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Establishment and validation
of a prognostic model based
on vasculogenic mimicry-related
gene clustering in ovarian cancer
Xueyuan Zhao1,2†, Yan Jia1,2†, Weijia Wen1,2†, Caixia Shao1,2,
Qiaojian Zou1,2, Linna Chen1,2, Hongye Jiang1,2, Guofen Yang1,2,
Wei Wang1,2*, Chunyu Zhang1,2* and Shuzhong Yao1,2*

1Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University,
Guangzhou, Guangdong, China, 2Guangdong Provincial Clinical Research Center for Obstetrical and
Gynecological Diseases, Guangzhou, Guangdong, China
Background: As a critical prognostic factor in ovarian cancer which is the most

lethal gynecologic malignancy, vasculogenic mimicry (VM) has not been

systematically incorporated into prognostic evaluation frameworks in ovarian

cancer (OC). This underscores the necessity to develop and validate a gene

subtyping-based prognostic model through comprehensive analysis of VM-

related biomarkers.

Methods: This study integrated multi-omics data from TCGA, GEO and GTEx,

forming a primary set and an external validation cohort. Through literature

mining, 28 VM-related genes were identified. Univariate Cox and LASSO

regression distilled 9 genes as vasculogenic mimicry-related prognostic index

(VMRPI), establishing a risk model validated by ROC and constructing a

nomogram with clinical prognostic factors. Consensus clustering stratified

patients into VM-high/-low subgroups. Multi-angle assessments connected

risk scores with tumor mutational burden, immune infiltration, and

chemotherapy sensitivity. Clinical validation encompassed IHC-PAS detection

of VM structures in 36 HGSOC paraffin specimens and qRT-PCR confirmation of

gene expression in matched frozen tissues.

Results: vasculogenic mimicry-related genes (VMGs) exhibited differential

expressions in HGSOC versus normal tissues, with consensus clustering

stratifying 474 patients into prognostically distinct VM-high/low subgroups.

Prognosis-associated DEGs (n=758) enriched in ECM-receptor and PI3K-AKT

pathways. A 9-gene prognostic model demonstrated robust predictive accuracy.

Risk scores correlated with immune infiltration and drug sensitivity. Multivariate-

validated nomogram integrating clinical factors and risk scores achieved precise

survival prediction. IHC-PAS confirmed VM structures, with VM-positive cases

showing upregulated VMGs and VMRPIs.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2025.1575694/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1575694/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1575694/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1575694/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2025.1575694&domain=pdf&date_stamp=2025-09-25
mailto:yaoshuzh@mail.sysu.edu.cn
mailto:zhangchy266@mail.sysu.edu.cn
mailto:wangw245@mail.sysu.edu.cn
https://doi.org/10.3389/fonc.2025.1575694
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2025.1575694
https://www.frontiersin.org/journals/oncology


Zhao et al. 10.3389/fonc.2025.1575694

Frontiers in Oncology
Conclusions: VMG-based stratification revealed distinct prognostic ovarian

cancer subgroups and a 9-VMRPI demonstrated robust prognostic power with

validated immune-microenvironment, drug-response associations, IHC-PAS

staining, and qRT-PCR confirmation.
KEYWORDS
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Introduction

Ovarian cancer (OC), ranking as the third most prevalent

malignancy in the female reproductive system following cervical

cancer and endometrial cancers, has emerged as the leading cause

of mortality in gynecological oncology due to challenges in early

diagnosis and late-stage chemoresistance recurrence, earning its

designation as the “silent killer” of gynecologic malignancies (1, 2).

According to the latest Global cancer statistics (GLOBOCAN) data,

2023 witnessed 314,000 new global OC cases and 207,000 OC-related

deaths, accounting for 3.7% and 4.7% of total female cancer incidence

and mortality respectively (3). Early-stage OC typically lacks

pathognomonic clinical manifestations and is often incidentally

detected via ultrasonography during routine examinations.

Although early screening has not demonstrated prognostic

improvement, interventions at this stage yield favorable outcomes

with 5-year survival rates reaching 61-87% (4, 5). In contrast,

advanced OC frequently presents non-specific symptoms including

abdominal distension, palpable masses, ascites, and tumor burden or

metastasis-related manifestations. Notably, 70% of patients are

diagnosed at The International Federation of Gynecology and

Obstetrics (FIGO) Stage III-IV due to its insidious onset and high

metastatic propensity (1, 5). The characteristic tumor heterogeneity

and reduced chemosensitivity in advanced cases contribute to a 5-

year survival rate below 30% (5). Histologically, high-grade serous

ovarian carcinoma (HGSOC) represents the most aggressive subtype,

comprising 70-80% of OC cases as per World Health Organization

(WHO) classification (6). HGSOC’s clinical aggressiveness and

distinct biological features not only pose significant threats to

women’s health but also establish it as a primary research focus in

OC pathogenesis and therapeutics (6, 7). Current standard-of-care

combining cytoreductive surgery with platinum-based multi-agent

chemotherapy achieves short-term remission but faces limitations

with 80% of patients developing platinum-resistant recurrence (7, 8).

Emerging molecular strategies incorporating poly-ADP-ribose

polymerase (PARP) inhibitors, anti-angiogenics and combination

therapies are reshaping first-line maintenance approaches (9, 10).

However, compensatory vascular endothelial growth factor (VEGF)

pathway activation and tumor microenvironment remodeling

underlie anti-angiogenic resistance, maintaining median survival at

12–18 months in platinum-resistant recurrent cases (8, 11, 12).
02
The contemporary management of OC confronts dual challenges:

persistent high recurrence rates with platinum resistance in advanced

disease, and the urgent need for precision prognostic models to guide

maintenance therapies in the molecular-targeted era (9, 12, 13).

Traditional prognostic parameters prove inadequate for

molecularly-driven precision medicine. Integrated prognostic

models incorporating molecular markers with clinical variables

could enable pretreatment outcome prediction and therapeutic

decision-making, while multi-omics-based stratification may

optimize maintenance therapy selection and duration (14, 15).

Consequently, developing clinically translatable biomarker panels

with prospective validation cohorts represents a critical frontier in

advancing OC precision medicine paradigms.

