapy,
trachea squamous cell carcinoma

Introduction

Lung cancer, including small cell lung cancer and non-small cell lung cancer, has one of
the highest incidences and mortality rates of any malignant tumor in our country and
around the world (1). Trachea squamous cell carcinoma (TSCC), an important
histopathological subtype of non-small cell lung cancer, originates in the bronchial
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epithelium, undergoes squamous metaplasia, followed by dysplasia
and in situ carcinoma, ultimately leading to invasive carcinoma
(2, 3).

As a result, there are currently no efficient and reliable drug
therapies available specifically targeting TSCC, and the 5-year
survival rates of TSCC patients are lower compared to other lung
cancer subtypes, resulting in a significant number of patient deaths
worldwide (4, 5). Late-stage lung cancer is notoriously challenging
to treat, and cytotoxic drugs, which are the standard therapy for
treating late-stage TSCC, often have poor therapeutic effects.
Most patients do not respond to first-line and second-line
pharmacological treatments (6).

Cancer cells, infiltrating immune cells, and cancer-associated
fibroblasts make up the tumor ecosystem and manipulate signaling
molecules to regulate tumor progression and response to therapy (6, 7).
The interactions between these cells allow invading cancer cells to
overcome constraints imposed by stromal substances, ultimately
leading to malignant lung tumors. Malignant lung tumors can then
disseminate from the primary site to distant locations, with cancer
metastasis responsible for over 90% of cancer fatalities (8, 9). In
contrast, benign lung tumors do not metastasize to other regions of
the body (10).

Previous studies have presented a substantially comprehensive
characterization of the cell types present in advanced NSCLC,
including cancer cells, immune cells, and stromal cells,
using scRNA-seq analysis (7-11). In order to gain a better
understanding of the dynamics and molecular characteristics of
the immune landscape in NSCLC, single-cell immune landscapes at
high resolution have been depicted (12, 13). However, the cell type
landscape and biological differences between benign and malignant
TSCC remain largely uncharted.

To fill this gap, we conducted single-cell RNA sequencing on
seven patients, including five malignant and two non-malignant
samples. In-depth comparative analyses of stromal and immune
cells derived from the malignant and non-malignant TSCC
samples revealed molecular heterogeneity within the tumor
microenvironment and the underlying mechanisms of tumor
progression from cell-cell interaction at the molecular level.

Materials and methods
Patients

This study was approved by the Ethics Committee of
Dongzhimen Hospital, Beijing University of Traditional Chinese
Medicine (2021DZMEC-015-02), and all patients signed informed
consent forms for participation. This study was conducted in line
with the principles of the Declaration of Helsinki. A total of seven
patients, comprising five patients with squamous carcinoma and
two patients with benign granuloma post-tracheotomy, underwent
interventional bronchoscopy at the Respiratory Department of
Dongzhimen Hospital, Beijing University of Chinese Medicine,
and relevant tissues were obtained during the procedure. The
squamous lung cancer patients were all male, consisting of two
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patients with early-stage and three patients with advanced
squamous lung cancer (of which one had not received treatment
during the early stage). The two patients with benign granuloma of
the airway were one male and one female.

Tissue dissociation and cDNA synthesis

Airway tissue specimens were excised during bronchoscopy and
immediately placed in pre-cooled MACS tissue storage solution
(Miltenyi Biotech, Germany) before being transported at 4°C. Each
sample, which consisted of 1g of tissue, was then dissociated using a
scalpel and the Lung Dissociation Kit (Miltenyi Biotech, Germany)
in accordance with the manufacturer’s instructions. The subsequent
single cell suspension was filtered through sterile 70um and 40pum
cell filters. Using the Single Cell B Chip Kit (10x Genomics,
1000074), we generated single-cell gel beads in emulsion
according to the manufacturer’s instructions. Approximately
6,000 cells were added to each channel, with an estimated target
cell recovery of approximately 3,000 cells. In individual GEMs, the
released RNA of captured cells was barcoded using reverse
transcription. A SI000TM Touch Thermal Cycler (Bio Rad) was
used to perform reverse transcription at 53°C for 45 minutes,
followed by 85°C for 5 minutes, and held at 4°C. The cDNA was
generated, amplified, and then assessed for quality by Capital
Biotechnology, Beijing, using an Agilent 4200.

