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Establishment and validation
of a prognostic model based
on vasculogenic mimicry-related
gene clustering in ovarian cancer

Xueyuan Zhao'?, Yan Jia“*, Weijia Wen*?', Caixia Shao'?,
Qiaojian Zou'?, Linna Chen™?, Hongye Jiang™?, Guofen Yang'?,
Wei Wang***, Chunyu Zhang"* and Shuzhong Yao™*

Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University,
Guangzhou, Guangdong, China, ?Guangdong Provincial Clinical Research Center for Obstetrical and
Gynecological Diseases, Guangzhou, Guangdong, China

Background: As a critical prognostic factor in ovarian cancer which is the most
lethal gynecologic malignancy, vasculogenic mimicry (VM) has not been
systematically incorporated into prognostic evaluation frameworks in ovarian
cancer (OC). This underscores the necessity to develop and validate a gene
subtyping-based prognostic model through comprehensive analysis of VM-
related biomarkers.

Methods: This study integrated multi-omics data from TCGA, GEO and GTEx,
forming a primary set and an external validation cohort. Through literature
mining, 28 VM-related genes were identified. Univariate Cox and LASSO
regression distilled 9 genes as vasculogenic mimicry-related prognostic index
(VMRPI), establishing a risk model validated by ROC and constructing a
nomogram with clinical prognostic factors. Consensus clustering stratified
patients into VM-high/-low subgroups. Multi-angle assessments connected
risk scores with tumor mutational burden, immune infiltration, and
chemotherapy sensitivity. Clinical validation encompassed IHC-PAS detection
of VM structures in 36 HGSOC paraffin specimens and gRT-PCR confirmation of
gene expression in matched frozen tissues.

Results: vasculogenic mimicry-related genes (VMGs) exhibited differential
expressions in HGSOC versus normal tissues, with consensus clustering
stratifying 474 patients into prognostically distinct VM-high/low subgroups.
Prognosis-associated DEGs (n=758) enriched in ECM-receptor and PI3K-AKT
pathways. A 9-gene prognostic model demonstrated robust predictive accuracy.
Risk scores correlated with immune infiltration and drug sensitivity. Multivariate-
validated nomogram integrating clinical factors and risk scores achieved precise
survival prediction. IHC-PAS confirmed VM structures, with VM-positive cases
showing upregulated VMGs and VMRPIs.
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Conclusions: VMG-based stratification revealed distinct prognostic ovarian
cancer subgroups and a 9-VMRPI demonstrated robust prognostic power with
validated immune-microenvironment, drug-response associations, IHC-PAS
staining, and gRT-PCR confirmation.

ovarian cancer (OC), vasculogenic mimicry (VM), prognostic model, immune
microenvironment, therapeutic response

Introduction

Ovarian cancer (OC), ranking as the third most prevalent
malignancy in the female reproductive system following cervical
cancer and endometrial cancers, has emerged as the leading cause
of mortality in gynecological oncology due to challenges in early
diagnosis and late-stage chemoresistance recurrence, earning its
designation as the “silent killer” of gynecologic malignancies (1, 2).
According to the latest Global cancer statistics (GLOBOCAN) data,
2023 witnessed 314,000 new global OC cases and 207,000 OC-related
deaths, accounting for 3.7% and 4.7% of total female cancer incidence
and mortality respectively (3). Early-stage OC typically lacks
pathognomonic clinical manifestations and is often incidentally
detected via ultrasonography during routine examinations.
Although early screening has not demonstrated prognostic
improvement, interventions at this stage yield favorable outcomes
with 5-year survival rates reaching 61-87% (4, 5). In contrast,
advanced OC frequently presents non-specific symptoms including
abdominal distension, palpable masses, ascites, and tumor burden or
metastasis-related manifestations. Notably, 70% of patients are
diagnosed at The International Federation of Gynecology and
Obstetrics (FIGO) Stage ITI-IV due to its insidious onset and high
metastatic propensity (1, 5). The characteristic tumor heterogeneity
and reduced chemosensitivity in advanced cases contribute to a 5-
year survival rate below 30% (5). Histologically, high-grade serous
ovarian carcinoma (HGSOC) represents the most aggressive subtype,
comprising 70-80% of OC cases as per World Health Organization
(WHO) classification (6). HGSOC’s clinical aggressiveness and
distinct biological features not only pose significant threats to
women’s health but also establish it as a primary research focus in
OC pathogenesis and therapeutics (6, 7). Current standard-of-care
combining cytoreductive surgery with platinum-based multi-agent
chemotherapy achieves short-term remission but faces limitations
with 80% of patients developing platinum-resistant recurrence (7, 8).
Emerging molecular strategies incorporating poly-ADP-ribose
polymerase (PARP) inhibitors, anti-angiogenics and combination
therapies are reshaping first-line maintenance approaches (9, 10).
However, compensatory vascular endothelial growth factor (VEGF)
pathway activation and tumor microenvironment remodeling
underlie anti-angiogenic resistance, maintaining median survival at
12-18 months in platinum-resistant recurrent cases (8, 11, 12).
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The contemporary management of OC confronts dual challenges:
persistent high recurrence rates with platinum resistance in advanced
disease, and the urgent need for precision prognostic models to guide
maintenance therapies in the molecular-targeted era (9, 12, 13).
Traditional prognostic parameters prove inadequate for
molecularly-driven precision medicine. Integrated prognostic
models incorporating molecular markers with clinical variables
could enable pretreatment outcome prediction and therapeutic
decision-making, while multi-omics-based stratification may
optimize maintenance therapy selection and duration (14, 15).
Consequently, developing clinically translatable biomarker panels
with prospective validation cohorts represents a critical frontier in
advancing OC precision medicine paradigms.

