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Background: With the rapid advances in artificial intelligence—particularly 
convolutional neural networks—researchers now exploit CT, PET/CT and other 
imaging modalities to predict epidermal growth factor receptor (EGFR) mutation 
status in non-small-cell lung cancer (NSCLC) non-invasively, rapidly and 
repeatably. End-to-end deep-learning models simultaneously perform feature 
extraction and classification, capturing not only traditional radiomic signatures 
such as tumour density and texture but also peri-tumoural micro-environmental 
cues, thereby offering a higher theoretical performance ceiling than hand-
crafted radiomics coupled with classical machine learning. Nevertheless, the 
need for large, well-annotated datasets, the domain shifts introduced by 
heterogeneous scanning protocols and preprocessing pipelines, and the 
“black-box” nature of neural networks all hinder clinical adoption. To address 
fragmented evidence and scarce external validation, we conducted a systematic 
review to appraise the true performance of deep-learning and radiomics models 
for EGFR prediction and to identify barriers to clinical translation, thereby 
establishing a baseline for forthcoming multicentre prospective studies. 

Methods: Following PRISMA 2020, we searched PubMed, Web of Science and 
IEEE Xplore for studies published between 2018 and 2024. Fifty-nine original 
articles met the inclusion criteria. QUADAS-2 was applied to the eight studies that 
developed models using real-world clinical data, and details of external validation 
strategies and performance metrics were extracted systematically. 

Results: The pooled internal area under the curve (AUC) was 0.78 for radiomics– 
machine-learning models and 0.84 for deep-learning models. Only 17 studies 
(29%) reported independent external validation, where the mean AUC fell to 0.77, 
indicating a marked domain-shift effect. QUADAS-2 showed that 31% of studies 
had high risk of bias in at least one domain, most frequently in Index Test and 
Patient Selection. 
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Conclusion: Although deep-learning models achieved the best internal 
performance, their reliance on single-centre data, the paucity of external 
validation and limited code availability preclude their use as stand-alone 
clinical decision tools. Future work should involve multicentre prospective 
designs, federated learning, decision-curve analysis and open sharing of 
models and data to verify generalisability and facilitate clinical integration. 
KEYWORDS 
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1 Introduction 

Non-small cell lung cancer (NSCLC), the most prevalent 
subtype of lung cancer, accounts for approximately 85% of all 
lung cancer cases (1). Within NSCLC, adenocarcinoma and 
squamous cell carcinoma represent the two most common 
histopathological subtypes. With the evolution of personalized 
and precision medicine, the detection of specific genetic

mutations in NSCLC has become pivotal for stratifying patients 
based on therapeutic responsiveness. Among these, epidermal 
growth factor receptor (EGFR) mutation profiling is particularly 
critical, as EGFR a cell-surface receptor driving cellular proliferation 
and survival exhibits mutations that enhance sensitivity to tyrosine 
kinase inhibitors (TKIs). Clinically, EGFR-mutant patients are 
frequently characterized by non-smoking status, adenocarcinoma 
histology, female sex, and East Asian ethnicity (2–4). 