Single cell RNA-Seq library preparation

Single-cell RNA-seq libraries were created using the Single Cell
3’ Library and Gel Bead Kit V3.1, according to the manufacturer’s
instructions. Finally, Lastly, Illumina Novaseq 6000 sequencers
were used to sequence the libraries with a depth of at least
100,000 reads per cell using PE150 (pair-end 150 base pair)
readings, which was performed by Capital Biotechnology, Beijing.
A feature-barcode matrix was produced using the Cell Ranger
software’s count module after alignment and UMI counting.

Process of single-cell data and annotate
major cell lineages.

For each scRNA-seq sample, raw gene expression matrices were
generated using Cell Ranger (version 1.3.1). Using the Seurat
package(version 4.1.0), all malignant and non-malignant gene
expression matrices were aggregated and converted into Seurat
objects. To ensure data quality, cells with >500 or <8000 expressed
genes and >15% mitochondrial counts were removed from the
analysis. Using Seurat’s ScaleData function, the remaining cells’
gene expression matrices were normalized by total and
mitochondrial read counts. In addition, 3,000 genes differentially
expressed, and 30 principal components were used to reduce the
dimensions, while batch effects among each sample were eliminated
using the Harmony package. For each cluster, we used the
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FindAllMarkers() function in Seurat (v4.1.0) with parameters:
logfc.threshold = 0.25 min.pct = 0.1, p_val_adj < 0.01.Top marker
genes were ranked by average log2 fold change and percentage of
cells expressing the gene. We choose genes ranked top 20 in each
cluster as marker genes. Using literature-supported marker genes,
major cell clusters observed in the two-dimensional UMAP
representation were annotated to known cell types according to
top 20 marker genes.

Trajectory analysis

Trajectory analysis was conducted separately for CD4" Treg
cells, CD4" Tconv cells, and Neu cells using Monocle2. The
normalized count matrix was subjected to dimensionality
reduction using the DDRTree algorithm with top 30 principal
components as input. The pseudotime value was used to order
the cells after dimensional reduction was performed by orderCells
(). The cell trajectory was then generated from the reduced
dimension space and was visualized using plot_cell_trajectory ().

Cell—cell communication analysis

Cellchat (https://github.com/sqjin/CellChat) was utilized to
compute the cell-cell interaction within the malignant and non-
malignant groups, respectively, based on the cluster annotation and
counts from our single-cell transcriptomics data. We used the
default ligand-receptor pair information, as well as gene
expression and prior knowledge of how signaling information
interacts with their cofactors. We illustrated the cell-cell
communication in each group using a circle plot and a
chord diagram.

Regulon analysis

The standard SCENIC procedures were conducted to analyze
the cell subpopulation specifical activated regulons as described
previously (14). Python package pySCENIC (version 0.9.9) was
used to identify expression modules between TF and potential
target genes using co-expression of TF genes with other genes,
construct regulons and calculate the activity of regulons score. A
regulon is defined as an association between a transcription factor
and its direct target gene.

Different expression analysis

Within the three cell types, we used the FindMarkers function
within Seurat to identify genes with differential expression between
malignant and non-malignant groups (i.e., fibroblast, neutrophil,
and macrophage). This involved comparing the studied subcluster
cells of the two groups, and marker genes of the subcluster were
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defined as those with an average expression >1 fold higher, and p-
value adjust <0.01 in the studied subcluster than compared
subclusters in the other groups. Additionally, significant genes
were separated into two groups based on their mean expression
in the studied subcluster, compared to those in other subclusters.

Gene ontology and KEGG analysis

We conducted GO and KEGG enrichment analysis for the
selected upregulated genes using the R package “clusterprofile” (15),
which is a software integrates genomic, chemical, and phylogenetic
data into a comprehensive database. The KEGG pathway
enrichment and enriched gene GO terms were defined based on a
p-adjust <0.05 threshold for significant enrichment.