Vasculogenic mimicry (VM) refers to a phenomenon wherein
malignant solid tumor cells acquire endothelial-like phenotypes
through phenotypic plasticity, autonomously forming functional
three-dimensional tubular networks without endothelial cell
participation. These VM channels substantially enhance nutrient
and oxygen supply to tumor cells located either within the tumor
mass or distal to capillary beds (16, 17). First documented by
Maniotis et al. in 1999 in aggressive uveal melanoma, this
discovery fundamentally challenged conventional tumor
angiogenesis paradigms, offering novel insights into the “tumor
cell-driven” vascularization mechanism underlying malignant
blood supply patterns (17). Subsequent studies have identified
VM structures in 24 distinct malignancies including breast
cancer, non-small cell lung carcinoma, and glioblastoma, with
their presence correlating with enhanced nutrient acquisition and
metastatic potential (16, 18-21). Current mechanistic studies
generally propose that specific cell subpopulations with
differentiation potential within tumors, under conditions of
oxygen and nutrient deprivation, induce and activate multiple
pathways to transdifferentiate into tumor cells with endothelial-
like phenotypes. These cells then form vascular-like channels
through intercellular connections, with subsequent blood
perfusion completing VM structure formation (22-25). The
molecular mechanisms underlying this structure involve multi-
dimensional regulatory networks: (1) In microenvironmental
stress: Hypoxia-induced HIF-1o. or HIF-2a drives tumor cell
metabolic reprogramming through activation of the PI3K/AKT/
mTOR signaling axis; (2) In cellular plasticity: The epithelial-
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mesenchymal transition (EMT) process facilitates the acquisition of
cancer stem cell characteristics; (3) In structural remodeling: The
VE-cadherin/EphA2/MMPs pathway promotes lumen formation
by regulating intercellular junction complex assembly and basement
membrane metabolism and remodeling (26-30). Notably, beyond
these three pathways, other genes including ALDH1A1, BCAR3,
CGB5, MIR27B, MIR765, PLAU, SEMA4D, XAF1, and TCF4 also
play significant roles in VM formation (22, 31-34).

Research on VM structures in ovarian cancer has also been
documented. The work of Jing Du et al. demonstrated that hypoxic
microenvironment could promote VM formation by inducing EMT in
ovarian cancer cells, elucidating the pathway mechanisms underlying
VM existence in OC (25). Furthermore, substantial studies have
confirmed that VM-positive ovarian cancer patients exhibit
significantly shorter overall survival and higher metastatic incidence
compared to VM-negative counterparts (35). Although significant
progress has been made in understanding VM molecular
mechanisms in recent years, most studies remain fragmented at the
molecular level, and its potential as a prognostic factor remains under-
explored in survival assessments (35-37). Current multi-omics
prognostic models for ovarian cancer predominantly focus on
endothelial-dependent angiogenesis in blood supply mechanisms,
while neglecting VM - an autonomous tumor cell-driven vascular
system. This oversight has led to the long-term exclusion of this critical
biological feature from prognostic frameworks. This study aims to
distinguish subgroups with significant prognostic differences based on
vasculogenic mimicry-related genes (VMGs), subsequently revealing
inter-subgroup heterogeneity in gene expression through screening of
differentially expressed genes (DEGs) combined with differential
expression analysis and functional enrichment studies. Prognostically
significant DEGs between subgroups will then be selected to construct a
vasculogenic mimicry-related prognostic index (VMRPI) as a
prognostic model, which will be rigorously validated. The model is
designed not only to effectively predict survival outcomes in ovarian
cancer patients, but also to characterize immune microenvironment
features and chemotherapy drug sensitivity across different risk
subtypes. Finally, experimental validation will be conducted to
identify VM structures in our institutional patient cohort and verify
the expression differences of VMRPI components.

Materials and methods
Data collection and processing

This study collected RNA sequencing data and clinical
information of 429 HGSOC cases from The Cancer Genome
Atlas (TCGA, https://portal.gdc.cancer.gov) database, and
identified all available HGSOC datasets from the Gene Expression
Omnibus (GEO, https://www.ncbinlm.nih.gov) database. The
screening criteria focused on whether datasets contained VMGs
and whether their sequencing results were presented in transcripts
per million (TPM) format to ensure optimal compatibility with
TCGA data. Ultimately, 98 HGSOC samples with clinical
information from dataset GSE51088 were selected. These two
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datasets were merged using bioinformatics methods to form the
training set and internal validation set, collectively defined as the
primary dataset. Additionally, RNA sequencing data and
corresponding clinical information from 110 HGSOC patients in
GSE17260 of GEO were obtained to construct the external
validation dataset. Considering current omics analyses and
substantial evidence indicating that HGSOC likely originates from
fallopian tube epithelium, normal control samples utilized RNA
sequencing data from 180 normal fallopian tube epithelial tissues
obtained through the Genotype-Tissue Expression (GTEx, https://
www.gtexportal.org) portal. All data from TCGA, GEO, and GTEx
databases were publicly accessible and strictly complied with data
acquisition and usage policies during their application.

After excluding data that did not meet the experimental criteria,
performing pathological type screening, and processing the
matched sample survival information of the afore-mentioned
samples, 474 samples in the primary dataset retained clinical
prognostic information and were utilized, while the external
validation set contained 110 samples with corresponding
prognostic information for external model validation. The clinical
characteristics and data sources of patients in the study cohort are
presented in Supplementary Table S1. The preprocessing of the data
included data transformation and merging. First, for datasets
requiring integration—specifically TCGA with GEO, and TCGA
with GTEx—the “Combat” function from the “sva” package in R
was employed to remove batch effects arising from different
sequencing platforms. To analyze and validate whether the
merged data from TCGA and GEO exhibited differences in
distribution or batch effects, Principal Component Analysis
(PCA) was performed using the “prcomp” function from the
“stats” package in R, followed by visualization.

Construction of protein-protein interaction
network

The protein-protein interactions (PPIs) network was
constructed using version 12.0 of the Search Tool for the
Retrieval of Interacting Genes/Proteins (STRING, https://
cn.string-db.org) database, a comprehensive repository of
experimentally confirmed and computationally predicted protein
interactions. This database is openly accessible and freely available
for research purposes.

Identification of prognostic VM-related
genes

VM-related genes for ovarian cancer were identified through a
comprehensive search of the literature published on PubMed over
the past 20 years, including both primary research articles and
review articles (22, 28, 31-33). This gene set is available in
Supplementary Table S2. The univariate Cox analysis was utilized
to identify VMGs, including SNAI1l, MMP2, MMP14, SNAI2,
ZEBI, and TWIST1, as the core genetic determinants using false
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discovery rate (FDR) <0.05 as the significance threshold. The R
package “survival” was used for survival analysis. Kaplan-Meier
estimation with optimal cutoff determination was performed for
univariate assessment, and univariable Cox proportional hazards
regression models were subsequently fitted to quantify the
association between individual variables and survival outcomes.
The “ggsurvplot” function generated survival curves visualizing
associations between gene expression and clinical outcomes.