Vasculogenic mimicry (VM) refers to a phenomenon wherein

malignant solid tumor cells acquire endothelial-like phenotypes

through phenotypic plasticity, autonomously forming functional

three-dimensional tubular networks without endothelial cell

participation. These VM channels substantially enhance nutrient

and oxygen supply to tumor cells located either within the tumor

mass or distal to capillary beds (16, 17). First documented by

Maniotis et al. in 1999 in aggressive uveal melanoma, this

discovery fundamentally challenged conventional tumor

angiogenesis paradigms, offering novel insights into the “tumor

cell-driven” vascularization mechanism underlying malignant

blood supply patterns (17). Subsequent studies have identified

VM structures in 24 distinct malignancies including breast

cancer, non-small cell lung carcinoma, and glioblastoma, with

their presence correlating with enhanced nutrient acquisition and

metastatic potential (16, 18–21). Current mechanistic studies

generally propose that specific cell subpopulations with

differentiation potential within tumors, under conditions of

oxygen and nutrient deprivation, induce and activate multiple

pathways to transdifferentiate into tumor cells with endothelial-

like phenotypes. These cells then form vascular-like channels

through intercellular connections, with subsequent blood

perfusion completing VM structure formation (22–25). The

molecular mechanisms underlying this structure involve multi-

dimensional regulatory networks: (1) In microenvironmental

stress: Hypoxia-induced HIF-1a or HIF-2a drives tumor cell

metabolic reprogramming through activation of the PI3K/AKT/

mTOR signaling axis; (2) In cellular plasticity: The epithelial-
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mesenchymal transition (EMT) process facilitates the acquisition of

cancer stem cell characteristics; (3) In structural remodeling: The

VE-cadherin/EphA2/MMPs pathway promotes lumen formation

by regulating intercellular junction complex assembly and basement

membrane metabolism and remodeling (26–30). Notably, beyond

these three pathways, other genes including ALDH1A1, BCAR3,

CGB5, MIR27B, MIR765, PLAU, SEMA4D, XAF1, and TCF4 also

play significant roles in VM formation (22, 31–34).

Research on VM structures in ovarian cancer has also been

documented. The work of Jing Du et al. demonstrated that hypoxic

microenvironment could promote VM formation by inducing EMT in

ovarian cancer cells, elucidating the pathway mechanisms underlying

VM existence in OC (25). Furthermore, substantial studies have

confirmed that VM-positive ovarian cancer patients exhibit

significantly shorter overall survival and higher metastatic incidence

compared to VM-negative counterparts (35). Although significant

progress has been made in understanding VM molecular

mechanisms in recent years, most studies remain fragmented at the

molecular level, and its potential as a prognostic factor remains under-

explored in survival assessments (35–37). Current multi-omics

prognostic models for ovarian cancer predominantly focus on

endothelial-dependent angiogenesis in blood supply mechanisms,

while neglecting VM - an autonomous tumor cell-driven vascular

system. This oversight has led to the long-term exclusion of this critical

biological feature from prognostic frameworks. This study aims to

distinguish subgroups with significant prognostic differences based on

vasculogenic mimicry-related genes (VMGs), subsequently revealing

inter-subgroup heterogeneity in gene expression through screening of

differentially expressed genes (DEGs) combined with differential

expression analysis and functional enrichment studies. Prognostically

significant DEGs between subgroups will then be selected to construct a

vasculogenic mimicry-related prognostic index (VMRPI) as a

prognostic model, which will be rigorously validated. The model is

designed not only to effectively predict survival outcomes in ovarian

cancer patients, but also to characterize immune microenvironment

features and chemotherapy drug sensitivity across different risk

subtypes. Finally, experimental validation will be conducted to

identify VM structures in our institutional patient cohort and verify

the expression differences of VMRPI components.
Materials and methods

Data collection and processing

This study collected RNA sequencing data and clinical

information of 429 HGSOC cases from The Cancer Genome

Atlas (TCGA, https://portal.gdc.cancer.gov) database, and

identified all available HGSOC datasets from the Gene Expression

Omnibus (GEO, https://www.ncbi.nlm.nih.gov) database. The

screening criteria focused on whether datasets contained VMGs

and whether their sequencing results were presented in transcripts

per million (TPM) format to ensure optimal compatibility with

TCGA data. Ultimately, 98 HGSOC samples with clinical

information from dataset GSE51088 were selected. These two
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datasets were merged using bioinformatics methods to form the

training set and internal validation set, collectively defined as the

primary dataset. Additionally, RNA sequencing data and

corresponding clinical information from 110 HGSOC patients in

GSE17260 of GEO were obtained to construct the external

validation dataset. Considering current omics analyses and

substantial evidence indicating that HGSOC likely originates from

fallopian tube epithelium, normal control samples utilized RNA

sequencing data from 180 normal fallopian tube epithelial tissues

obtained through the Genotype-Tissue Expression (GTEx, https://

www.gtexportal.org) portal. All data from TCGA, GEO, and GTEx

databases were publicly accessible and strictly complied with data

acquisition and usage policies during their application.

After excluding data that did not meet the experimental criteria,

performing pathological type screening, and processing the

matched sample survival information of the afore-mentioned

samples, 474 samples in the primary dataset retained clinical

prognostic information and were utilized, while the external

validation set contained 110 samples with corresponding

prognostic information for external model validation. The clinical

characteristics and data sources of patients in the study cohort are

presented in Supplementary Table S1. The preprocessing of the data

included data transformation and merging. First, for datasets

requiring integration—specifically TCGA with GEO, and TCGA

with GTEx—the “Combat” function from the “sva” package in R

was employed to remove batch effects arising from different

sequencing platforms. To analyze and validate whether the

merged data from TCGA and GEO exhibited differences in

distribution or batch effects, Principal Component Analysis

(PCA) was performed using the “prcomp” function from the

“stats” package in R, followed by visualization.
Construction of protein-protein interaction
network

The protein-protein interactions (PPIs) network was

constructed using version 12.0 of the Search Tool for the

Retrieval of Interacting Genes/Proteins (STRING, https://

cn.string-db.org) database, a comprehensive repository of

experimentally confirmed and computationally predicted protein

interactions. This database is openly accessible and freely available

for research purposes.
Identification of prognostic VM-related
genes

VM-related genes for ovarian cancer were identified through a

comprehensive search of the literature published on PubMed over

the past 20 years, including both primary research articles and

review articles (22, 28, 31–33). This gene set is available in

Supplementary Table S2. The univariate Cox analysis was utilized

to identify VMGs, including SNAI1, MMP2, MMP14, SNAI2,

ZEB1, and TWIST1, as the core genetic determinants using false
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discovery rate (FDR) <0.05 as the significance threshold. The R

package “survival” was used for survival analysis. Kaplan-Meier

estimation with optimal cutoff determination was performed for

univariate assessment, and univariable Cox proportional hazards

regression models were subsequently fitted to quantify the

association between individual variables and survival outcomes.