Results

We utilized scRNA-seq to profile seven tissue samples,
including five from patients diagnosed with malignant TSCC and
two from those diagnosed with non-malignant TSCC. Fresh tissue
samples were collected via interventional bronchoscopy, and a
customized workflow was used to isolate fresh living single cells
primarily from the preprocessed tissue samples. Subsequently,
scRNA-seq data analysis was performed to investigate the cell
type landscape between malignant and non-malignant samples.
The clinical information of these samples is presented in
Supplementary Table S1, with patient ages ranging from 46 to 71
years. Of the five patients diagnosed with malignant TSCC, three
had received chemotherapy treatment. The seven samples were
divided into malignant (PT1, PT2, PT3, PT4, PT5) and non-
malignant (PT6, PT7) groups (Figure 1A).

After mapping the human genome and quality filtering, we
obtained 70,682 single cells, of which 45,127 (63.8%) originated
from the five malignant samples and 25,413 (36.1%) from the two
non-malignant samples, with an average of 2,325 median genes and
8,821 median reads per cell (Figure 1B, Supplementary Figure S1A).
An analysis of downstream processes was performed using Seurat R
(version 4.0) (16). Using principal component analysis,
dimensionality was reduced, and individual cells were grouped
into distinct clusters using graph-based clustering. Finally, we
utilized the Uniform Manifold Approximation and Projection
(UMAP) to visualize the cell distribution. Based on well-
recognized marker genes, we assigned the clusters to 6 major cell
lineages (Figure 1C). Based on the expression levels of characteristic
marker genes(Supplementary Table S2), we detected 6 major cell
types previously reported, including endothelial cells (RAMP2),
epithelial cells (KRT19, EPCAM), fibroblasts (COL1A2), mast cells
(TPSABL1), macrophage cells (CD68), neutrophils (CSF3R) and T
cells (CD3D), (Figure 1D). Comparing the cell proportions between
the groups, we observed a higher proportion of neutrophils in the
malignant group than in the non-malignant group (Figure 1E).
Considering neutrophils serve as the first line of defense in innate
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Identification of stromal cells in the TSCC microenvironment via single-cell RNA sequencing. (A) Graphical workflow of the experimental design.
(B) UMAP plot of 66,627 cells and colored by sample type. (C) The components in the NPC and NLH microenvironment, according to cell types.
(D) The expression of marker genes for the identified cell type. (E) Stacked bar graph showing the cell fraction of non-malignant samples and

malignant samples.

immunity, the higher proportion in malignant group indicates that

neutrophils respond to tumor development and exhibit increased

infiltration in tumor tissues. We also compared the proportions of

fibroblast, endothelial, epithelial cells, and immune cells between
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malignant and non-malignant groups (Figure 1E). Given the

heterogeneity in cell components observed in TSCC ecosystems,

more detailed investigation in molecular change is required to fully

elucidate their complexity.
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Characterization of T-cell diversity and
differentiation under malignant and non-
malignant group

Using the expression levels of their respective marker genes, we
identified and characterized the subpopulations of 3,466 T cells,
including CD4" Tconv, CD4" Tregs, CD8" T cells, and natural
killer (NK) cells (Figures 2A, B) (Supplementary Table S2). While
most T cell subpopulations were found in different patients, the
relative abundance of each subpopulation greatly varied
(Supplementary Figure S2A). For example, CD4" Tconv_1 and
CD4" Tconv_2 was mostly found in non-malignant patients (PT6
and PT7), while more CD4" Tconv_3 and CD4" Tconv_4 was found
in malignant patients (PT1-PT5). To explore the characteristics of the
subpopulations of CD4" Tconv, monocle trajectory analysis was
performed to infer a differentiation trajectory. We found that the
trajectory began with CD4" Tconv_1, progressed to CD4" Tconv_2,
and finally to CD4" Tconv_3 and CD4" Tconv_4 (Figure 2C).
Interestingly, the trajectory correlated with the patients, from
samples with non-malignant (PT6 and PT7) to those with
malignant. This disease-state association was further observed in
CD4" Tregs (Figure 2D), which the trajectory began with CD4"
Tregs_1, progressed to CD4" Tregs_2, and finally to CD4™ Tconv_3
with matching clinical correlation. The conserved alignment between
cellular trajectories and pathological states suggests potential
functional reprogramming during malignant progression.