Consensus clustering

To identify VM subtypes, a rigorous unsupervised classification
algorithm, named consensus clustering analysis in R package
“ConsensuClusterPlus”, was performed using the expression of
the determinant core genes and Euclidean distance was set as
1000 times repetition (38). In the experiment, we aim to
determine two values: the optimum cluster number (k) and the
degree of consensus stability. Finding the output from the
cumulative distribution function (CDF) plots and determining
whether the CDF curve is flat is necessary for this. Computational
optimization identified k=2 as the optimal partitioning threshold,
resulting in division of the primary dataset into two subgroups:
VM-high and VM-low. Prognostic disparities between subgroups
were subsequently confirmed through statistical testing.

Identification and analysis of differentially
expressed genes

In the primary dataset, DEGs were identified and filtered from
contrasting the risk-high and risk-low subgroups using the “limma”
R package, with key parameters set as |fold change| >1.5 and a
significance level of FDR <0.05. Volcano plots of DEGs were
generated via the “ggplot2” package. DEGs were investigated to
assess both Gene Ontology (GO), including molecular function
(MF), biological process (BP) and cellular component (CC), and
intracellular metabolic pathways from and gene functions Genes
and Genomes (KEGG) enrichment analysis (39, 40).

Construction and validation of the risk
score prognostic model

There were 260 DEGs showed significant prognostic association
with their expression from DEGs (n=758) identified between the
clusters using the univariate Cox regression analysis when the level
was set at p<0.05. In the primary set, 4/5 of the patients were
divided into the training set while 1/5 samples were divided into the
internal validation by the “createDataPartition” function in the
“caret” R package. The least absolute shrinkage and selection
operator (LASSO) penalized Cox regression analysis was
employed to reduce the candidate gene pool for developing the
prognostic model by using the R package “glmnet”. The penalty
parameter (A) was determined using a ten-fold cross-validation
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approach, selecting the value that met the minimum criteria. After
calculations, 9 genes were identified to construct the prognostic
signature. The risk score model, named Risk Score, was established
using B (coefficient) value multiplied by the expression of risk genes.
The risk score formula was as follows: Risk Score = (B1*Expl
+B2*Exp2+ ...
evaluated through the R packages “survival”, “survminer”, and

+Bn*Expn). The effectiveness of the model was

“timeROC” by performing receiver operating characteristic
(ROC) curves and calculating the Area Under the Curve (AUC)
values. Additionally, the ROC-based AUC evaluation method was
similarly performed in the external validation set.

Mutation profile analysis

Genomic somatic mutation profiles of the cohort were retrieved
from the TCGA portal. Risk stratification was performed by
dichotomizing patients at the median risk score into distinct high-
and low-risk subgroups. Comparative analysis of mutation patterns
across subgroups was visualized through waterfall plots constructed
using the “maftools” package in R, as detailed in reference (41).

Independent prognostic analysis and
nomogram construction

In the primary dataset, an independent prognostic examination
of the samples’ clinical features (e.g., age, tumor grade, and tumor
stage) as well as risk scores was conducted via univariate Cox
regression analysis to construct a nomogram model. The
coefficients within the nomogram were derived using multivariate
Cox regression analyses. The construction of the nomogram was
performed using the “coxph” function from R packages, and a visual
plot was generated via the “regplot” function.

Utilizing the “rms” and “survival” R packages, a nomogram
model based on a multivariate Cox proportional hazards regression
was established, incorporating age, tumor grade, tumor stage, and the
Risk Score index. This model aims to quantitatively predict patients’
overall survival probabilities at 1-, 3-, and 5-year intervals. Calibration
curves were also generated to visually evaluate the predictive accuracy
of prognosis outcomes during the nomogram development process.

Evaluation of microenvironment and cell
infiltration

To reveal the relationship between the immune microenvironment,
immune cell infiltration with risk score stratification in HGSOC patient
samples, the R package “estimate” was used to calculate stromal,
immune, and ESTIMATE scores. The CIBERSORT algorithm was
utilized to quantitatively analyze the relative abundance of 20 immune
cell types derived from the TCGA dataset, aiming to demonstrate the
association between different immune cell subtypes and VMRPI.
The principle of CIBERSORT lies in its use of RNA sequencing data
to evaluate the enrichment level of specific cell types in mixed tissue
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samples, which is frequently applied to calculate immune cell
infiltration within the tumor microenvironment (42). To investigate
the association between immune checkpoints and risk scores, we
employed a curated set of 79 immune checkpoint genes (ICGs) as
our analytical framework (Supplementary Table S3) (43). These ICGs,
systematically compiled from published literature, were analyzed to
examine their differential expression patterns between high- and low-
risk subgroups. Statistical values were obtained through Spearman
correlation analysis, and heatmaps were generated using the “limma”
and “ggplot2” packages.

Drug sensitivity

Drug sensitivity prediction employed the algorithm framework of
the R package “oncoPredict” which utilizes data from the Cancer
Therapeutics Response Portal (CTRP, https://portals.broadinstitute.
org/ctrp) and Genomics of Drug Sensitivity in Cancer (GDSC,
https://www.cancerrxgene.org) databases, including TPM gene
expression data from 28 HGSOC -related cell lines and ICs,
values of 497 drugs, to construct a drug sensitivity prediction
model based on ridge regression and provide predictive outcomes
(44). The modeling process incorporated key preprocessing steps
including log, transformation, Empirical Bayes (ComBat) batch
effect correction, and low-variance gene filtering. Using this
algorithm, the therapeutic efficacy of commonly used
chemotherapy drugs and gene-targeted therapies was predicted,
and their ICs, values were calculated. These values were compared
between high- and low-risk score groups, with box plots generated
for visualization.

Clinical specimens

Clinical samples were collected from patients who underwent
primary treatment in the Department of Gynecology at The First
Affiliated Hospital of Sun Yat-sen University between June 2023
and December 2023. A total of 36 patients who met the inclusion
criteria, did not meet the exclusion criteria, and had matched
paraffin-embedded sections and frozen tissues were included.

Inclusion criteria: (1) Patients who was diagnosed ovarian
cancer according to the 2022 edition of the Chinese Guidelines
for the Diagnosis and Treatment of Ovarian Cancer; (2) Aged
between 18 and 75 years old; (3) Enrolled cases must present with a
histologically confirmed primary tumor that fulfills the specified
criteria; (4) Adequate other organ and bone marrow function; (5)
No history of other malignant tumors. Exclusion criteria: (1)
Individuals with severe underlying diseases that are poorly
controlled; (2) Lactating or pregnant women; (3) Those with a
history of other illness, including serious infectious disease; (4)
Persons with incapacitated or limited ability to act; (5) Patients
received radiotherapy or chemotherapy before surgery.