The “ggsurvplot” function generated survival curves visualizing

associations between gene expression and clinical outcomes.
Consensus clustering

To identify VM subtypes, a rigorous unsupervised classification

algorithm, named consensus clustering analysis in R package

“ConsensuClusterPlus”, was performed using the expression of

the determinant core genes and Euclidean distance was set as

1000 times repetition (38). In the experiment, we aim to

determine two values: the optimum cluster number (k) and the

degree of consensus stability. Finding the output from the

cumulative distribution function (CDF) plots and determining

whether the CDF curve is flat is necessary for this. Computational

optimization identified k=2 as the optimal partitioning threshold,

resulting in division of the primary dataset into two subgroups:

VM-high and VM-low. Prognostic disparities between subgroups

were subsequently confirmed through statistical testing.
Identification and analysis of differentially
expressed genes

In the primary dataset, DEGs were identified and filtered from

contrasting the risk-high and risk-low subgroups using the “limma”

R package, with key parameters set as |fold change| >1.5 and a

significance level of FDR <0.05. Volcano plots of DEGs were

generated via the “ggplot2” package. DEGs were investigated to

assess both Gene Ontology (GO), including molecular function

(MF), biological process (BP) and cellular component (CC), and

intracellular metabolic pathways from and gene functions Genes

and Genomes (KEGG) enrichment analysis (39, 40).
Construction and validation of the risk
score prognostic model

There were 260 DEGs showed significant prognostic association

with their expression from DEGs (n=758) identified between the

clusters using the univariate Cox regression analysis when the level

was set at p<0.05. In the primary set, 4/5 of the patients were

divided into the training set while 1/5 samples were divided into the

internal validation by the “createDataPartition” function in the

“caret” R package. The least absolute shrinkage and selection

operator (LASSO) penalized Cox regression analysis was

employed to reduce the candidate gene pool for developing the

prognostic model by using the R package “glmnet”. The penalty

parameter (l) was determined using a ten-fold cross-validation
Frontiers in Oncology 04
approach, selecting the value that met the minimum criteria. After

calculations, 9 genes were identified to construct the prognostic

signature. The risk score model, named Risk Score, was established

using b (coefficient) value multiplied by the expression of risk genes.

The risk score formula was as follows: Risk Score = (b1*Exp1
+b2*Exp2+ … +bn*Expn). The effectiveness of the model was

evaluated through the R packages “survival”, “survminer”, and

“timeROC” by performing receiver operating characteristic

(ROC) curves and calculating the Area Under the Curve (AUC)

values. Additionally, the ROC-based AUC evaluation method was

similarly performed in the external validation set.
Mutation profile analysis

Genomic somatic mutation profiles of the cohort were retrieved

from the TCGA portal. Risk stratification was performed by

dichotomizing patients at the median risk score into distinct high-

and low-risk subgroups. Comparative analysis of mutation patterns

across subgroups was visualized through waterfall plots constructed

using the “maftools” package in R, as detailed in reference (41).
Independent prognostic analysis and
nomogram construction

In the primary dataset, an independent prognostic examination

of the samples’ clinical features (e.g., age, tumor grade, and tumor

stage) as well as risk scores was conducted via univariate Cox

regression analysis to construct a nomogram model. The

coefficients within the nomogram were derived using multivariate

Cox regression analyses. The construction of the nomogram was

performed using the “coxph” function from R packages, and a visual

plot was generated via the “regplot” function.

Utilizing the “rms” and “survival” R packages, a nomogram

model based on a multivariate Cox proportional hazards regression

was established, incorporating age, tumor grade, tumor stage, and the

Risk Score index. This model aims to quantitatively predict patients’

overall survival probabilities at 1-, 3-, and 5-year intervals. Calibration

curves were also generated to visually evaluate the predictive accuracy

of prognosis outcomes during the nomogram development process.
Evaluation of microenvironment and cell
infiltration

To reveal the relationship between the immunemicroenvironment,

immune cell infiltration with risk score stratification in HGSOC patient

samples, the R package “estimate” was used to calculate stromal,

immune, and ESTIMATE scores. The CIBERSORT algorithm was

utilized to quantitatively analyze the relative abundance of 20 immune

cell types derived from the TCGA dataset, aiming to demonstrate the

association between different immune cell subtypes and VMRPI.

The principle of CIBERSORT lies in its use of RNA sequencing data

to evaluate the enrichment level of specific cell types in mixed tissue
frontiersin.org
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samples, which is frequently applied to calculate immune cell

infiltration within the tumor microenvironment (42). To investigate

the association between immune checkpoints and risk scores, we

employed a curated set of 79 immune checkpoint genes (ICGs) as

our analytical framework (Supplementary Table S3) (43). These ICGs,

systematically compiled from published literature, were analyzed to

examine their differential expression patterns between high- and low-

risk subgroups. Statistical values were obtained through Spearman

correlation analysis, and heatmaps were generated using the “limma”

and “ggplot2” packages.
Drug sensitivity

Drug sensitivity prediction employed the algorithm framework of

the R package “oncoPredict” which utilizes data from the Cancer

Therapeutics Response Portal (CTRP, https://portals.broadinstitute.

org/ctrp) and Genomics of Drug Sensitivity in Cancer (GDSC,

https://www.cancerrxgene.org) databases, including TPM gene

expression data from 28 HGSOC -related cell lines and IC50

values of 497 drugs, to construct a drug sensitivity prediction

model based on ridge regression and provide predictive outcomes

(44). The modeling process incorporated key preprocessing steps

including log2 transformation, Empirical Bayes (ComBat) batch

effect correction, and low-variance gene filtering. Using this

algorithm, the therapeutic efficacy of commonly used

chemotherapy drugs and gene-targeted therapies was predicted,

and their IC50 values were calculated. These values were compared

between high- and low-risk score groups, with box plots generated

for visualization.
Clinical specimens

Clinical samples were collected from patients who underwent

primary treatment in the Department of Gynecology at The First

Affiliated Hospital of Sun Yat-sen University between June 2023

and December 2023. A total of 36 patients who met the inclusion

criteria, did not meet the exclusion criteria, and had matched

paraffin-embedded sections and frozen tissues were included.

Inclusion criteria: (1) Patients who was diagnosed ovarian

cancer according to the 2022 edition of the Chinese Guidelines

for the Diagnosis and Treatment of Ovarian Cancer; (2) Aged

between 18 and 75 years old; (3) Enrolled cases must present with a

histologically confirmed primary tumor that fulfills the specified

criteria; (4) Adequate other organ and bone marrow function; (5)

No history of other malignant tumors. Exclusion criteria: (1)

Individuals with severe underlying diseases that are poorly

controlled; (2) Lactating or pregnant women; (3) Those with a

history of other illness, including serious infectious disease; (4)

Persons with incapacitated or limited ability to act; (5) Patients

received radiotherapy or chemotherapy before surgery.