To better understand the key regulon that underlies the
differentiation between the subpopulations of CD4" Tconv and
CD4" Treg, we employed Single-Cell Regulatory Network Inference
and Clustering (SCENIC) analysis to identify cluster-specific
transcription factors (TFs) based on the gene expression of T cell
subpopulations (Figure 2E). This analysis identified a set of TFs that
provide critical insights into the molecular biology driving cellular
heterogeneity within different T cell subtypes in TSCC (Figure 2F).
Interestingly, CD4" Tconv_1 and CD4" Tconv_2 in non-malignant
patients shared similar expression patterns compared to other cell
types, while CD4" Tconv_3 to CD4" Tconv_4 in malignant patients
also exhibited a similar expression of TF regulon compared to other
cell types. This suggests that the differentiation between CD4 T cell
subpopulations may be influenced by disease state. Notably, the
expression of genes regulated by IKZF1 and RUNXI1 was
significantly upregulated in CD4" Tconv_1. Previous studies have
shown that IKZF1 plays an essential role in regulating the
pathogenic program of CD4" T cells (17, 18), while RUNX1 acts
as a master regulator in various aspects of T cell immunity (19). In
our pathway function enrichment analysis, we observed a transition
in cell type function along the cell trajectory. The marker genes of
CD4" Tconv_1 cell are enriched in KEGG pathways and GO terms
related to protein processing, protein folding, and ATP hydrolysis
(Figure 2F, Supplementary Figure S2B). Notably, the marker genes
functions of CD4" Tconv_4 enriched in IL-17 signaling pathway,
IgG binding, cytokine receptor binding and immunoglobulin
binding, which play a crucial role in reshaping the immune
microenvironment of TSCC. Our analysis also revealed a
progressive decline in immune function from CD4+ Treg_1, CD4
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+ Treg 2 to CD4+ Treg_3. CD4+ Treg 1 cell exhibited elevated
activity in cytokine-cytokine receptor interactions and cytokine
activity, while CD4+ Treg_2 cells demonstrated heightened
activity in the NF-kappa B signaling pathway and chemokine
receptor binding. In contrast, CD4+ Treg 3 cells were primarily
associated with non-immune functions, including rRNA binding and
involvement in the ribosome pathway. Natural Killer cells (NK cells)
are also essential components of the cancer microenvironment and
have shown increasing promise in tumor (20, 21). We found that the
marker genes of NK_2 are enriched with KEGG pathways associated
with cancer defense, including PD-L1 expression, PD-1 checkpoint
pathway in cancer, T cell receptor signaling pathway, and IL-17
signaling pathway, as well as GO terms such as immune receptor
activity and MHC protein complex binding (Figure 2F, Supplementary
Figure S2B). These findings identify candidate regulators that may
contribute to the cell state transition between malignant and non-
malignant patients.

Gene expression change between
malignant and non-malignant group of
fibroblast and neutrophils cells

Fibroblasts are the predominant cells found in both non-
malignant and malignant TSCC groups. They play multiple roles in
tumorigenesis, cancer development, and resistance to various
therapeutic strategies within the tumor microenvironment (TME)
(22, 23). We further conducted UMAP analyses to identify the cell
populations within the fibroblast cluster (Figure 3A). We identified
five transcriptionally distinct subpopulations from a cohort of 17,495
fibroblast cells and these subpopulations were assigned specific cell
type names based on the overlap between representative marker
genes and the top marker genes characteristic of each fibroblast
subtype (Figure 3B) (Supplementary Table S2). Obviously, we found
a significantly higher proportion of S100A9+ CAF in the non-
malignant group, while the proportion of CXCL14+ CAF was
notably elevated in the malignant group (Figure 3C). To better
understand the biological characteristic among different subgroups,
we applied ssGSEA to perform the functional enrichment analysis for
comparing different fibroblast subclusters. Epithelial mesenchymal
transition, TGF-P signaling pathways and P53 singling pathway were
found to be up-regulated in CXCL14+CAF, which the cell type
proportion was prominently in malignant group. The
characteristics of DCN+CAF were found to be similar to CXCL14
+CAF in terms of cell type proportion and enrichment pathway
(Figure 3D). In addition, CENPF+CAF demonstrated a significantly
higher cell type proportion in the malignant group and exhibited a
high enrichment score for the G2M pathway (Figure 3D). We also
observed the expression level of p53 pathway can be a hallmark to
distinguishes non-malignant and malignant TSCC groups.