All patients were informed and consented to the collection of
samples for research purposes, with signed informed consent forms
for biospecimen acquisition. The research methods and specimen
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collection procedures involved in this study were submitted to and
approved by the Ethics Committee of The First Affiliated Hospital
of Sun Yat-sen University.

Immunohistochemical staining

A total of 36 paraffin-embedded tissue from patients with
HGSOC was stained by immunohistochemical (IHC) and Periodic
Acid-Schiff (PAS) staining who received treatment at the First
Affiliated Hospital of Sun Yat-sen University (Guangzhou, China).
The formalin-fixed paraffin-embedded (FFPE) slides underwent
deparaffinization in a graded series of xylene and ethanol. Epitopes
were unmasked by immersing the slides in a boiling antigen retrieval
solution for 5 minutes. Endogenous peroxidase activity was blocked
with 3% hydrogen peroxide for 10 minutes and then incubated at
room temperature for 25 minutes using goat serum blocking solution
to eliminate non-specific staining. After incubation with mouse-
derived anti-CD31 antibody (1:1000, CST, 3528S), the slides were
placed at 4 degrees Celsius for 18 hours. Following PBS washing, an
anti-mouse horseradish peroxidase-labeled secondary antibody
(Vector Laboratories) was applied and incubated at 25°C for 45
minutes. After 2 min of with 0.05% 3’,3-diaminobenzidine
tetrahydrochloride (DAB, ZSGB-BIO, ZLI-9017) staining, the PAS
staining procedure was carried out in accordance with the ZSGB-
BIO, BSBA-4080A manufacturer’s instructions. The slides were then
dehydrated, mounted, and counterstained with hematoxylin.

VM detection and distinguish

After the staining and neutral resin sealing process, the
pathology slides were captured as electronic images at 40x
magnification using a bright-field scanner. Subsequently, all
channel-like structures were systematically examined based on the
established criteria for typical vascular malformations. These
criteria include the following: (1) VM vascular-like channels
surrounded by tumor cells; (2) VM vessel channels staining PAS
positive and CD31 negative (PAS+/CD31-), in contrast to
endothelial vessel channels staining PAS positive and CD31
positive (PAS+/CD31+); (3) VM vascular-like channels
containing erythrocytes (45). According to the results of IHC-
PAS staining for VM, all samples of clinical specimens were
categorized into two subgroups: VM (+) group meanings those
with typical VM structures and VM (-) group meanings those
without. The clinical characteristics of VM-positive and VM-
negative groups are presented in Supplementary Table S4.

Quantitative real-time PCR

In accordance with the manufacturer’s instructions, the total
bulk RNA was extracted and purified through Trizol reagent
(Invitrogen) and the SteadyPure Universal RNA Extraction Kit
(ACCURATE BIOTECHNOLOGY (Human) CO., LTD, Changsha,
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China), and then it was reverse transcribed to cDNA through the
Reverse Transcription Supermix (ACCURATE
BIOTECHNOLOGY (Human) CO., LTD, Changsha, China,
AG11706). The SYBR Green PCR Kit was utilized for conducting
the qRT-PCR (ACCURATE BIOTECHNOLOGY (Human) CO.,
LTD, Changsha, China, AG11701) and in a Real-time fluorescence
PCR instrument (Bio-Rad Laboratories, Inc, United States, Bio-Rad
CFX Connect Real-Time PCR System 1855201). The expression of
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was set as
an internal control to realize normalization. The Primers sequences
in this study are presented in Supplementary Table S5. The

comparative expression level was evaluated by 2"*““" method.

Statistical analysis

Using R software, statistical analyses were carried out. (version
4.4.1; http://www.Rproject.org). The categorical variables were
compared using the Chi-square test. The Wilcoxon test was
employed to compare the drug sensitivity and gene expression
levels of groups. A p-value of less than 0.05 was taken into
consideration as the criterion for statistical significance in
this investigation.

Result

Interactions among vasculogenic mimicry-
related genes in ovarian cancer

To investigate whether VMGs exhibit differential expression
between HGSOC and normal fallopian tube epithelial tissues and
explore their carcinogenic roles at the genetic level, the TCGA dataset
was utilized as the cancer tissue dataset. Since TCGA lacks large-scale
sequencing data of normal fallopian tube epithelial tissues relevant to
ovarian cancer, 180 normal fallopian tube epithelial tissue sequencing
samples from GTEx were downloaded as controls. We first generated a
heatmap of the data from the TCGA and GTEx databases to compare
the expression levels of VM-related genes in HGSOC and normal
fallopian tube tissues (Figure 1A). Subsequently, we analyzed
significantly differentially expressed VMGs, and identified 11 VMGs,
including PROM1, XAF1, SNAI2, PRKCA, ZEB1, EPHA2, LAMC2,
PLAU, ALDH1A1, and MMP2, indicating aberrant transcription of
VMGs in a substantial proportion of ovarian cancer lesions (Figure 1B).

Given that previous studies have shown that VM formation is
driven by multiple genes and pathways, this study aimed to
investigate potential interactions among VMGs. First, correlation
analysis of 28 VMGs revealed complex interaction networks among
these genes (Figure 1C). Additionally, since all studied VMGs
encode proteins, PPIs network was constructed using public
databases, revealing robust interactions among these genes at the
protein level (Figure 1D). These findings suggest that VMGs may
play critical roles in the initiation and progression of HGSOC, with
intricate interaction relationships observed at both transcriptional
and protein expression levels.
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Identification of subgroups associated with
gene expression and prognosis

In order to expand the sample size, avoid overfitting to a single
sequencing platform, and enhance generalizability across multiple
platforms, this study integrated TCGA and GEO datasets after
batch effect removal to establish the “primary dataset” with PCA
confirming post-merger consistency (Figure 2A). Preliminary
experiments demonstrated that direct consensus clustering using
all 33 VMGs failed to achieve precise molecular subtyping.
Therefore, we selected VMGs significantly associated with
prognosis as determinants for subtyping. Survival analysis of 33
VMGs in HGSOC patients identified 6 VMGs (SNAIIL, SNAI2,
MMP2, MMP14, ZEB1, and TWIST1) with prognostic relevance, all
exhibiting hazard ratios (HR) > 1, suggesting that their high
expression correlates with poor outcomes in ovarian cancer
(Figure 2B). Kaplan-Meier (KM) curves confirmed significant
survival differences between high- and low-expression groups
(Figure 2C). Consensus clustering based on expression profiles of
VM-related prognostic genes was performed to identify subtypes.
At k=2 (number of clusters), the cumulative distribution function
(CDF) curve displayed optimal smoothness, indicating maximal
intra-group homogeneity and inter-group heterogeneity.
Consequently, the primary dataset was stratified into two
subgroups: VM-high (n= 224) and VM-low (n= 250) (Figure 2D).
Notably, the VM-low subgroup exhibited significantly better overall
survival compared to the VM-high subgroup (Figure 2E). Statistical
validation confirmed no significant differences in sequencing data
sources or distributions of key clinical characteristics between
subgroups, as visualized by heatmap (Figure 2F).

