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Background: Colorectal cancer (CRC) is a highly frequent cancer worldwide, and 
early detection and risk stratification playing a critical role in reducing both 
incidence and mortality. we aimed to develop and validate a machine learning 
(ML)  model  using  clinical  data  to  improve  CRC  identification  and  
prognostic evaluation. 

Methods: We analyzed multicenter datasets comprising 676 CRC patients and 
410 controls from Guigang City People’s Hospital (2020-2024) for model 
training/internal validation, with 463 patients from Laibin City People’s Hospital 
for external validation. Seven ML algorithms were systematically compared, with 
Light Gradient Boosting Machine (LightGBM) ultimately selected as the optimal 
framework. Model performance was rigorously assessed through area under the 
receiver operating characteristic (AUROC) analysis, calibration curves, Brier 
scores, and decision curve analysis. SHAP (SHapley Additive exPlanations) 
methodology was employed for feature interpretation. 

Results: The LightGBM model demonstrated exceptional discrimination with 
AUROCs of 0.9931 (95% CI: 0.9883-0.998) in the training cohort and 0.9429 
(95% CI: 0.9176-0.9682) in external validation. Calibration curves revealed strong 
prediction-actual outcome concordance (Brier score=0.139). SHAP analysis 
identified 13 key predictors, with age (mean SHAP value=0.216) and CA19-9 
(mean SHAP value=0.198) as dominant contributors. Other significant variables 
included hematological parameters (WBC, RBC, HGB, PLT), biochemical markers 
(ALT, TP, ALB, UREA, uric acid), and gender. A clinically implementable web-based 
risk calculator was successfully developed for real-time probability estimation. 

Conclusions: Our LightGBM-based model achieves high predictive accuracy 
while maintaining clinical interpretability, effectively bridging the gap between 
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complex ML systems and practical clinical decision-making. The identified 
biomarker panel provides biological insights into CRC pathogenesis. This tool 
shows significant potential for optimizing early diagnosis and personalized risk 
assessment in CRC management. 
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Introduction 

Colorectal cancer (CRC) is the third most common cancer 
worldwide, with the third highest morbidity and second highest 
mortality rate of all malignant tumors (1, 2). Despite its high 
mortality rate, early detection of CRC markedly enhances patient 
prognosis, with the five-year survival rate increasing from less than 
15% in advanced stages to over 90% in early-stage disease. 
Consequently, the improvement of early screening rates for CRC 
is extremely urgent (3, 4). However, all the existing screening 
modalities have several disadvantages. Colonoscopy, though 
considered the gold standard for CRC screening, is highly 
invasive and has poor patient compliance, requiring considerable 
medical resources, which greatly limits its wide use (5, 6). Serum 
biomarkers, including carcinoembryonic antigen (CEA) and 
carbohydrate antigen 19-9(CA19-9), are convenient to test; 
however, their sensitivity and specificity are suboptimal, and 
positivity rates have been less than 30% in early-stage CRC, thus 
not being good enough for clinical screening (7, 8). In view of these 
limitations, there is an emerging trend to towards leveraging routine 
clinical data combined with machine learning(ML) for developing 
affordable and non-invasive CRC risk prediction models. 

The core concentration toward deep learning (DL) and ML 
within artificial intelligence (AI) has very significantly enhanced the 
tumor prediction to catch the most minute clinical pattern. While 
the predictive accuracy and clinical applications of such AI-driven 
models vary significantly, notable advancements have been 
observed in recent years. For instance, recent studies have 
developed real-time DL models using white-light and image-