To understand the molecular changes after a benign tumor
deteriorates into a malignant tumor, we performed differential
expression analysis between 5124 fibroblast cells in non-
malignant and 13120 fibroblast cells in malignant group
(Figure 3E). We identified 695 genes that were upregulated in
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malignant fibroblast cells and 182 genes that were upregulated in
non-malignant fibroblast cells (Figure 3F) (Supplementary Table
S3). This indicates that the genes are more highly expressed in
malignant fibroblast cells. We observed elevated expression levels of
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CXCL14 and SPP1 in malignant samples compared to non-
malignant samples with consistent patterns observed across both
the scRNA-seq data and the TCGA-LUSC dataset (Supplementary
Figures S3A-D). To describe the functions of highly expressed genes
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FIGURE 3

Gene expression change of fibroblast and neutrophils between malignant and non-malignant. (A) UMAP plot of fibroblast cells and colored by
subtype. (B) The dotplot represents the marker expression of different fibroblast subtypes. (C) The proration of five fibroblast subtypes between two
groups. (D) Enrichment pathway of five fibroblast subtypes. (E) Volcano plot showing differential expressed genes between malignant fibroblast cells
and non-malignant fibroblast cells. (F) Pathway enrichment analysis of significantly upregulated genes (left: malignant sample, right: non-malignant
sample). (G) UMAP plot of Neutrophil cells and colored by sample type. (H) Volcano plot showing differential expressed genes between malignant
Neutrophil cells and non-malignant Neutrophil cells. (I) Top enrichment Pathway of significantly upregulated genes of malignant Neutrophil cells

and non-malignant Neutrophil cells (left: malignant sample, right: non-malignant sample).
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in non-malignant and malignant fibroblast cells, respectively,
KEGG pathway analysis revealed that genes upregulated in
malignant fibroblast cells were highly associated with pathways
including Wnt signaling pathway, AGE-RAGE signaling pathway,
Hippo signaling pathway, MAPK signaling pathway, and Rapl
signaling pathway, etc. (Figure 3F). Previous studies have shown
that proteins or molecular factors produced by these pathways can
promote tumor aggressiveness (24-26). The upregulated DEGs in
non-malignant fibroblast cells were enriched in the IL-17 signaling
pathway and TNF signaling pathway (Figure 3F). IL-17 promotes
an anti-tumor cytotoxic T cell response to enhance the antitumor
effects, and TNF can stimulate the proliferation of other immune
cells to limit tumor progression (27, 28). We observed an increase in
neutrophil cell proliferation from 11.07% in non-malignant to
29.25% in malignant groups (Figure 1E), which led us to
hypothesize that changes in cell phenotype might imply biological
variation in the two groups. We conducted a similar analysis as
above and identified 163 genes with significantly higher expression
in malignant samples and 96 genes with significantly higher
expression in non-malignant samples (Figure 3G, H)
(Supplementary Table S4). Pathway analysis of these upregulated
genes showed a similar pathway enrichment profile between non-
malignant and malignant neutrophil cells, including the IL-17
signaling pathway and TNF signaling pathway (Figure 3I). As
primary responders in the innate immune system, neutrophils
display conserved activation patterns when exposed to similar
inflammatory microenvironments, may induce similar molecular
adaptations in neutrophils. One different pathway was the NF-
kappa B signaling pathway, which is an active player in human
cancer (29). Overall, our observations revealed a greater number of
upregulated genes in fibroblast cells and neutrophil cells in
malignant group compared to the non-malignant group. We
believe that the elevated expression profile in the malignant group
can be attributed to the activation of relating pathways with tumor
cell proliferation and growth.