All patients were informed and consented to the collection of

samples for research purposes, with signed informed consent forms

for biospecimen acquisition. The research methods and specimen
Frontiers in Oncology 05
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approved by the Ethics Committee of The First Affiliated Hospital

of Sun Yat-sen University.
Immunohistochemical staining

A total of 36 paraffin-embedded tissue from patients with

HGSOC was stained by immunohistochemical (IHC) and Periodic

Acid-Schiff (PAS) staining who received treatment at the First

Affiliated Hospital of Sun Yat-sen University (Guangzhou, China).

The formalin-fixed paraffin-embedded (FFPE) slides underwent

deparaffinization in a graded series of xylene and ethanol. Epitopes

were unmasked by immersing the slides in a boiling antigen retrieval

solution for 5 minutes. Endogenous peroxidase activity was blocked

with 3% hydrogen peroxide for 10 minutes and then incubated at

room temperature for 25 minutes using goat serum blocking solution

to eliminate non-specific staining. After incubation with mouse-

derived anti-CD31 antibody (1:1000, CST, 3528S), the slides were

placed at 4 degrees Celsius for 18 hours. Following PBS washing, an

anti-mouse horseradish peroxidase-labeled secondary antibody

(Vector Laboratories) was applied and incubated at 25°C for 45

minutes. After 2 min of with 0.05% 3′,3-diaminobenzidine

tetrahydrochloride (DAB, ZSGB-BIO, ZLI-9017) staining, the PAS

staining procedure was carried out in accordance with the ZSGB-

BIO, BSBA-4080A manufacturer’s instructions. The slides were then

dehydrated, mounted, and counterstained with hematoxylin.
VM detection and distinguish

After the staining and neutral resin sealing process, the

pathology slides were captured as electronic images at 40x

magnification using a bright-field scanner. Subsequently, all

channel-like structures were systematically examined based on the

established criteria for typical vascular malformations. These

criteria include the following: (1) VM vascular-like channels

surrounded by tumor cells; (2) VM vessel channels staining PAS

positive and CD31 negative (PAS+/CD31−), in contrast to

endothelial vessel channels staining PAS positive and CD31

positive (PAS+/CD31+); (3) VM vascular-like channels

containing erythrocytes (45). According to the results of IHC-

PAS staining for VM, all samples of clinical specimens were

categorized into two subgroups: VM (+) group meanings those

with typical VM structures and VM (-) group meanings those

without. The clinical characteristics of VM-positive and VM-

negative groups are presented in Supplementary Table S4.
Quantitative real-time PCR

In accordance with the manufacturer’s instructions, the total

bulk RNA was extracted and purified through Trizol reagent

(Invitrogen) and the SteadyPure Universal RNA Extraction Kit

(ACCURATE BIOTECHNOLOGY (Human) CO., LTD, Changsha,
frontiersin.org
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China), and then it was reverse transcribed to cDNA through the

R e v e r s e T r a n s c r i p t i o n S u p e r m i x ( A C CURAT E

BIOTECHNOLOGY (Human) CO., LTD, Changsha, China,

AG11706). The SYBR Green PCR Kit was utilized for conducting

the qRT-PCR (ACCURATE BIOTECHNOLOGY (Human) CO.,

LTD, Changsha, China, AG11701) and in a Real-time fluorescence

PCR instrument (Bio-Rad Laboratories, Inc, United States, Bio-Rad

CFX Connect Real-Time PCR System 1855201). The expression of

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was set as

an internal control to realize normalization. The Primers sequences

in this study are presented in Supplementary Table S5. The

comparative expression level was evaluated by 2-DDCt method.
Statistical analysis

Using R software, statistical analyses were carried out. (version

4.4.1; http://www.Rproject.org). The categorical variables were

compared using the Chi-square test. The Wilcoxon test was

employed to compare the drug sensitivity and gene expression

levels of groups. A p-value of less than 0.05 was taken into

consideration as the criterion for statistical significance in

this investigation.
Result

Interactions among vasculogenic mimicry-
related genes in ovarian cancer

To investigate whether VMGs exhibit differential expression

between HGSOC and normal fallopian tube epithelial tissues and

explore their carcinogenic roles at the genetic level, the TCGA dataset

was utilized as the cancer tissue dataset. Since TCGA lacks large-scale

sequencing data of normal fallopian tube epithelial tissues relevant to

ovarian cancer, 180 normal fallopian tube epithelial tissue sequencing

samples from GTEx were downloaded as controls. We first generated a

heatmap of the data from the TCGA and GTEx databases to compare

the expression levels of VM-related genes in HGSOC and normal

fallopian tube tissues (Figure 1A). Subsequently, we analyzed

significantly differentially expressed VMGs, and identified 11 VMGs,

including PROM1, XAF1, SNAI2, PRKCA, ZEB1, EPHA2, LAMC2,

PLAU, ALDH1A1, and MMP2, indicating aberrant transcription of

VMGs in a substantial proportion of ovarian cancer lesions (Figure 1B).

Given that previous studies have shown that VM formation is

driven by multiple genes and pathways, this study aimed to

investigate potential interactions among VMGs. First, correlation

analysis of 28 VMGs revealed complex interaction networks among

these genes (Figure 1C). Additionally, since all studied VMGs

encode proteins, PPIs network was constructed using public

databases, revealing robust interactions among these genes at the

protein level (Figure 1D). These findings suggest that VMGs may

play critical roles in the initiation and progression of HGSOC, with

intricate interaction relationships observed at both transcriptional

and protein expression levels.
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Identification of subgroups associated with
gene expression and prognosis

In order to expand the sample size, avoid overfitting to a single

sequencing platform, and enhance generalizability across multiple

platforms, this study integrated TCGA and GEO datasets after

batch effect removal to establish the “primary dataset” with PCA

confirming post-merger consistency (Figure 2A). Preliminary

experiments demonstrated that direct consensus clustering using

all 33 VMGs failed to achieve precise molecular subtyping.

Therefore, we selected VMGs significantly associated with

prognosis as determinants for subtyping. Survival analysis of 33

VMGs in HGSOC patients identified 6 VMGs (SNAI1, SNAI2,

MMP2, MMP14, ZEB1, and TWIST1) with prognostic relevance, all

exhibiting hazard ratios (HR) > 1, suggesting that their high

expression correlates with poor outcomes in ovarian cancer

(Figure 2B). Kaplan-Meier (KM) curves confirmed significant

survival differences between high- and low-expression groups

(Figure 2C). Consensus clustering based on expression profiles of

VM-related prognostic genes was performed to identify subtypes.

At k=2 (number of clusters), the cumulative distribution function

(CDF) curve displayed optimal smoothness, indicating maximal

intra-group homogeneity and inter-group heterogeneity.

Consequently, the primary dataset was stratified into two

subgroups: VM-high (n= 224) and VM-low (n= 250) (Figure 2D).