enhanced endoscopy, demonstrating high accuracy in assessing 
tumor invasion depth (9).Moreover, AI algorithms have been 
used to predict lymph node and liver metastases, thus facilitating 
risk stratification and prognosis (10). Systematic reviews highlight 
the role of AI in screening, diagnosis, and treatment, thus 
supporting personalized care approaches in CRC (11). In 
addition, large cohort studies, such as the China Kadoorie 
Biobank, have provided valid risk models that incorporate 
demographic and lifestyle factors for CRC prediction. This 
development underlines the ever-growing participation of AI in 
CRC management by reinforcing the assessment of risk and 
treatment strategies (12, 13). 
02 
More novel approaches have also been developed, including 
CRC prediction models based on blood routine and biochemical 
indicators, providing a new pathway for early CRC screening with 
good sensitivity and accuracy (14). The integration of proteomic 
features with polygenic and non-genetic factors also greatly 
improved the accuracy of risk prediction and thus enabled 
personalized screening (15, 16). Finally, AI DL technology has 
also been applied in predicting the postoperative recurrence of 
CRC by analyzing the tumor microenvironment and immune cell 
densities, which provides a useful supplementary tool for clinical 
treatment decisions (17, 18). Despite these advancements, the 
landscape of CRC AI prediction models remains diverse, with 
considerable variations in predictive accuracy and clinical 
applicability. Many existing models are based on conventional 
statistical approaches and often lack rigorous external validation. 
Crucially, there is a distinct scarcity of research focusing on 
interpretable ML models in CRC prediction that can provide 
transparent insights into their decision-making processes. This 
interpretability is vital for clinical adoption, as it builds trust and 
enables clinicians to understand the rationale behind a prediction. 

In this study, we address these gaps by developing a machine 
learning-based prediction model that systematically compares seven 
distinct algorithms to identify high-risk patients during follow-up care. 
We aimed to comprehensively evaluate algorithm performance and 
validate  the most clinically reliable model. Unlike many previous

studies, our approach emphasizes bridging the gap between complex 
computational analysis and practical bedside application. To achieve 
this, we developed an interactive web calculator that generates 
individualized risk profiles, enabling dynamic clinical decision-
making at the point of care. This methodology enhances precision 
oncology by aligning prognostic tools with routine clinical practice, 
thereby holding significant potential for improving surveillance 
efficiency and long-term outcomes for CRC survivors. 
Methods 

Data source and study population 

Research data was sourced from the Guigang City People’s 
Hospital, encompassing clinical information of patients who 
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underwent treatment for CRC between 2020 and 2024. Rigorous de­
identification procedures were implemented to safeguard the 
patients’ personal and sensitive information, thereby ensuring 
their privacy without the need for additional informed consent. 
Conducting the study in accordance with the principles outlined in 
the Declaration of Helsinki, approval was granted by the Ethics 
Committee of Guigang City People’s Hospital (approval number: 
E2023-001-23). 

Adopting a retrospective design, this study adhered to the 
Transparent Reporting of a Multivariate Prediction Model for 
Individual Prognosis or Diagnosis (TRIPOD) statement to ensure 
transparency and reproducibility. For model construction, training 
(n = 651) and test (n = 435) cohorts were assembled from CRC 
patients recorded in the database. To validate the model externally, 
a separate cohort was selected from 463 patients treated at Laibin 
City People’s Hospital. Specifically, 168 CRC patients who received 
treatment between January 2023 and November 2024 and 295 
control individuals were chosen for this validation cohort. 
Inclusion and exclusion criteria 

Inclusion criteria were: 1) Confirmed CRC diagnosis per 
histopathology; 2) Availability of complete laboratory indices 
required for model development. Exclusion criteria included non-
CRC comorbidities or recurrent hospital admissions (only data 
from the first admission were analyzed to prevent redundancy). 
Variable extraction 

Data were systematically extracted from the electronic medical 
records of Guigang City People’s Hospital and Laibin City People’s 
Hospital. The variables included demographic information (age and 
sex), and a range of laboratory indices, including C-reactive protein, 
white blood cells (WBC), lymphocyte count (LC), neutrophil count, 
red blood cells (RBC), hemoglobin (HGB) levels, platelet count 
(PLT), alanine aminotransferase (ALT), aspartate aminotransferase, 
alkaline phosphatase, total protein (TP), albumin (ALB), globulin, 
creatinine (CRE), urea (UREA), and uric acid (UA), Additionally, 
tumor markers such as CEA and CA19–9 were included. The 
manual extraction process was employed to ensure the accuracy 
of the data. 
 