Unique molecular characteristics of TSCC
epithelial cells

We conducted differential expression analyses to identify
specifically expressed genes in TSCC malignant epithelial cells
compared to non-malignant epithelial cells, which were visualized
by UMAP analysis (Figure 4A). After differential analysis, we
identified a total of 276 DEGs, of which 110 were upregulated in
malignant epithelial cells and 166 were upregulated in non-
malignant epithelial cells. The top 30 DEGs in each group were
presented in a heatmap (Figure 4B). These top DEGs represent the
genes driving the transfer of non-malignant epithelial cells to
malignant epithelial cells in molecular biological behavior.
Subsequently, we used GSVA to investigate the functions of
DEGs in the two groups of genes (Figure 4C). The non-malignant
epithelial cell-specific genes were enriched in signaling pathways
related to the inflammatory, such as the inflammatory response and
interferon-gamma response. Malignant epithelial cells were
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specifically enriched in signaling pathways related to v-Myc
targets, mTORCI1 singling and the reactive oxygen species
pathway. These results indicate that these DEGs contribute to the
phenotypic differences between non-malignant epithelial and
malignant epithelial cells. To describe the biological differences at
the molecular level in more detail, we attempted to further
subdivide the malignant epithelial cells and identified four related
malignant epithelial cell subclusters and one related non-malignant
epithelial cell cluster, visualized by UMAP analysis (Figure 4D). We
found 232 DEGs in non-malignant epithelial cells and 63, 45, 30
DEGs in the four malignant epithelial cell groups, respectively, and
the top 30 DEGs in each group were presented in a heatmap
(Figure 4E). We hypothesized that DEGs in these subsets may be
the major drivers of the transformation from benign to malignant
epithelial cells. We ran pySCENIC to identify specific transcription
factor activities from the gene expression of their targets (TF
regulon) between subclusters (Figure 4F). We found that TP63 in
malig_1, TP53 in malig 3, and ETS2 in the non-malignant group
were core transcription factors that regulate a vast array of
downstream genes (Figure 4G). Interestingly, ETS2, TP53, and
TP63 were also DEGs in non-malignant and malignant epithelial
cells. The expression trends of those genes show concordance
between our single-cell data and TCGA bulk RNA-seq results
(Figures 4H-J). ETS2 is essential for cell signaling pathways
involved in the cellular response to growth factors and may
contribute to benign TSCC proliferation (30, 31). The high
expression of TP53 and TP63 as specific transcription factors
regulate the expression of downstream genes by regulation
network and influence cell growth and the formation of tumors
(32, 33). The expression of TP63 demonstrated significant
prognostic value, with elevated levels of expression being
associated with enhanced overall survival (Figure 4K). In
summary, our results indicate that these DEGs, serving as specific
transcription factors in subsets, are key genes for the difference
between non-malignant and malignant epithelial cells and may
improve the prognosis of TSCC.

Specific cell-cell communication between
malignant and non-malignant group

Next, using CellChat (34), we identified 1210 ligand-receptor
pairs interactions in all ten major cell types (Supplementary Figure
S3A). The TME is shaped by complex cell-cell interactions between
immune cells, stromal cells, and tumor cells that ultimately
modulate tumor growth, leading to tumor deterioration
and metastasis.

Previous studies have reported on the interplay among immune
cells, stromal cells, and tumor cells in the tumor microenvironment
(14, 35, 36). To explore the specific molecular pairs mediating cell-
cell interactions between non-malignant and malignant cells in
these cell types, which may drive benign neoplasms into malignant
neoplasms, we performed cell-cell interaction analysis in non-
malignant and malignant cells separately (Figures 5A, B). Our
interest focus on the interaction from stromal cells and immune
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cells to epithelia cells. We considered the biological different of
epithelia between two groups may be the different cell-cell
interaction from other cells to epithelia cells. We identified a
higher number of ligand-receptor pair interactions in the
malignant groups compared to the non-malignant group, with
134 interactions observed in the former and 26 interactions in the
latter (Supplementary Table S5). We found the ligand-receptor
interaction number from DCN+CAF, CXCL14+CAF, CENPF
+CAF, S100A9+CAF and RGS5+CAF was increased in malignant
group (Figures 5B, C). Besides, 90 ligand-receptor pairs specifically
acting on epithelia cells in the malignant group (Supplementary
Table S6).