Notably, the VM-low subgroup exhibited significantly better overall

survival compared to the VM-high subgroup (Figure 2E). Statistical

validation confirmed no significant differences in sequencing data

sources or distributions of key clinical characteristics between

subgroups, as visualized by heatmap (Figure 2F).
Enrichment analysis of DEGs and
construction of prognostic model

In the primary dataset, parameters were set as log2 FC = 0.585

and FDR<0.05 to screen DEGs between the subgroups, identifying

758 statistically significant DEGs. Among these, 728 genes were

significantly upregulated in the VM-high subgroup compared to

the VM-low subgroup, while 30 genes were downregulated. A

volcano plot illustrates the distribution of DEGs between subgroups

(Figure 3A). GO and KEGG analyses were performed to explore the

biological functions and pathways associated with the DEGs. GO

analysis revealed that the top five enriched biological processes (BP)

terms were “extracellular matrix organization”, “extracellular

structure organization”, “external encapsulating structure

organization”, “ossification” and “connective tissue development”.

The top five enriched cellular component (CC) terms were “collagen

−containing extracellular matrix”, “endoplasmic reticulum lumen”,

“cell−substrate junction”, “focal adhesion” and “external side of

plasma membrane”. The top five enriched molecular function (MF)

terms were “extracellular matrix structural constituent”, “receptor

ligand activity”, “glycosaminoglycan binding”, “integrin binding” and

“sulfur compound binding”. These findings suggest alterations in

extracellular matrix metabolism and intercellular junction states
frontiersin.org

http://www.Rproject.org
https://doi.org/10.3389/fonc.2025.1575694
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhao et al. 10.3389/fonc.2025.1575694
between subgroups. The KEGG analysis showed that DEGs were

mainly involved in proteoglycans in the cancer signaling pathway, the

ECM−receptor interaction signaling pathway, the Malaria signaling

pathway, the focal adhesion signaling pathway, the PI3K−Akt

signaling pathway signaling pathway, the AGE−RAGE signaling

pathway in the diabetic complications signaling pathway, The

protein digestion and absorption signaling pathway, the

complement and coagulation cascades signaling pathway, the

cytokine−cytokine receptor interaction signaling pathway, and the

staphylococcus aureus infection signaling pathway (Figure 3B). These

results indicate that these pathways are modulated following VM

formation and may contribute to prognostic disparities.

Furthermore, to explore the prognostic relevance of VM-related

DEGs in ovarian cancer, univariate Cox regression analysis was first

performed on the DEGs, identifying 260 prognosis-associated

DEGs (Supplementary Table S6). The primary dataset was

randomly divided into a training set (80% cases) and an internal
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validation set (remaining 20% cases) using R functions. LASSO

regression analysis was applied to refine the 260 prognostic DEGs,

ultimately selecting an optimal 9-gene subset (FPR1, ADH1B,

PARRES1, TSPAN8, FOXJ1, CXCL13, WNT11, CXCL9, and SST)

with superior prognostic performance (Figure 3C). Multivariate

Cox analysis was then conducted to calculate prognostic coefficients

(b) for the selected genes, presented as a forest plot. The results

indicated that FPR1, ADH1B, RARRES1, and WNT11 expression

levels correlated with higher risk scores, whereas TSPAN8, FOXJ1,

CXCL13, CXCL9, and SST were associated with lower risk scores.

These genes were defined as the VMRPI (Figure 3D). Based on these

findings, a prognostic model comprising the 9 genes was

established, with the risk score calculated as: Risk Score =

FPR1×0.2686 + ADH1B×0.1500 + RARRES1×0.0968 +

TSPAN8×(-0.1782) + WNT11×0.0935 + FOXJ1×(-0.1266) +

CXCL13×(-0.2401) + CXCL9×(-0.0972) +SST×(-0.0360), where

gene names represent their TPM values in sequencing data.
1FIGURE

Expression and interactions of 30 VM-related genes. (A) Heatmap showing the differences in VMGs between GTEx normal samples (n=180) and
TCGA OV tumor (n=429). Upregulation is represented by green, and downregulation by red. (B) A heatmap showing the differences in VMGs
between GTEx normal samples (n=180) and TCGA OV tumors (n=429). Upregulation is represented by green, and downregulation by red. A
threshold of p < 0.05 was chosen for the filtering. (C) VMGs’ mRNA expression-based correlation network. Positive and negative associations are
respectively by the sky blue and dark blue lines. The red hemisphere represents risk factors, while the green hemisphere represents favorable factors.
The size of the sphere depicts the strength of the hazard level. (D) VMGs’ network of protein-protein interactions (PPIs) (interaction score = 0.4).
Both direct (physical) and indirect (functional) linkages are present in the exchanges.
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Validation of the prognostic model and
gene expression level

The prognostic efficacy of the model was evaluated using the AUC

values from ROC analysis, demonstrating satisfactory predictive

performance. In the training cohort, the 1-, 3-, and 5-year AUC

values were 0.694, 0.746, and 0.727, respectively, while the internal

validation cohort yielded corresponding values of 0.752, 0.667, and

0.663 for the same intervals (Figure 4A). To further validate themodel’s
Frontiers in Oncology 08
generalizability and mitigate overfitting to the primary dataset, the

external validation cohort demonstrated robust concordance with the

primary dataset, yielding 1-, 3-, and 5-year AUC values of 0.731, 0.633,

and 0.723, respectively, compared to the primary dataset’s

corresponding values of 0.708, 0.732, and 0.720 (Figure 4B).

Samples from both the primary dataset and the external

validation cohort were stratified into high-risk and low-risk

groups based on the median risk score of each cohort. Survival

analysis revealed statistically significant disparities in survival
FIGURE 2

Subtypes based on VM-related genes expression. (A) PCA plot illustrating the combined TCGA and GEO data after batch effect removal. (B) A forest
map of the most important VM-related genes for prognosis identified by univariate Cox regression analysis in OC patients. (C) Kaplan–Meier curves
of important VM-related genes for prognosis. (D) Consensus clustering matrix (k=2) showing two clusters (VM-high = 224; VM-low = 250) based on
the expression of important genes in 30 VMGs. (E) Overall survival showing a significant difference (p < 0.01) in the survival plot. (F) A heatmap
showing the relationships among the patients’ clusters, clinicopathological characteristics, and data sources for ovarian cancer.
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outcomes between risk groups across both datasets, with all p-values

<0.05 (Figures 4C, D). Furthermore, intergroup differential gene

analysis revealed significant differences in the expression of VMGs,

including BCAR3, CD44, CDH5, EPHA2, FOXC2, IL6, LAMC2,

MMP14, MMP2, PLAU, TGFB1, TWIST1, ZEB1, SNAI1, and

SNAI2 (Figure 4E). These results comprehensively underscore the

robust prognostic significance of the risk score.
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Evaluation of the clinical features of risk
subgroups and calculation of the
nomogram