Sample size 

In the realm of research, especially pertaining to clinical 
prediction models, there is no universally accepted standard for 
determining the appropriate sample size. Many models within this 
domain adopt the principle of 10 events per variable as a benchmark 
for assessing effective sample size. This principle stipulates a 
minimal ratio of 10 occurrences of the study event to the number 
of variables included. During our initial evaluation, we established 
Frontiers in Oncology 03 
that the number of features to be incorporated into our CRC risk 
prediction model would not surpass 13. Recognizing the 
importance of sufficient data for developing a reliable ML model, 
we deemed it essential to include at least 140 CRC patients. Our 
study leveraged a training cohort dataset comprising 651 CRC 
patients, which comfortably meets the threshold necessary for 
constructing a robust model. 
Quantification and statistical analysis 

The data was processed and analyzed using R 4.4.1. Significance 
was set at p < 0.05. Missing data was handled using multiple 
imputation, excluding variables with >20% missing values. 
Normally distributed data was summarized with mean ± standard 
deviation and analyzed using the t-test. Non-normal data was 
summarized with median and interquartile range and analyzed 
using the Mann–Whitney U test. A heatmap showed variable 
correlations. Categorical variables were presented as frequencies/ 
percentages and analyzed using the chi-square or Fisher’s test. 

The data preprocessing pipeline was implemented using the 
recipes package in R, applying steps to remove variables with >20% 
missing values, eliminate zero-variance and near-zero-variance 
predictors, apply one-hot encoding to categorical variables, and 
address multicollinearity. The preprocessing workflow was 
developed on training data and applied consistently to test and 
validation datasets to prevent data leakage. 

For feature selection, LASSO regression with cross-validation 
was implemented using the glmnet package. To determine the 
optimal regularization parameter, 10-fold cross-validation was 
employed, optimizing for area under the ROC curve. Lambda.1se 
(the value giving the most regularized model with error within one 
standard error of the minimum) was selected rather than 
lambda.min to prioritize model parsimony and reduce 
overfitting risk. 

For hyperparameter tuning, random grid search with 5-fold 
cross-validation was used across seven machine learning 
algorithms: Decision Tree (DT), K-Nearest Neighbor (KNN), 
Light Gradient Boosting Machine (LightGBM), Random Forest 
(RF), Extreme Gradient Boosting (XGBoost), Support Vector 
Machine (SVM), and Multi-Layer Perceptron (MLP). For each 
model, 20 random hyperparameter combinations were generated 
within  defined  search  spaces.  The  LightGBM  model ’s 
hyperparameters included tree depth (1-3), trees (100-500), and 
learning rate (10-3-10-1); XGBoost’s included  tree  depth  (1-3),
learning rate (10-3-10-1), and sample size (0.8-1.0); Random 
Forest’s included trees (200-500) and minimum node size (20­
50); Decision Tree’s included tree depth (3-7) and cost complexity 
(10-6-10-3); KNN’s included neighbors (3-11); SVM’s included cost 
(10-5-105) and sigma (10-4-10-1); and MLP’s included hidden units 
(15-24) and penalty (10-3-1). Configurations were selected using the 
one-standard-error rule to balance performance and complexity. 

The models were evaluated on an external dataset using ROC 
curves, AUROC, calibration curves, and decision curve analysis. 
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The best-performing model was interpreted using SHAP (SHapley 
Additive exPlanations). Finally, the LightGBM model was used to 
create a web-based CRC risk prediction calculator. 
Results 

Patient characteristics 

Our baseline analysis encompassed a total of 676 CRC patients 
and 410 controls, randomly selected from the study population. 
Table 1 presents their baseline characteristics. The median age 
across the entire cohort was 56.0 (range, 16.0–93.0) years. Gender 
distribution revealed that females constituted 29.7% (323 
individuals), while males made up the majority at 70.3% (763 
Frontiers in Oncology 04
individuals). Notably, CRC patients tended to be older compared 
to the control group, with a median age of 63.5 years versus 50.0 
years for controls. This age difference was statistically significant (p 
< 0.001), highlighting the increased prevalence of CRC in 
older populations. 

In terms of biomarkers, CRC patients exhibited significantly 
altered levels compared to controls. WBC, LC, RBC, HGB, PLT, 
ALT, TP, ALB, UREA, CRE, and UA all showed notable differences 
between the two groups. For instance, the median WBC count was 
higher in CRC patients at 7.41 × 109/L compared to 6.05 × 109/L in 
controls (p < 0.001). Similarly, RBC count was lower in CRC 
patients (4.22 × 1012/L) than in controls (5.07 × 1012/L), with a 
p-value of <0.001. These biomarker discrepancies underscore the 
physiological impact of CRC on various blood components and 
organ functions. 
TABLE 1 Comparison of baseline characteristics between Colorectal Cancer and Normal groups. 