Enrichment analysis of DEGs and
construction of prognostic model

In the primary dataset, parameters were set as log, FC = 0.585
and FDR<0.05 to screen DEGs between the subgroups, identifying
758 statistically significant DEGs. Among these, 728 genes were
significantly upregulated in the VM-high subgroup compared to
the VM-low subgroup, while 30 genes were downregulated. A
volcano plot illustrates the distribution of DEGs between subgroups
(Figure 3A). GO and KEGG analyses were performed to explore the
biological functions and pathways associated with the DEGs. GO
analysis revealed that the top five enriched biological processes (BP)
terms were “extracellular matrix organization”, “extracellular
structure organization”, “external encapsulating structure

» o«

organization”, “ossification” and “connective tissue development”.

The top five enriched cellular component (CC) terms were “collagen
—containing extracellular matrix”, “endoplasmic reticulum lumen”,
“cell-substrate junction”, “focal adhesion” and “external side of
plasma membrane”. The top five enriched molecular function (MF)

» o«

terms were “extracellular matrix structural constituent”, “receptor
ligand activity”, “glycosaminoglycan binding”, “integrin binding” and
“sulfur compound binding”. These findings suggest alterations in

extracellular matrix metabolism and intercellular junction states
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between subgroups. The KEGG analysis showed that DEGs were
mainly involved in proteoglycans in the cancer signaling pathway, the
ECM-receptor interaction signaling pathway, the Malaria signaling
pathway, the focal adhesion signaling pathway, the PI3K-Akt
signaling pathway signaling pathway, the AGE-RAGE signaling
pathway in the diabetic complications signaling pathway, The
protein digestion and absorption signaling pathway, the
complement and coagulation cascades signaling pathway, the
cytokine—cytokine receptor interaction signaling pathway, and the
staphylococcus aureus infection signaling pathway (Figure 3B). These
results indicate that these pathways are modulated following VM
formation and may contribute to prognostic disparities.
Furthermore, to explore the prognostic relevance of VM-related
DEGs in ovarian cancer, univariate Cox regression analysis was first
performed on the DEGs, identifying 260 prognosis-associated
DEGs (Supplementary Table S6). The primary dataset was
randomly divided into a training set (80% cases) and an internal
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validation set (remaining 20% cases) using R functions. LASSO
regression analysis was applied to refine the 260 prognostic DEGs,
ultimately selecting an optimal 9-gene subset (FPR1, ADHIB,
PARRESI1, TSPANS, FOXJ1, CXCL13, WNT11, CXCL9, and SST)
with superior prognostic performance (Figure 3C). Multivariate
Cox analysis was then conducted to calculate prognostic coefficients
(B) for the selected genes, presented as a forest plot. The results
indicated that FPR1, ADH1B, RARRES], and WNTI11 expression
levels correlated with higher risk scores, whereas TSPANS, FOX]1,
CXCL13, CXCL9, and SST were associated with lower risk scores.
These genes were defined as the VMRPI (Figure 3D). Based on these
findings, a prognostic model comprising the 9 genes was
established, with the risk score calculated as: Risk Score =
FPR1x0.2686 + ADH1Bx0.1500 + RARRES1x0.0968 +
TSPAN8x(-0.1782) + WNT11x0.0935 + FOXJ1x(-0.1266) +
CXCL13%(-0.2401) + CXCL9x%(-0.0972) +SSTx(-0.0360), where
gene names represent their TPM values in sequencing data.
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Subtypes based on VM-related genes expression. (A) PCA plot illustrating the combined TCGA and GEO data after batch effect removal. (B) A forest
map of the most important VM-related genes for prognosis identified by univariate Cox regression analysis in OC patients. (C) Kaplan—Meier curves
of important VM-related genes for prognosis. (D) Consensus clustering matrix (k=2) showing two clusters (VM-high = 224; VM-low = 250) based on
the expression of important genes in 30 VMGs. (E) Overall survival showing a significant difference (p < 0.01) in the survival plot. (F) A heatmap
showing the relationships among the patients’ clusters, clinicopathological characteristics, and data sources for ovarian cancer.

Validation of the prognostic model and
gene expression level

The prognostic efficacy of the model was evaluated using the AUC
values from ROC analysis, demonstrating satisfactory predictive
performance. In the training cohort, the 1-, 3-, and 5-year AUC
values were 0.694, 0.746, and 0.727, respectively, while the internal
validation cohort yielded corresponding values of 0.752, 0.667, and
0.663 for the same intervals (Figure 4A). To further validate the model’s
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generalizability and mitigate overfitting to the primary dataset, the
external validation cohort demonstrated robust concordance with the
primary dataset, yielding 1-, 3-, and 5-year AUC values of 0.731, 0.633,
and 0.723, respectively, compared to the primary dataset’s
corresponding values of 0.708, 0.732, and 0.720 (Figure 4B).

Samples from both the primary dataset and the external
validation cohort were stratified into high-risk and low-risk
groups based on the median risk score of each cohort. Survival
analysis revealed statistically significant disparities in survival
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FIGURE 3

Construction of a risk signature. (A) Volcano map showing DEGs between the VMG clusters (A). DEGs were sifted using the subsequent standards:
log; fold alteration (log, FC) =0.585, and a false discovery rate (FDR) < 0.05. (B) The bar plots display the results of GO and KEGG enrichment
analysis for the DEGs. (C) A total of 260 Overall Survival-related genes were identified by univariate Cox regression analysis and subjected to LASSO
regression, using cross-validation to fine-tune the LASSO regression’s parameter selection. (D) Forest plot of the important genes and coefficients in
the gene model by multivariate Cox regression analysis.

outcomes between risk groups across both datasets, with all p-values ~ Evgluation of the clinical features of risk

<0.05 (Figures 4C, D). Furthermore, intergroup differential gene  subgroups and calculation of the
analysis revealed significant differences in the expression of VMGs, nomogram

including BCAR3, CD44, CDH5, EPHA2, FOXC2, IL6, LAMC2,

MMP14, MMP2, PLAU, TGFB1, TWIST1, ZEB1, SNAII, and Stratification based on risk scores was utilized to analyze tumor
SNAI2 (Figure 4E). These results comprehensively underscore the — mutational profiles and clinical prognostic factors. The tumor
robust prognostic significance of the risk score. mutational profile analysis incorporated mutation data from the
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FIGURE 4