These pairs involve EGF, WNT, SPP1 and HGF signaling
pathways (Figures 5C, D) (Supplementary Table S7). Specifically,
the HGF signaling pathway was observed to have a significant effect
on the interaction between fibroblasts and malignant tumor cells
(Supplementary Figure S3B). The HGF ligand gene was expressed at
high levels in the malignant group of fibroblast cells relative to the
non-malignant group (Supplementary Figure S4C). This signaling
pathway plays a vital role in promoting cancer motility and invasion
by remodeling and reorganizing the cytoskeleton (37, 38). To
determine the clinical significance of HGF expression, we found
HGF in the genes list whose expression levels have been correlated
with survival outcomes in LUSC patients (Supplementary Table S8)
and then we conducted survival analyses of HGF expression using
Cox proportional hazards regression visualized as a Kaplan-Meier
plot (39). Patients with higher expression of HGF secreted by
fibroblast cells had significantly improved overall survival
compared to those with lower expression of HGF (P = 0.0012)
(Supplementary Figure S4D). We also observed specific interaction
between fibroblasts and malignant tumor cells through the
interaction of WNT5B and WNT2B with its downstream receptor
in the WNT signaling pathway (Figures 5E, F), which has been
linked to supporting tumor cell proliferation, metabolism, and
metastasis (40-43). Furthermore, the malignant group exhibited a
higher transmission of ligands AREG and MDK from immune or
fibroblast cells to epithelial cells compared to the non-malignant
group. Elevated AREG expression was significantly correlated with
improved overall survival (p = 0.0019) (Supplementary Figure S4E),
while reduced MDK expression was associated with a more
favorable prognosis (p = 0.046) (Supplementary Figure S4F).

As a result, we speculate that malignant-specific ligand-receptor
pairs play a greater role in tumor progression, and their expression
level is significantly associated with the overall survival ratio of
patients with TSCC. There is a possibility that these pairs may
become critical targets in cancer therapy.

Discussion

In this study, we present a valuable comprehensive analysis of
cell types in malignant and non-malignant trachea squamous cell
carcinoma using scRNA-seq. We identified 10 major cell types from
TSCC, providing a valuable resource for future investigations of
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cellular diversity and components of cancer microenvironments.
We also found that some subtypes of T cells and neutrophils
undergo cell state transformation between the early and later
stages of chemotherapy. Furthermore, we focused on the
molecular differences and group-specific cell-cell interactions
between malignant and non-malignant TSCC, suggesting cancer-
specific transcriptional regulation and expression.

From the cellular composition analysis, we showed a higher
content of neutrophils in malignant samples (25.02%) than in non-
malignant samples (11.07%). Previous literature has demonstrated that
tumor cells produce granulocyte colony-stimulating factor (G-CSF)
(44), which may increase the release of neutrophils in the bone
marrow, leading to an increase in neutrophils in the TSCC
microenvironment. As a result of environmental changes, CD4 T
cells are able to eliminate tumor cells in various ways and exhibit a high
degree of plasticity and differentiation potential (45-47). It is vital for
the immune response to be shaped by regulatory B cells (Tregs) and
conventional T cells (Tcon), which also regulate the body’s tolerance to
infection, making them crucial in the regulation of tumor immunity
(48, 49). We observed a trend of transitions from no chemotherapy
type to chemotherapy type in CD4 Tregs and CD4" TCons by
trajectory analysis, which may be due to chemotherapy perturbing
gene regulatory and metabolic networks, leading to differentiation to
adapt to external simulation. In terms of gene regulatory and metabolic
networks, subtype-specific biological processes detected by pathway
enrichment and regulons identified by SCENIC analysis may play a
crucial role in cell subpopulation differentiation.

Differential gene expression analysis between cells of the same
type in malignant and non-malignant microenvironments can help
uncover driver genes leading to tumor deterioration and avoid
differences due to cell types. We observed more upregulated genes
in the malignant group compared to the non-malignant group,
suggesting that cancer metabolism is more active and requires
increased nutrient uptake to provide energy for its rapid
development and growth (50-52). Interestingly, we also found
enrichment of IL-17 signaling pathway, AGE-RAGE signaling
pathway, and TNF signaling pathway in macrophage cells
between malignant and non-malignant groups (Supplementary
Figure S5A), indicating the crucial role of these pathways in
antitumor immune response (52). We also found some specific
transcriptional regulons that are differentially expressed between
malignant subsets and non-malignant groups, which may play a
more critical role in exploring phenotypic differences.