Stratification based on risk scores was utilized to analyze tumor

mutational profiles and clinical prognostic factors. The tumor

mutational profile analysis incorporated mutation data from the
FIGURE 3

Construction of a risk signature. (A) Volcano map showing DEGs between the VMG clusters (A). DEGs were sifted using the subsequent standards:
log2 fold alteration (log2 FC) =0.585, and a false discovery rate (FDR) < 0.05. (B) The bar plots display the results of GO and KEGG enrichment
analysis for the DEGs. (C) A total of 260 Overall Survival-related genes were identified by univariate Cox regression analysis and subjected to LASSO
regression, using cross-validation to fine-tune the LASSO regression’s parameter selection. (D) Forest plot of the important genes and coefficients in
the gene model by multivariate Cox regression analysis.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1575694
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhao et al. 10.3389/fonc.2025.1575694
TCGA database. The results revealed that the top five mutated genes

in both high-risk and low-risk groups were TP53, TTN, CSMD3,

USH2A, and RYR2, indicating that risk score stratification does not

significantly alter the predominant mutational landscape of tumors

(Figure 5A). To investigate potential associations between risk score

stratification and clinical prognostic factors (including age, tumor

grade, and clinical stage), statistical analyses were performed on

clinical subgroups. No significant differences in risk scores were

observed across age groups, tumor differentiation status, or tumor

stages, suggesting that the risk score functions as a prognostic factor

independent of these clinical variables (Figure 5B).

Furthermore, given the critical role of immune status in

tumorigenesis, recurrence, and prognosis, we explored correlations

between risk scores and immune profiles by analyzing immune-

stromal scores and immune cell infiltration. Immune-stromal scoring

stratified by risk groups demonstrated significantly higher immune
Frontiers in Oncology 10
scores, stromal scores, and ESTIMATE scores in the high-risk group

compared to the low-risk group (Figure 5C). Additionally, the heatmap

analysis, however, revealed significant associations between VMRPI

and risk scores and infiltration levels of various immune cell subtypes.

These notably included neutrophils, monocytes, activated mast cells,

M2 macrophages, resting memory CD4+ T cells, follicular helper T

cells, plasma cells, regulatory T cells, M1 macrophages, CD8+ T cells,

and activatedmemory CD4+ T lymphocytes (Figure 5D). Furthermore,

ICG profiling demonstrated differential expression patterns of specific

ICGs between high- and low-risk groups, unveiling a complex immune

checkpoint landscape (Supplementary Figure S1).

To integrate the prognostic model with clinical factors for

quantitative survival probability prediction, a nomogram was

constructed and visualized. Univariate Cox analysis of the

primary dataset identified age, clinical stage, and the prognostic

model as significant predictors (Figure 5E). Although tumor grade
FIGURE 4

Validation and assessment of the risk model. (A) The predictive effectiveness of the risk score in the training set (left) and test sets (right) is shown by
the time-dependent receiver operating characteristic (ROC) curve and the area under curve (AUC) analyses. (B) Shows the predictive effectiveness of
the risk score in all sets (left) and in the external validation set (right) using time-dependent ROC curves and AUC analyses. (C) Kaplan-Meier curves
for the Overall survival (OS) of VMRPI-High and VMRPI-Low patients in the total cohort. (D) Kaplan-Meier curves for the OS of VMRPI-High and
VMRPI-Low patients in the external validation cohort. (E) In TCGA cohort, the expression levels of VM-related genes were compared between the
VMRPI-High and VMRPI-Low subgroups. In results’ figures, ns means not significant, ** means p < 0.01, and *** means p< 0.001.
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showed no statistical significance due to limited low-grade samples,

it was retained in nomogram construction based on established

clinical guidelines, pathological consensus, and prior evidence

supporting its prognostic relevance. Multivariate Cox analysis
Frontiers in Oncology 11
successfully integrated clinical features with risk scores to

generate a nomogram for quantitative prognosis assessment and

calibration curves confirmed robust predictive accuracy at 3-year

and 5-year intervals (Figures 5F, G).
FIGURE 5

Clinical analysis and nomogram construction. (A) An oncoplot showing the frequency of mutations in the top 20 mutated genes in the high- and
low-risk groups. (B) Boxplot showing the age, grade, and FIGO stage for the groups at high and low risks. The numbers above the horizontal lines
represent the p-values from the statistical tests. (C) Distribution of immunological, stromal, and ESTIMATE scores based on VMRPI. (D) Spearman’s
correlation between VMRPI genes and immune cells in the TCGA-OV dataset was determined using the TIMER database. (E) A forest map of
prognostic clinical indices using a nomograph. (F) Nomogram’s calibration curves. The nomogram-predicted likelihood of invasive adenocarcinoma
is represented by the x-axis, whereas the actual probability is represented by the y-axis. (G) Nomogram using tumor grade, Figo staging system, age,
and VMRPI. In results’ figures, ns means not significant, * means p < 0.05, ** means p < 0.01, and *** means p < 0.001.
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Prediction of therapeutic response to
drugs based on the risk score

As a critical prognostic factor in molecular subtypes, the

exploration of VMRPI in clinical therapeutic strategies holds

significant importance. Therefore, this study conducted drug

sensitivity analysis based on risk score stratification utilizing the

CTRP and GDSC databases. Based on risk score-based

stratification, the sensitivity scores of various drugs indicated that

drugs, such as BRD-K61166597, apicidin, AZD8055, bardoxolone

methyl, curcumin, doxorubicin, KU-0063794, lovastatin,

NSC48300, leptomycin B, sirolimus, and temsirolimus, exhibit

higher IC50 values within the high-risk group. Conversely,

compound 1B displayed lower IC50 values (Figure 6). These

results suggest that partial differences in drug sensitivities exist

among subgroups stratified by risk scores, and that for patients with

high-risk scores, drugs with better responsiveness can be

administered while avoiding those with poor responsiveness.
Experimental expression validation of
cluster genes and VMRPI