Clinical factors 
Overall Normal Colorectal Cancer 

P.value 
(N=1086) (N=410) (N=676) 

age (year) <0.001 

Median (Min, Max) 56.0 (16.0, 93.0) 50.0 (30.0, 59.0) 63.5 (16.0, 93.0) 

CEA <0.001 

Median (Min, Max) 3.19 (0.210, 33400) 2.10 (0.400, 14.6) 4.35 (0.210, 33400) 

CA199 <0.001 

Median (Min, Max) 10.6 (0.600, 8740) 7.50 (0.600, 70.3) 12.7 (0.600, 8740) 

WBC <0.001 

Median (Min, Max) 6.70 (1.20, 29.7) 6.05 (2.60, 11.7) 7.41 (1.20, 29.7) 

LYMPH <0.001 

Median (Min, Max) 1.59 (0.140, 4.90) 2.07 (0.890, 4.90) 1.30 (0.140, 4.24) 

RBC <0.001 

Median (Min, Max) 4.63 (1.65, 7.53) 5.07 (3.14, 7.53) 4.22 (1.65, 6.97) 

HGB <0.001 

Median (Min, Max) 130 (31.0, 177) 145 (94.0, 177) 116 (31.0, 167) 

PLT <0.001 

Median (Min, Max) 266 (53.0, 1170) 255 (98.0, 640) 275 (53.0, 1170) 

ALT <0.001 

Median (Min, Max) 15.0 (1.00, 192) 21.0 (2.00, 128) 12.0 (1.00, 192) 

AST <0.001 

Median (Min, Max) 20.0 (8.00, 246) 22.0 (11.0, 99.0) 19.0 (8.00, 246) 

TP <0.001 

Median (Min, Max) 70.0 (36.7, 89.3) 74.7 (62.5, 89.0) 66.2 (36.7, 89.3) 

ALB <0.001 

Median (Min, Max) 42.1 (19.0, 52.2) 45.6 (38.0, 52.2) 38.7 (19.0, 51.9) 

GLB <0.001 

(Continued) 
 
frontiersin.org 

https://doi.org/10.3389/fonc.2025.1575844
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Du et al. 10.3389/fonc.2025.1575844 

 
Regarding tumor markers, CEA and CA19–9 levels were 
significantly elevated in CRC patients. The median CA19–9 level 
was 12.7 U/mL in CRC patients, compared to 7.50 U/mL in controls 
(p < 0.001). This elevation in CA19–9 is indicative of its potential as 
a diagnostic and prognostic biomarker for CRC, as higher levels 
often correlate with tumor presence and progression. Figure 1 
provides an overview of the screening and study process. 
 

Correlation between the study features 

To elucidate the relationships among the study features, we 
generated a heatmap of the feature correlation matrix using the 
corrplot package in R. The outcomes are displayed in 
Supplementary Figure S1, and the analysis revealed several 
significant correlations. Notably, there was a negative correlation 
between age and TP levels, indicating that as age increases, TP levels 
tend to decrease. This finding suggests a potential age-related 
decline in protein synthesis or an increase in protein degradation, 
which could have implications for the overall health and nutritional 
status of older individuals. Other notable correlations were also 
identified, providing insights into the interplay of various factors in 
CRC risk and progression. 
Feature selection 

Employing the glmnet package in R, we conducted a LASSO 
regression cross-validation analysis to identify key predictors for 
CRC risk. With the dependent variable set as CRC risk prediction, 
we considered 19 features of the study population as independent 
variables. The results, illustrated in Figure 2, showed that at the 
lambda.1se tuning parameter value of g = 0.018123, 13 distinct 
features were selected: age, CA19-9, WBC, LC, RBC, HGB, PLT, 
Frontiers in Oncology 05 
ALT,  TP, ALB, UREA,  UA,  and  gender. These  features  were
incorporated into the prediction model, taking into account their 
clinical relevance and expert opinions. This meticulous feature 
selection process was crucial for refining the model to concentrate 
on the most influential predictors of CRC risk, thereby enhancing 
its predictive accuracy and clinical utility. 
Models’ construction and validation 