A tumor’s microenvironment consists of immune cells, tumor
cells, and the stroma surrounding them, which has a comprehensive
cell-cell communication effect on tumor cells and is an important
cause of continuous tumor growth and metastasis. Immune cells
trigger downstream signaling through cognate receptors, altering
transcription factor activity and gene expression, leading to
abnormal biological processes in tumors. In our study, we
identified 1210 ligand-receptor pairs of interactions among ten
cell types in all samples. In the malignant group, we observed a
higher presence of ligand-receptor interaction pairs, indicating that
the adaptive immunity stimulated by the tumor microenvironment
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can potentially promote or suppress tumor growth. Previous studies
have reported that the adaptive immune response of some immune
cells is specifically triggered by antigenic proteins expressed in
tumors (53-55). Comparing cell-cell communication in malignant
and non-malignant samples, a set of ligand-receptor pairs
shows group-specific interaction. We believe that those tumor-
specific ligand-receptor pairs may play a major role in the
increase of tumor deterioration and metastasis compared to the
malignant group.

This study had some notable limitations. Firstly, due to the
scarcity of malignant and non-malignant samples, the number of
samples collected was not balanced enough. To address this, we
validated the expression patterns of key genes identified in our
single-cell RNA sequencing (scRNA-seq) analysis by comparing
malignant and non-malignant groups using the TCGA-LUSC
dataset. And critical pathways such as cell cycle regulation, cell-
cell junction integrity, extracellular matrix remodeling, and
epithelial cell proliferation exhibited similar activation patterns
of tumor-associated highly expressed genes in both the scRNA-
seq and TCGA-LUSC datasets (Supplementary Figures S5B, C).
Secondly, the chemotherapy information of our samples was
complex, including different drug therapies and treatment
times, so we used related information to divide samples into
chemotherapy and non-chemotherapy groups. The cell state
transition of immune cells after chemotherapy requires further
study. Lastly, separate sampling locations and physiological
variability may introduce heterogeneity into our analysis. This
underscores the need for future studies involved in larger sample
and multi-omics data to precisely characterize the molecular
transitions during TSCC development.

In summary, the single-cell data from TSCC provides a vital and
unique insight into the characterization of stromal and immune
landscape in the TSCC microenvironment and identifies malignant-
related genes and ligand-receptor pairs. It is necessary to carry out
follow-up mechanistic studies in order to determine the role of
group-specific genes and ligand-receptor pairs in promoting tumor
deterioration and metastasis.
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SUPPLEMENTARY FIGURE 1
(A) Violin plots show gene expression number, UMI counts and proration of
mitochondrial after quality control. (B) UMAP plot of all cells, colored by patients.

SUPPLEMENTARY FIGURE 2

(A) T subpopulations proration in seven patients. (B) GO pathway enrichmentin T
subpopulations. X axis represents subpopulation and its marker genes number.
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SUPPLEMENTARY FIGURE 3

(A, B) The expression of CXCL14 in fibroblast cells between malignant and
non-malignant groups in scRNA-seq and between tumor and normal groups
in TCGA-LUSC dataset. (C, D) The expression of SPP1 in fibroblast cells
between malignant and non-malignant groups in scRNA-seq and between
tumor and normal groups in TCGA-LUSC dataset.

SUPPLEMENTARY FIGURE 4

(A) The cell-cell communications within major cell type in all samples colored by
cell subtypes. (B) Visualize HGF signaling pathway by Chord diagram between
major cell types in malignant samples(left). Gene expression level of HGF genes
between malignant and non- malignant group(right). (D) Overall survival curves
for patients in TCGA-LUSC datasets according to the high and low expression
levels of HGF. (E, F) Overall survival analysis for patients in TCGA-LUSC datasets
according to the high and low expression levels of AREG and MDK.

SUPPLEMENTARY FIGURE 5

(A) KEGG pathway enrichment analysis of significantly upregulated genes in
macrophage of malignant group in TSCC. (B) Pathway enrichment analysis of
significantly upregulated genes in all cells from malignant groups than non-
malignant in scRNA-seq data. (C) Pathway enrichment analysis of significantly
upregulated genes in malignant groups in TCGA-LUSC.

SUPPLEMENTARY TABLE 1
Clinical information of seven patients
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