To further investigate whether VM structures correspond to

VMRPIs in biological samples, we further explored using clinical

specimens. Paraffin-embedded specimens and paired fresh frozen

tissues from 36 cases of primary HGSOC in our center were used for

IHC-PAS staining. After careful examination, 6 cases exhibited

typical VM structures— specifically, basement membrane-lined,

tumor cell-encircled luminal structures containing erythrocytes—

with negative CD31 staining, consistent with the proportion of VM-

positive patients reported in prior ovarian cancer studies

(Figure 7A). Subsequently, 36 patients were categorized into VM-

positive and VM-negative groups based on IHC-PAS results, with

three representative images selected from each group for

presentation. Corresponding fresh frozen tissues were then

subjected to qRT-PCR to detect the expression of VMGs and

VMRPIs. The results revealed statistically significant differences in

the expression of the representative VMGs, including MMP2,

MMP14, SNAI2, ZEB1, and TWIST1, between the VM+ and

VM- groups. Moreover, FPR1, ADH1B, and WNT11, identified

as VMRPIs, also exhibited statistically significant gene expression

differences and demonstrated a relationship with VM that aligned

with the prognostic risk analysis (Figure 7B). These findings further

clarify the association between upregulated FPR1, ADH1B, and

WNT11 expression and VM structures. The clinical characteristics

of the VM-positive and VM-negative groups, including age, grade,

and stage, are presented in Supplementary Table S4.
Discussion

Clinically, it is well recognized that patients with HGSOC,

which is the most common pathological subtype and accounts for

the majority of both incidence and mortality in OC, and who have
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comparable age, identical pathological types, and similar

differentiation degrees, may exhibit markedly divergent

prognostic outcomes (46). This discrepancy primarily stems from

the failure of traditional clinical prognostic classifications to

incorporate molecular heterogeneity among such patients into

consideration (47, 48). Since its initial discovery in melanoma

research in 1999, VM has been validated across multiple solid

tumors and consistently correlates with inferior prognostic

outcomes (16, 17). Despite the robust prognostic relevance of VM

and incremental elucidation of its mechanistic foundations and

biological implications, no studies to date have exploited this

prognostic determinant to develop molecular subclassification

frameworks or predictive models for HGSOC survival assessment

(49, 50). Therefore, this study aims to stratify ovarian cancer

patients molecularly based on prognosis-related genes associated

with VM, a prognostic factor in ovarian cancer. Furthermore, using

DEGs, we constructed a prognostic model via the Lasso-Cox

algorithm, which suggests associations with immune infiltration

and drug sensitivity. Experimental validation also confirmed that

some VMRPIs are highly expressed in the VM-positive group.

Concerning the molecular underpinnings of VM formation in

ovarian cancer, beyond the well-characterized contributions of key

pathways - including the VE-cadherin/EphA2/MMPs axis, hypoxia-

driven HIF-1A signaling, and EMT - associated regulators - genes

such as ALDH1A1, BCAR3, and CGB5 have been identified as critical

mediators in this process (25, 26, 28). Therefore, based on literature

review, we selected the above-mentioned genes as the VM-related

gene set. Compared with normal fallopian tube epithelium, 11 VMGs

were highly expressed in HGSOC tissues. However, preliminary

experiments indicated that these 11 VMGs could not stratify

ovarian cancer patients by prognosis, suggesting that they might be

involved in the aberrant expression patterns of HGSOC without

exerting significant prognostic impact. Consequently, we performed

prognostic analysis of the VMGs and identified 6 VMGs that

effectively stratified patients into distinct prognostic subgroups.

Interestingly, functional enrichment analysis of the DEGs,

identified between prognostic subgroups, revealed that the involved

pathways and cellular processes were primarily associated with EMT

and ECM remodeling. This is consistent with previous findings that

VM formation in ovarian cancer follows a stepwise biological

process: initially, stemness-acquired tumor cells metabolize the

matrix and connect with vasculature, followed by EMT-mediated

functional acquisition, ultimately leading to the formation of an

interconnected perfusion network (22, 23, 28).

In the evaluation of model efficacy, promising results were

achieved not only in the internal validation dataset but also in the

external validation cohort, indicating strong generalizability of the

model. Moreover, the risk score showed no significant correlation

with established clinical prognostic factors such as age, grade, and

clinical stage, confirming that the prognostic discrimination

capability of the model is independent. Given that multivariate

Cox regression identified the risk score as an independent

prognostic factor, we combined conventional clinical parameters

with this risk scoring system to develop a nomogram for

quantitatively predicting survival probabilities, thereby enhancing
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the accuracy of clinical prognostic assessment. However, there

remains room for improvement in model performance. This

includes: (1) employing more refined stratification strategies,

though acquiring large-sample real-world data with high

precision remains challenging (51); (2) utilizing more advanced

machine learning or deep learning methods, which may, however,

suffer from poor biological interpretability (52, 53); and (3)

incorporating multi-omics data to construct a comprehensive

prognostic model, albeit at the potential cost of increased

experimental expenses and complexity (54). In conclusion, the

rigorous feature selection via LASSO-Cox regression supports the

feasibility of constructing a prognostic model based on VM-

related stratification.

Following rigorous screening and computational optimization, a

multivariate risk scoring model was ultimately established through

integration of expression profiles and regression coefficients from nine

core genes: FPR1, ADH1B, RARRES1, TSPAN8, FOXJ1, CXCL13,

WNT11, CXCL9, and SST. Accumulating evidence from mechanistic

and clinical studies has implicated these model-incorporated genes in

tumor biological processes, as documented in existing oncology
Frontiers in Oncology 13
literature. C-X-C motif chemokine ligand 13 (CXCL13), known as a

fundamental regulator of B-cell recruitment and organization, can

coordinate the development of tertiary lymphoid structures (55). Its

expression level is associated with long-term survival and can enhance

the effectiveness of PD-1 checkpoint blockade in HGSOC (56, 57).

Formyl peptide receptor 1 (FPR1) is not only in proinflammatory and

antibacterial host responses but also involved in cell chemotaxis,

proliferation, and tumor progression (58–60). Activated FPR may

contribute to these processes and has been identified as a potential

biomarker and treatment target for aggressive epithelial ovarian cancer

(EOC) (61, 62). Tetraspanin 8 (TSPAN8) is a member of the

tetraspanin family, implicated in various human cancers through its

role in regulating intercellular interactions and cell motility (63, 64). It

is a potential therapeutic target for the inhibition of invasion and

metastasis in OCs (65–67). Forkhead box J1 (FOXJ1) is a 3-exon

transcription factor and a master regulator of motile ciliogenesis (68–

71). It is expressed in various tissues such as the respiratory tract, brain,

and reproductive tract, where it plays a pivotal role in regulating

transcriptional programs governing motile cilia assembly. This activity

showcases its diverse implications for cancer biology and prognosis.
FIGURE 6

Prediction of therapy response to drugs. Boxplot of therapeutic response to drugs in the high- and low-risk groups. In the figures of results,
* means p < 0.05, and ** means p < 0.01.
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High FOXJ1 expression is correlated with better tumor differentiation

and favorable prognosis in various cancers such as gastric cancer,

ependymomas, choroid plexus tumors, and ovarian cancer (72–74).

Alcohol dehydrogenase class I beta polypeptide (ADH1B) is pivotal for

alcohol metabolism and is implicated in tumorigenesis, particularly, in

esophageal squamous cell and colorectal cancers (75–77). High FABP4

and ADH1B expressions in high-grade serous ovarian cancer suggest

an increased risk of residual disease, possibly guiding neoadjuvant

chemotherapy candidacy (78). Wnt family member 11 (WNT11) is a

noncanonical Wnt protein that regulates cell movement and organ

formation through specific receptors and signaling pathways (79–84).