The 13 filtered features were subsequently integrated into a 
variety of ML models, including LASSO-Logistic Regression 
(LASSO-LR), DT, KNN, LightGBM, RF, XGBoost, SVM, and 
MLP. To identify the optimal model, parameter tuning was 
conducted using 5-fold cross-validation, and multiple rounds of 
model training were executed. The optimal hyperparameter 
configurations for each model are provided in Supplementary 
Table S1 in the Supplementary Materials. The  detailed
performance metrics for these seven ML models in both the 
training and external validation cohorts are presented in Figure 3, 
Figure 4 and Table 2, respectively. In the training cohort, all models 
demonstrated an AUROC exceeding 0.75. Notably, the KNN model 
achieved the highest AUROC, reaching 1, whereas the DT model 
exhibited the lowest AUROC of 0.9523, presented in Figures 3 and 
Supplementary Figure S2. 

Upon assessing the external validation cohort, the LightGBM 
model displayed the highest AUROC of 0.9429. The remaining six 
ML models, ranked in descending order of AUROC, were as follows: 
XGBoost model (0.9274), RF model (0.9273), MLP model (0.8988), 
SVM model (0.8738), KNN model (0.8475), and DT model (0.8563). 
Pairwise statistical comparisons of AUROC values between different 
models using the DeLong test revealed that LightGBM significantly 
outperformed all other models (p < 0.05, Supplementary Table S2). 
The calibration curves for the various models, presented in Figure 4, 
TABLE 1 Continued 

Clinical factors 
Overall Normal Colorectal Cancer 

P.value 
(N=1086) (N=410) (N=676) 

Median (Min, Max) 27.7 (13.7, 57.2) 29.2 (20.9, 41.3) 26.3 (13.7, 57.2) 

A/G <0.001 

Median (Min, Max) 1.50 (0.500, 2.59) 1.60 (1.10, 2.10) 1.40 (0.500, 2.59) 

UREA <0.001 

Median (Min, Max) 4.30 (0.940, 18.6) 4.53 (2.02, 17.8) 4.10 (0.940, 18.6) 

CRE <0.001 

Median (Min, Max) 79.5 (30.0, 791) 85.0 (46.0, 471) 73.0 (30.0, 791) 

UA <0.001 

Median (Min, Max) 336 (44.0, 840) 386 (124, 749) 293 (44.0, 840) 

gender <0.001 

female 323 (29.7%) 34 (8.3%) 289 (42.8%) 

male 763 (70.3%) 376 (91.7%) 387 (57.2%) 
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FIGURE 2
 

Selection of clinical features based on LASSO regression with cross-validation (A) LASSO coefficient profiles of the 19 texture features. (B) Tuning
 
parameter (l) selection using LASSO penalized LR with 10-fold cross-validation. LASSO, Least Absolute Shrinkage and Selection Operator; LR,
 
Logistic Regression.
 
FIGURE 1 

Research process for screening CRC patients CRC, colorectal cancer; LASSO-LR, Least Absolute Shrinkage and Selection Operator-Logistic 
Regression; DT, Decision Tree; KNN, K-Nearest Neighbor; LightGBM, Light Gradient Boosting Machine; RF, Random Forest; XGBoost, Extreme 
Gradient Boosting; SVM, Support Vector Machine; MLP, Multilayer Perceptron; SHAP, Shapley Additive Explanations. 
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all demonstrated satisfactory calibration. Table 3 presents the Brier 
scores for all models across training, testing, and external validation 
cohorts. Specifically, the LightGBM model exhibited marginally 
superior calibration compared to the other seven models, with a 
Brier score of 0.139. 