In clinical practice, histopathological biopsy remains the gold 
standard for procuring tissue specimens and conducting mutational 
analysis to guide treatment planning. However, obtaining sufficient 
biopsy material for molecular profiling is not always feasible, 
particularly in high-risk patients with coagulopathies or 
comorbidities contraindicating invasive procedures. Furthermore, 
biopsy-derived tumor cells may inadequately capture intratumoral 
heterogeneity, reflecting only a limited spatial sampling of the 
tumor’s genomic landscape (5, 6). For instance, Taniguchi et al. 
(7) demonstrated that among 50–60 tumor regions analyzed in 21 
EGFR-mutant patients, 28.6% exhibited intratumoral heterogeneity 
harboring both EGFR-mutated and wild-type subclones. Given that 
all patients with pulmonary masses undergo pre-treatment 
computed tomography (CT), these images serve as a rich data 
source for supplementary genomic interrogation, potentially 
identifying EGFR mutation carriers. Discordant findings between 
biopsy and CT-based analyses may warrant tumor re-sampling, 
thereby reducing the likelihood of missing actionable EGFR 
mutations. Consequently, quantitative characterization of CT-
derived features has emerged as a critical adjunct for refining 
EGFR mutation status assessment. 
02 
Medical imaging has emerged as a pivotal platform for 
discovering and applying biomarkers in lung cancer. Recent 
investigations have employed artificial‐intelligence algorithms to 
quantify the biological, phenotypic and functional information 
embedded in imaging data, with radiomics and deep-learning 
approaches representing the two most prominent paradigms 
(8, 9). Radiomics relies on manual lesion delineation followed by 
extraction of high-dimensional texture and morphological features, 
enabling rapid screening and preliminary subtyping, yet it remains 
constrained in characterising tumour margins and the peritumoral 
micro-environment. By contrast, deep learning employs end-to-end 
networks that automatically learn image features without precise 
segmentation, capturing latent cues strongly associated with key 
outcomes—such as EGFR mutation status—while reducing labour 
costs. Moreover, deep networks can identify intratumoural 
subregions linked to genetic heterogeneity, thereby providing 
targets for image-guided biopsy. Each method offers distinct 
advantages, and both have demonstrated clinical potential in 
supporting diagnosis, response assessment and therapeutic 
decision-making, thus furnishing new imaging-based pillars for 
precision oncology in lung cancer (10–13). 

This review seeks to advance understanding of AI applications 
in oncology by categorising current algorithmic strategies and 
summarising recent advances in predicting EGFR mutation status 
and subtypes in lung cancer. 
2 Deep learning-based artificial 
intelligence technologies 

2.1 Applications of deep learning in lung 
cancer diagnosis 

The current application of deep learning technology in the field 
of artificial intelligence for lung cancer images can be summarized 
into four aspects: ① Image processing: Convolutional neural 
networks focus on capturing local texture and morphology, while 
frontiersin.org 

https://doi.org/10.3389/fonc.2025.1576461
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Haixian et al. 10.3389/fonc.2025.1576461 
the Transformer relies on the self-attention mechanism to achieve 
cross-scale global feature integration; ② Image enhancement: Graph 
neural networks improve the contrast and consistency of CT/MR 
Images by modeling the topological relationship between pixels, 
and diffusion models significantly improve the resolution in low-
dose or low-signal-to-noise scenes through iterative denoising. ③ 
Large language model: With the ability of deep semantic reasoning 
and context modeling, it integrates radiological images, pathological 
images and clinical texts to generate interpretable comprehensive 
diagnosis and genetic variation prediction reports; ④ Retrieval 
enhanced generation model: By integrating information retrieval 
and generation mechanisms, it enables the rapid aggregation of 
multimodal case knowledge and longitudinal disease course 
analysis, as shown in Figure 1. The four types of methods jointly 
demonstrate the potential of deep learning in automatic feature 
Frontiers in Oncology 03 
learning, multimodal data fusion, and intelligent decision support, 
and also highlight the ongoing challenges in terms of computing 
resources, data quality, and model interpretability (14–28). 
2.2 Generalized framework for AI-driven 
prediction of genetic mutations in non-
small cell lung cancer 

The evolution of artificial intelligence (AI) has necessitated the 
integration of multimodal data to improve the accuracy and 
reliability of predicting genetic mutations in non-small cell lung 
cancer (NSCLC). A standardized analytical workflow typically 
comprises four critical phases: (a) data acquisition and 
preprocessing, (b) lesion segmentation and radiomic feature 
Application in lung Algorithm modelcancer diagnosis 
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FIGURE 1 

Application of deep learning technology in the diagnosis and treatment of lung cancer. 
frontiersin.org 

https://doi.org/10.3389/fonc.2025.1576461
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Haixian et al. 10.3389/fonc.2025.1576461 
extraction, (c) predictive model development and training 
optimization, and (d) prediction validation and clinical 
interpretation (29, 30), as illustrated in Figure 2. 