It plays a dual role by promoting migration in certain cancers including
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breast cancer, colon cancer, and leukemia, while suppressing cell

migration in hepatocellular carcinoma (85, 86). Additionally,

WNT11 influences cell adhesion and migration by modulating the

expression of E-cadherin and integrin subunits (85, 87). Retinoic acid

receptor responder 1 (RARRES1, also known as tazarotene-induced

gene 1, TIG1) is upregulated by tazarotene in skin culture and

resembles CD38 and is frequently silenced in cancers due to

promoter hypermethylation. It shows potential as a tumor

suppressor in prostate and endometrial cancers (88–90). Notably,

RARRES1 plays a crucial role in promoting tumor growth and

invasion in IBC through Axl, indicating its promise as a therapeutic

target for IBC patients (91). C-X-Cmotif chemokine ligand 9 (CXCL9),
FIGURE 7

Experimental validation of VM genes and VMRPIs. (A) Vascular structures in HGSOC. The black arrows denote CD31+/PAS+ endothelial angiogenic
structures, whereas the red arrows denote CD31−/PAS+ vasculogenic mimicry structures. (B) qRT–PCR was performed to validate the differences in
VM cluster genes and VMRPIs between the two groups (VM+, n=6; VM-, n=30). The two groups were classified based on IHC-PAS staining results:
samples with typical VM structures observed under microscopy were designated as the VM+ group, while those without obvious VM structures were
classified as the VM- group. The data are presented as the mean ± SD. The statistical study was conducted using the Wilcoxon test. In the figures of
results, nothing means not significant, * means p < 0.05, ** means p < 0.01, and *** means p < 0.001.
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in conjunction with CXCL10 and CXCL11, boosts T-cell infiltration in

OC, and is associated with improved survival rates (92). Research

indicates that CXCL9 and its chemokine counterparts are indicators of

an inflammation-rich subtype of ovarian cancer (93, 94). Recent

evidence highlighted the predictive value of CXCL9 for positive

outcomes and favorable responses to anti-PD-1 therapy in cancer

patients (95). Somatostatin (SST) is cyclic peptide that
Frontiers in Oncology 15
inhibits hormone secretion and suppresses immune functions

(96–99). Its signaling pathway also regulates tumor characteristics

such as angiogenesis, cell migration, and growth factors, promoting

tumor neovascularization and cell growth (96, 100–102). For these

risk genes, there is an urgent need for further mechanistic

investigations to elucidate their role in mediating VM during

ovarian carcinogenesis.
FIGURE 8

The study research process.
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Immunological evaluation results indicated that risk score

stratification correlated with the distribution of specific immune

cell subsets and ICGs expression, while immune-stromal scoring

revealed elevated scores in the high-risk group. This phenomenon

may be attributed to potential increases in VM structures within

high-risk populations. Under such circumstances, alterations in the

tumor microenvironment could trigger immune cell redistribution,

elevated concentrations of immune factors, and enhanced infiltration

status. However, in high-risk group patients, the reduction of tumor-

killing immune cells along with suppression of specific immune

checkpoints ultimately results in a persistently suboptimal immune

status. Immunological subtypes are also closely associated with

prognosis and can serve as predictors of drug responsiveness (103).

For instance, recent studies have demonstrated that subtypes defined

based on responsiveness to immune checkpoint inhibitors can be

used to construct prognostic models with excellent performance

(104). Therefore, we also predicted drug responsiveness in patients

with different risk profiles. The results demonstrated that patients in

the high-risk prognostic score group may exhibit suboptimal

therapeutic responses to histone deacetylase 7/8 inhibitors

(Apicidin), mTOR inhibitor-1 (AZD8055), bardoxolone methyl,

histone deacetylase 1/2 inhibitors (BRD−K61166597), curcumin,

doxorubicin, mTOR inhibitor-2 (KU−0063794), nuclear export

inhibitors (LeptomycinB), lovastatin, small-molecule threonine

endopeptidase inhibitors (NSC48300), sirolimus, and temsirolimus,

while showing enhanced responsiveness to Compound 1B.

Compound 1B, initially characterized as a dynein-targeting agent,

was later identified as a member of the phosphodiesterase inhibitor

family (105). While it exhibits selective cytotoxicity in cancer cells by

promoting PDE3A-SLFN12 interaction and inducing cell death—

particularly in KRAS-mutant cancers—its role in ovarian cancer

remains poorly studied (106, 107). Thus, model-based drug

sensitivity prediction is essential not only to guide the selection of

conventional chemotherapeutics but also to highlight promising

agents warranting further investigation.

To further validate the relationship between VM structure and

VMRPI, we conducted experiments using samples from our center.

Results from IHC-PAS staining on paraffin-embedded sections

showed that VM structures were present in 6 out of 36 samples,

which is consistent with previously reported rates of VM occurrence

in HGSOC patients (50). qRT-PCR analysis of matched frozen

samples revealed that VM-associated genes—MMP2, MMP14,

SNAI2, ZEB1, and TWIST1—exhibited significant expression

differences between VM-positive and VM-negative groups.

Furthermore, VMRPI markers including FPR1, ADH1B, and

WNT11 showed elevated expression in VM-positive patients

compared to VM-negative ones. These findings confirm the

consistency between bioinformatic predictions and pathological

observations, thereby reinforcing the association between VM and

VMRPI and suggesting their potential role in HGSOC pathogenesis

as well as highlighting avenues for further mechanistic investigation.

However, this investigation has limitations: First, the observation of

higher immune scores in high-risk subgroups and specific patterns of

immune checkpoint necessitate further mechanistic exploration to

elucidate the underlying causes and their relationship with poor
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prognosis. Second, multi-center retrospective studies with larger

sample sizes are required to integrate the risk scoring model into

existing clinical staging systems or molecular classification-based

prognostic frameworks, complemented by prospective cohort studies

to validate its clinical utility in practical settings.
Conclusion

This study established a prognostic model and nomogram

incorporating VM-related prognostic index, including FPR1,

ADH1B, RARRES1, TSPAN8, FOXJ1, CXCL13, WNT11, CXCL9,

and SST, which demonstrated favorable performance in prognostic

evaluation and risk stratification of HGSOC patients. Furthermore,

our findings revealed that risk stratification exhibited correlations

with the immune microenvironment and drug sensitivity, thereby

providing additional clinical applicability and research implications.

Finally, experimental validation in clinical specimens confirmed the

presence of VM structures and intergroup differential expression of

associated genes (Figure 8).
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