Further analysis using decision curve analysis revealed that all 
seven models, except for the DT and KNN models, which showed 
poor performance, possessed clinical utility. These findings suggest 
that the AI prediction models, particularly the LightGBM and 
XGBoost models, have the potential to be valuable tools in the 
prediction of CRC risk. 
Best model building and evaluation 

In the external validation cohort for CRC, the LightGBM model 
emerged as the superior choice, demonstrating remarkable 
Frontiers in Oncology 07 
discrimination and calibration capabilities when benchmarked 
against other models. Specifically, it exhibited the highest AUROC 
of 0.9429 and a more favorable (lower) Brier score. To gain deeper 
insights into the model’s workings, we utilized the SHAP method, 
which allowed us to elucidate and visualize the contributions of 
various features to the model’s predictions. In addition, we developed 
an online web-based calculator to facilitate prospective predictions, 
enhancing the practical utility of our model in a clinical setting. 
Model interpretations 

The SHAP method presents a holistic framework for 
interpreting the predictions made by our AI model, ensuring the 
provision of consistent and locally precise attribute values, termed 
SHAP values, for each feature integrated within the predictive 
model. Higher SHAP values signify an increased likelihood of 
FIGURE 4 

Training (A), test (B), and validation (C) calibration curves of seven ML models (DT, KNN, LightGBM, RF, XGBoost, SVM, and MLP) ML, machine 
learning; DT, Decision Tree; KNN, K-Nearest Neighbor; LightGBM, Light Gradient Boosting Machine; RF, Random Forest; XGBoost, Extreme Gradient 
Boosting; SVM, Support Vector Machine; MLP, Multilayer Perceptron. 
FIGURE 3 

ROC curves of the test and validation sets of seven ML models (A) ROC curves of the train set. (B) ROC curves of the test set. (C) ROC curves of the 
validation sets. ROC, receiver operating characteristic; ML, machine learning. 
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CRC. The importance of predictor variables in predicting CRC can 
be comprehended as the cumulative effect of each variable’s 
attribution on the overall risk associated with the outcome. 

In our study, 13 features were employed to construct the 
LightGBM model. Figure 5 and Supplementary Figure S3 visually 
rank these features based on their mean absolute SHAP values. 
The LightGBM model ranks the features according to their 
importance, including age, CA19-9, WBC, LC, RBC, HGB, PLT, 
ALT, TP, ALB, UREA, UA, and gender, indicating that an 
increase in these features’ values is associated with a higher risk 
of CRC. 
Evaluation of the model 

In our assessment of the AI prediction model for CRC, the 
LightGBM algorithm exhibited robust discriminatory power within 
the training cohort, achieving an AUROC of 0.9931, with a 95% 
confidence interval (CI) ranging from 0.9883–0.998. Consistently, 
Figure 3 showed that the model maintained its discriminatory 
ability in the external validation cohort, yielding an AUROC of 
0.9429 (95% CI: 0.9176–0.9682). 
Application of the model 

To enhance the convenience and effectiveness of the 
constructed model, we developed a web-based tool (accessible at: 
https://joezhicool.shinyapps.io/LightGBM/) that streamlines the 
process of utilizing the model for clinical decision-making. For 
example, consider a hypothetical 62-year-old individual with the 
following laboratory values: CA19-9 = 16.19 U/mL, TP = 58.8 g/L, 
ALB = 28.1 g/L, LC = 1.15 × 10^9/L, and HGB = 120 g/L. By 
inputting these values into the web-based calculator, the predicted 
probability of CRC for this individual is calculated as 0.9994, as 
shown in Figure 6. This example demonstrates the practical 
application of our model in assessing CRC risk based on readily 
available clinical data. 
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TABLE 3 The Brier scores for all models across training, testing, and 
external validation cohorts. 

Model Training 
cohort 

Testing 
cohort 

External valida­
tion cohort 

xgboost 0.050 0.050 0.145 

KNN 0.010 0.059 0.192 

svm 0.056 0.045 0.203 

lightgbm 0.031 0.041 0.139 

Decision 
Tree 

0.067 0.074 0.269 

Random 
Forest 

0.042 0.053 0.199 

mlp 0.128 0.122 0.194 
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Discussion 

In this study, we explored the potential of ML algorithms in 
developing early warning models for CRC risk prediction using 
clinical data sourced from Guigang City People’s Hospital. Seven 
distinct ML algorithms were employed to establish predictive 
models aimed at identifying patients with a heightened likelihood 
of developing CRC. Following a rigorous series of training and 
validation procedures, the LightGBM model emerged as the most 
optimal choice for visualizing clinical risk predictions. This model 
demonstrated remarkable predictive capabilities in both the 
Frontiers in Oncology 09
training and external validation cohorts, showcasing good 
discrimination, calibration, and clinical applicability. To facilitate 
the practical application of the selected model, we have also 
developed a web-based calculator that can assist doctors in 
making informed decisions during clinical consultations. 