Validation and assessment of the risk model. (A) The predictive effectiveness of the risk score in the training set (left) and test sets (right) is shown by
the time-dependent receiver operating characteristic (ROC) curve and the area under curve (AUC) analyses. (B) Shows the predictive effectiveness of
the risk score in all sets (left) and in the external validation set (right) using time-dependent ROC curves and AUC analyses. (C) Kaplan-Meier curves
for the Overall survival (OS) of VMRPI-High and VMRPI-Low patients in the total cohort. (D) Kaplan-Meier curves for the OS of VMRPI-High and
VMRPI-Low patients in the external validation cohort. (E) In TCGA cohort, the expression levels of VM-related genes were compared between the
VMRPI-High and VMRPI-Low subgroups. In results’ figures, ns means not significant, ** means p < 0.01, and *** means p< 0.001.

TCGA database. The results revealed that the top five mutated genes
in both high-risk and low-risk groups were TP53, TTN, CSMD3,
USH2A, and RYR?2, indicating that risk score stratification does not
significantly alter the predominant mutational landscape of tumors
(Figure 5A). To investigate potential associations between risk score
stratification and clinical prognostic factors (including age, tumor
grade, and clinical stage), statistical analyses were performed on
clinical subgroups. No significant differences in risk scores were
observed across age groups, tumor differentiation status, or tumor
stages, suggesting that the risk score functions as a prognostic factor
independent of these clinical variables (Figure 5B).

Furthermore, given the critical role of immune status in
tumorigenesis, recurrence, and prognosis, we explored correlations
between risk scores and immune profiles by analyzing immune-
stromal scores and immune cell infiltration. Immune-stromal scoring
stratified by risk groups demonstrated significantly higher immune
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scores, stromal scores, and ESTIMATE scores in the high-risk group
compared to the low-risk group (Figure 5C). Additionally, the heatmap
analysis, however, revealed significant associations between VMRPI
and risk scores and infiltration levels of various immune cell subtypes.
These notably included neutrophils, monocytes, activated mast cells,
M2 macrophages, resting memory CD4+ T cells, follicular helper T
cells, plasma cells, regulatory T cells, M1 macrophages, CD8+ T cells,
and activated memory CD4+ T lymphocytes (Figure 5D). Furthermore,
ICG profiling demonstrated differential expression patterns of specific
ICGs between high- and low-risk groups, unveiling a complex immune
checkpoint landscape (Supplementary Figure S1).

To integrate the prognostic model with clinical factors for
quantitative survival probability prediction, a nomogram was
constructed and visualized. Univariate Cox analysis of the
primary dataset identified age, clinical stage, and the prognostic
model as significant predictors (Figure 5E). Although tumor grade
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FIGURE 5

Nomogram-predicted OS (%)

Clinical analysis and nomogram construction. (A) An oncoplot showing the frequency of mutations in the top 20 mutated genes in the high- and
low-risk groups. (B) Boxplot showing the age, grade, and FIGO stage for the groups at high and low risks. The numbers above the horizontal lines
represent the p-values from the statistical tests. (C) Distribution of immunological, stromal, and ESTIMATE scores based on VMRPI. (D) Spearman’s
correlation between VMRPI genes and immune cells in the TCGA-OV dataset was determined using the TIMER database. (E) A forest map of
prognostic clinical indices using a nomograph. (F) Nomogram'’s calibration curves. The nomogram-predicted likelihood of invasive adenocarcinoma
is represented by the x-axis, whereas the actual probability is represented by the y-axis. (G) Nomogram using tumor grade, Figo staging system, age,
and VMRPI. In results’ figures, ns means not significant, * means p < 0.05, ** means p < 0.01, and *** means p < 0.001.

showed no statistical significance due to limited low-grade samples,
it was retained in nomogram construction based on established
clinical guidelines, pathological consensus, and prior evidence
supporting its prognostic relevance. Multivariate Cox analysis
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successfully integrated clinical features with risk scores to
generate a nomogram for quantitative prognosis assessment and
calibration curves confirmed robust predictive accuracy at 3-year
and 5-year intervals (Figures 5F, G).
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Prediction of therapeutic response to
drugs based on the risk score

As a critical prognostic factor in molecular subtypes, the
exploration of VMRPI in clinical therapeutic strategies holds
significant importance. Therefore, this study conducted drug
sensitivity analysis based on risk score stratification utilizing the
CTRP and GDSC databases. Based on risk score-based
stratification, the sensitivity scores of various drugs indicated that
drugs, such as BRD-K61166597, apicidin, AZD8055, bardoxolone
methyl, curcumin, doxorubicin, KU-0063794, lovastatin,
NSC48300, leptomycin B, sirolimus, and temsirolimus, exhibit
higher ICs, values within the high-risk group. Conversely,
compound 1B displayed lower ICs, values (Figure 6). These
results suggest that partial differences in drug sensitivities exist
among subgroups stratified by risk scores, and that for patients with
high-risk scores, drugs with better responsiveness can be
administered while avoiding those with poor responsiveness.

Experimental expression validation of
cluster genes and VMRPI

To further investigate whether VM structures correspond to
VMRPIs in biological samples, we further explored using clinical
specimens. Paraffin-embedded specimens and paired fresh frozen
tissues from 36 cases of primary HGSOC in our center were used for
THC-PAS staining. After careful examination, 6 cases exhibited
typical VM structures— specifically, basement membrane-lined,
tumor cell-encircled luminal structures containing erythrocytes—
with negative CD31 staining, consistent with the proportion of VM-
positive patients reported in prior ovarian cancer studies
(Figure 7A). Subsequently, 36 patients were categorized into VM-
positive and VM-negative groups based on IHC-PAS results, with
three representative images selected from each group for
presentation. Corresponding fresh frozen tissues were then
subjected to qRT-PCR to detect the expression of VMGs and
VMRPIs. The results revealed statistically significant differences in
the expression of the representative VMGs, including MMP2,
MMP14, SNAI2, ZEB1, and TWIST1, between the VM+ and
VM- groups. Moreover, FPR1, ADHIB, and WNT11, identified
as VMRPIs, also exhibited statistically significant gene expression
differences and demonstrated a relationship with VM that aligned
with the prognostic risk analysis (Figure 7B). These findings further
clarify the association between upregulated FPR1, ADH1B, and
WNTI11 expression and VM structures. The clinical characteristics
of the VM-positive and VM-negative groups, including age, grade,
and stage, are presented in Supplementary Table S4.

Discussion

Clinically, it is well recognized that patients with HGSOC,
which is the most common pathological subtype and accounts for
the majority of both incidence and mortality in OC, and who have
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comparable age, identical pathological types, and similar
differentiation degrees, may exhibit markedly divergent
prognostic outcomes (46). This discrepancy primarily stems from
the failure of traditional clinical prognostic classifications to
incorporate molecular heterogeneity among such patients into
consideration (47, 48). Since its initial discovery in melanoma
research in 1999, VM has been validated across multiple solid
tumors and consistently correlates with inferior prognostic
outcomes (16, 17). Despite the robust prognostic relevance of VM
and incremental elucidation of its mechanistic foundations and
biological implications, no studies to date have exploited this
prognostic determinant to develop molecular subclassification
frameworks or predictive models for HGSOC survival assessment
(49, 50). Therefore, this study aims to stratify ovarian cancer
patients molecularly based on prognosis-related genes associated
with VM, a prognostic factor in ovarian cancer. Furthermore, using
DEGs, we constructed a prognostic model via the Lasso-Cox
algorithm, which suggests associations with immune infiltration
and drug sensitivity. Experimental validation also confirmed that
some VMRPIs are highly expressed in the VM-positive group.

Concerning the molecular underpinnings of VM formation in
ovarian cancer, beyond the well-characterized contributions of key
pathways - including the VE-cadherin/EphA2/MMPs axis, hypoxia-
driven HIF-1A signaling, and EMT - associated regulators - genes
such as ALDH1A1, BCAR3, and CGB5 have been identified as critical
mediators in this process (25, 26, 28). Therefore, based on literature
review, we selected the above-mentioned genes as the VM-related
gene set. Compared with normal fallopian tube epithelium, 11 VMGs
were highly expressed in HGSOC tissues. However, preliminary
experiments indicated that these 11 VMGs could not stratify
ovarian cancer patients by prognosis, suggesting that they might be
involved in the aberrant expression patterns of HGSOC without
exerting significant prognostic impact. Consequently, we performed
prognostic analysis of the VMGs and identified 6 VMGs that
effectively stratified patients into distinct prognostic subgroups.
Interestingly, functional enrichment analysis of the DEGs,
identified between prognostic subgroups, revealed that the involved
pathways and cellular processes were primarily associated with EMT
and ECM remodeling. This is consistent with previous findings that
VM formation in ovarian cancer follows a stepwise biological
process: initially, stemness-acquired tumor cells metabolize the
matrix and connect with vasculature, followed by EMT-mediated
functional acquisition, ultimately leading to the formation of an
interconnected perfusion network (22, 23, 28).

In the evaluation of model efficacy, promising results were
achieved not only in the internal validation dataset but also in the
external validation cohort, indicating strong generalizability of the
model. Moreover, the risk score showed no significant correlation
with established clinical prognostic factors such as age, grade, and
clinical stage, confirming that the prognostic discrimination
capability of the model is independent. Given that multivariate
Cox regression identified the risk score as an independent
prognostic factor, we combined conventional clinical parameters
with this risk scoring system to develop a nomogram for
quantitatively predicting survival probabilities, thereby enhancing
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Prediction of therapy response to drugs. Boxplot of therapeutic response to

* means p < 0.05, and ** means p < 0.01.

the accuracy of clinical prognostic assessment. However, there
remains room for improvement in model performance. This
includes: (1) employing more refined stratification strategies,
though acquiring large-sample real-world data with high
precision remains challenging (51); (2) utilizing more advanced
machine learning or deep learning methods, which may, however,
suffer from poor biological interpretability (52, 53); and (3)
incorporating multi-omics data to construct a comprehensive
prognostic model, albeit at the potential cost of increased
experimental expenses and complexity (54). In conclusion, the
rigorous feature selection via LASSO-Cox regression supports the
feasibility of constructing a prognostic model based on VM-
related stratification.

Following rigorous screening and computational optimization, a
multivariate risk scoring model was ultimately established through
integration of expression profiles and regression coefficients from nine
core genes: FPR1, ADH1B, RARRESI1, TSPANS, FOX]J1, CXCL13,
WNT11, CXCL9, and SST. Accumulating evidence from mechanistic
and clinical studies has implicated these model-incorporated genes in
tumor biological processes, as documented in existing oncology
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drugs in the high- and low-risk groups. In the figures of results,

literature. C-X-C motif chemokine ligand 13 (CXCL13), known as a
fundamental regulator of B-cell recruitment and organization, can
coordinate the development of tertiary lymphoid structures (55). Its
expression level is associated with long-term survival and can enhance
the effectiveness of PD-1 checkpoint blockade in HGSOC (56, 57).
Formyl peptide receptor 1 (FPR1) is not only in proinflammatory and
antibacterial host responses but also involved in cell chemotaxis,
proliferation, and tumor progression (58-60). Activated FPR may
contribute to these processes and has been identified as a potential
biomarker and treatment target for aggressive epithelial ovarian cancer
(EOC) (61, 62). Tetraspanin 8 (TSPANS) is a member of the
tetraspanin family, implicated in various human cancers through its
role in regulating intercellular interactions and cell motility (63, 64). It
is a potential therapeutic target for the inhibition of invasion and
metastasis in OCs (65-67). Forkhead box J1 (FOXJ1) is a 3-exon
transcription factor and a master regulator of motile ciliogenesis (68—
71). It is expressed in various tissues such as the respiratory tract, brain,
and reproductive tract, where it plays a pivotal role in regulating
transcriptional programs governing motile cilia assembly. This activity
showecases its diverse implications for cancer biology and prognosis.
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Experimental validation of VM genes and VMRPIs. (A) Vascular structures in HGSOC. The black arrows denote CD31+/PAS+ endothelial angiogenic
structures, whereas the red arrows denote CD31-/PAS+ vasculogenic mimicry structures. (B) gRT—PCR was performed to validate the differences in
VM cluster genes and VMRPIs between the two groups (VM+, n=6; VM-, n=30). The two groups were classified based on IHC-PAS staining results:
samples with typical VM structures observed under microscopy were designated as the VM+ group, while those without obvious VM structures were
classified as the VM- group. The data are presented as the mean + SD. The statistical study was conducted using the Wilcoxon test. In the figures of
results, nothing means not significant, * means p < 0.05, ** means p < 0.01, and *** means p < 0.001.