AI-based methods for CRC prediction have a number of 
advantages over traditional statistical methods. Although a 
number of studies tried to develop clinical risk prediction models 
for CRC, most of them were based on conventional statistical 
approaches and lack external validation (3, 19). There is a scarcity 
of research based on interpretable ML models in CRC prediction. 
FIGURE 5
 

SHAP diagram of the LightGBM model (A) SHAP value ranking of the variables in the model. (B) SHAP honeycomb diagram of the LightGBM model.
 
(C) SHAP value change trend diagram of continuous variables in the LightGBM model. (D) Box plot of SHAP values for categorical variables in the 
LightGBM model. SHAP, Shapley Additive Explanations; LightGBM, Light Gradient Boosting Machine. 
 frontiersin.org 

https://doi.org/10.3389/fonc.2025.1575844
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Du et al. 10.3389/fonc.2025.1575844 
Our study, therefore, focused on the identification of CRC-related 
factors and the development of a model that could provide 
substantial relationships of CRC risk with age, CA19-9, WBC, LC, 
RBC, HGB, PLT, ALT, TP, ALB, UREA, UA, and gender. 

Among these variables, age has been consistently identified as 
an independent risk factor for CRC mortality (20). A 
comprehensive meta-analysis encompassing many studies 
demonstrated that older patients face a significantly increased 
risk of CRC-related death. Similarly, previous research has 
established that individuals aged 45–50 years are at particular 
risk for CRC (21, 22). Regarding LC, elevated levels have been 
linked to CRC progression and poor prognosis, as they may 
indicate systemic inflammation or an ongoing immune response 
to the tumor (23). 

In addition to the aforementioned factors, CA19–9 and TP 
levels have also been implicated in CRC risk and prognosis. CA19-9, 
a tumor-associated antigen, has shown promise as a diagnostic and 
prognostic marker for CRC, although its specificity and sensitivity 
may vary depending on the stage and location of the tumor (24). 
Frontiers in Oncology 10 
Elevated CA19–9 levels have been associated with advanced CRC 
stages and poor survival outcomes (25, 26). Conversely, TP, a 
marker of nutritional status and protein synthesis, has been found 
to decrease in CRC patients, particularly those with advanced 
disease or cachexia. Low TP levels may reflect malnutrition and 
impaired immune function, both of which can adversely affect CRC 
prognosis (27, 28). 

The LightGBM model developed in our study, using LASSO 
regression cross-validation, exhibited significant predictive power 
in determining the likelihood of CRC among patients. This model 
holds potential for clinical implementation, as it can aid healthcare 
providers in enhancing their understanding of patient prognosis 
and facilitate the tailoring of treatment and care plans for CRC 
patients (28–30). However, further validation of the model’s utility 
in larger, multicenter studies is necessary to confirm its robustness 
and generalizability. 

Our study has several limitations. Firstly, the reliance on region-
specific and single-institution datasets restricts generalizability, as 
findings may not fully translate to broader populations or diverse 
FIGURE 6 

Case of website usage. 
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healthcare systems, particularly given insufficient external 
validation across varied demographic and clinical contexts. 
Secondly, data quality issues - including missing values, recording 
inconsistencies, and potential measurement errors - introduce 
uncertainties that could compromise model robustness and 
reproducibility. Thirdly, the variable selection framework focuses 
predominantly on conventional clinical parameters while 
underrepresenting emerging biomarkers and genetic predictors, 
potentially  overlooking  critical  biological  dimensions.  
Methodologically, the analysis faces inherent trade-offs between 
employing classical statistical approaches that struggle with high-
dimensional data versus machine learning techniques whose “black 
box” nature limits clinical interpretability. These constraints 
collectively suggest that while the findings provide meaningful 
insights, caution should be exercised in extrapolating results 
beyond the study’s specific parameters. 
Conclusions 

In conclusion, our study contributes to the evolving field of 
CRC risk prediction by leveraging clinical data and advanced ML 
techniques. The LightGBM model, coupled with the web-based 
calculator, represents a promising tool for early detection and risk 
stratification of CRC patients. Future research should focus on 
refining and validating this model in diverse patient populations to 
improve CRC outcomes. 
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