High FOXJ1 expression is correlated with better tumor differentiation
and favorable prognosis in various cancers such as gastric cancer,
ependymomas, choroid plexus tumors, and ovarian cancer (72-74).
Alcohol dehydrogenase class I beta polypeptide (ADHIB) is pivotal for
alcohol metabolism and is implicated in tumorigenesis, particularly, in
esophageal squamous cell and colorectal cancers (75-77). High FABP4
and ADHI1B expressions in high-grade serous ovarian cancer suggest
an increased risk of residual disease, possibly guiding neoadjuvant
chemotherapy candidacy (78). Wnt family member 11 (WNT11) is a
noncanonical Wnt protein that regulates cell movement and organ
formation through specific receptors and signaling pathways (79-84).
It plays a dual role by promoting migration in certain cancers including
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breast cancer, colon cancer, and leukemia, while suppressing cell
migration in hepatocellular carcinoma (85, 86). Additionally,
WNT11 influences cell adhesion and migration by modulating the
expression of E-cadherin and integrin subunits (85, 87). Retinoic acid
receptor responder 1 (RARRESI, also known as tazarotene-induced
gene 1, TIG1) is upregulated by tazarotene in skin culture and
resembles CD38 and is frequently silenced in cancers due to
promoter hypermethylation. It shows potential as a tumor
suppressor in prostate and endometrial cancers (88-90). Notably,
RARRESI plays a crucial role in promoting tumor growth and
invasion in IBC through Axl, indicating its promise as a therapeutic
target for IBC patients (91). C-X-C motif chemokine ligand 9 (CXCL9),
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in conjunction with CXCL10 and CXCL11, boosts T-cell infiltration in
OC, and is associated with improved survival rates (92). Research
indicates that CXCL9 and its chemokine counterparts are indicators of
an inflammation-rich subtype of ovarian cancer (93, 94). Recent
evidence highlighted the predictive value of CXCL9 for positive
outcomes and favorable responses to anti-PD-1 therapy in cancer
patients (95). Somatostatin (SST) is cyclic peptide that

10.3389/fonc.2025.1575694

inhibits hormone secretion and suppresses immune functions
(96-99). Its signaling pathway also regulates tumor characteristics
such as angiogenesis, cell migration, and growth factors, promoting
tumor neovascularization and cell growth (96, 100-102). For these
risk genes, there is an urgent need for further mechanistic
investigations to elucidate their role in mediating VM during
ovarian carcinogenesis.

Identification of DEGs based on VM-related subgroups in serous ovarian cancer
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Immunological evaluation results indicated that risk score
stratification correlated with the distribution of specific immune
cell subsets and ICGs expression, while immune-stromal scoring
revealed elevated scores in the high-risk group. This phenomenon
may be attributed to potential increases in VM structures within
high-risk populations. Under such circumstances, alterations in the
tumor microenvironment could trigger immune cell redistribution,
elevated concentrations of immune factors, and enhanced infiltration
status. However, in high-risk group patients, the reduction of tumor-
killing immune cells along with suppression of specific immune
checkpoints ultimately results in a persistently suboptimal immune
status. Immunological subtypes are also closely associated with
prognosis and can serve as predictors of drug responsiveness (103).
For instance, recent studies have demonstrated that subtypes defined
based on responsiveness to immune checkpoint inhibitors can be
used to construct prognostic models with excellent performance
(104). Therefore, we also predicted drug responsiveness in patients
with different risk profiles. The results demonstrated that patients in
the high-risk prognostic score group may exhibit suboptimal
therapeutic responses to histone deacetylase 7/8 inhibitors
(Apicidin), mTOR inhibitor-1 (AZD8055), bardoxolone methyl,
histone deacetylase 1/2 inhibitors (BRD-K61166597), curcumin,
doxorubicin, mTOR inhibitor-2 (KU-0063794), nuclear export
inhibitors (LeptomycinB), lovastatin, small-molecule threonine
endopeptidase inhibitors (NSC48300), sirolimus, and temsirolimus,
while showing enhanced responsiveness to Compound 1B.
Compound 1B, initially characterized as a dynein-targeting agent,
was later identified as a member of the phosphodiesterase inhibitor
family (105). While it exhibits selective cytotoxicity in cancer cells by
promoting PDE3A-SLFN12 interaction and inducing cell death—
particularly in KRAS-mutant cancers—its role in ovarian cancer
remains poorly studied (106, 107). Thus, model-based drug
sensitivity prediction is essential not only to guide the selection of
conventional chemotherapeutics but also to highlight promising
agents warranting further investigation.

To further validate the relationship between VM structure and
VMRPI, we conducted experiments using samples from our center.
Results from THC-PAS staining on paraffin-embedded sections
showed that VM structures were present in 6 out of 36 samples,
which is consistent with previously reported rates of VM occurrence
in HGSOC patients (50). qRT-PCR analysis of matched frozen
samples revealed that VM-associated genes—MMP2, MMP14,
SNAI2, ZEB1, and TWIST1—exhibited significant expression
differences between VM-positive and VM-negative groups.
Furthermore, VMRPI markers including FPR1, ADHIB, and
WNTI11 showed elevated expression in VM-positive patients
compared to VM-negative ones. These findings confirm the
consistency between bioinformatic predictions and pathological
observations, thereby reinforcing the association between VM and
VMRPI and suggesting their potential role in HGSOC pathogenesis
as well as highlighting avenues for further mechanistic investigation.

However, this investigation has limitations: First, the observation of
higher immune scores in high-risk subgroups and specific patterns of
immune checkpoint necessitate further mechanistic exploration to
elucidate the underlying causes and their relationship with poor
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prognosis. Second, multi-center retrospective studies with larger
sample sizes are required to integrate the risk scoring model into
existing clinical staging systems or molecular classification-based
prognostic frameworks, complemented by prospective cohort studies
to validate its clinical utility in practical settings.

Conclusion

This study established a prognostic model and nomogram
incorporating VM-related prognostic index, including FPRI,
ADHIB, RARRESI, TSPANS, FOX]J1, CXCL13, WNT11, CXCL9,
and SST, which demonstrated favorable performance in prognostic
evaluation and risk stratification of HGSOC patients. Furthermore,
our findings revealed that risk stratification exhibited correlations
with the immune microenvironment and drug sensitivity, thereby
providing additional clinical applicability and research implications.
Finally, experimental validation in clinical specimens confirmed the
presence of VM structures and intergroup differential expression of
associated genes (Figure 8).
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