During the data collection phase, case selection is restricted to 
pathologically confirmed lung adenocarcinoma patients with EGFR 
mutations (exon 19 deletions or L858R substitutions) verified by 
molecular testing. Corresponding radiological (CT) and 
histopathological imaging data are acquired concurrently. 
Exclusion criteria include: (1) prior antitumor therapy before CT 
imaging or EGFR genotyping, and (2) temporal misalignment 
between imaging, biopsy, and molecular testing procedures. 

Data preprocessing forms the foundation for ensuring analytical 
validity in predictive modeling. In the early 2000s, AI applications in 
medical imaging predominantly employed supervised learning models 
relying on manually engineered features. These required domain 
experts to annotate imaging characteristics (e.g., tumor texture, 
margins) and construct fully labeled datasets for model training. 
Circa 2012, deep learning paradigms particularly convolutional 
neural networks (CNNs) revolutionized the field by autonomously 
learning hierarchical features directly from raw imaging data through 
end-to-end training on large annotated datasets, significantly 
enhancing model performance and generalizability. Post-2020, self-
supervised learning emerged as a transformative approach, enabling 
feature extraction from unlabeled data without external annotations 
(31), as shown in Figure 3. 

While manual annotation ensures high interpretability and 
accuracy, its labor-intensive nature limits scalability, making it 
suitable only for small, homogeneous datasets. In contrast, 
contemporary multimodal predictive models integrate radiomics 
(CT/PET), histopathology (whole-slide imaging), clinical metadata 
(e.g., ECOG status), and genomic profiles (e.g., EGFR variant allele 
frequency), achieving superior predictive accuracy for NSCLC 
mutations. Future advancements aim to develop large-scale, self-
supervised foundation models pretrained on cross-modal unlabeled 
datasets. These models could be efficiently fine-tuned for diverse 
Frontiers in Oncology 04
downstream tasks (e.g., mutation prediction, treatment response) 
with minimal task-specific training data. The ultimate objective is to 
create multifunctional AI systems capable of analytical reasoning, 
clinical interpretation, predictive modeling, and interactive decision 
support for patients and clinicians (32). 

(1) Manual Tumor Feature Extraction 
In the 1990s, early applications of machine learning for pulmonary 

tumor characterization predominantly relied on manual annotation by 
experienced radiologists or pathologists to delineate tumor regions. 
Radiomics-driven approaches enabled precise extraction of diverse 
tumor features, including morphological characteristics (e.g., size, 
shape, margin spiculation), textural patterns (e.g., gray-level 
distribution, heterogeneity), and locational attributes (e.g., lobar 
positioning). Post-extraction, feature selection techniques such as 
correlation coefficient analysis, least absolute shrinkage and selection 
operator (LASSO) regression, and principal component analysis (PCA) 
were applied to identify features most predictive of clinical endpoints. 
Selected feature sets were then input into machine learning models 
including logistic regression (LR), support vector machines (SVMs), and 
random forests (RFs) for malignancy grading, therapeutic response 
prediction, or prognostic stratification. Manual annotation leverages 
clinical expertise to capture nuanced visual patterns, particularly in 
cases with ill-defined tumor boundaries or irregular morphology, often 
outperforming automated methods in accuracy. Furthermore, manually 
derived features offer high interpretability for clinical decision-making. 
However, this approach suffers from inherent limitations: inter-observer 
variability, time-intensive workflows, and poor scalability to large 
datasets, rendering it impractical for modern precision medicine 
demands (33–35). 

(2) Deep Learning-Based Feature Extraction 
Deep learning automates tumor feature extraction through 

artificial neural networks (e.g., convolutional neural networks, 
CNNs) trained to hierarchically learn imaging signatures from 
radiomic data. These models capture both low-level textural/edge 
features and high-level semantic patterns (e.g., tumor shape, 
FIGURE 2 

General framework for AI techniques to predict gene mutations in non-small cell lung cancer. 
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intralesional heterogeneity, peritumoral tissue interactions). 
Extracted features, represented as high-dimensional vectors, 
facilitate tasks such as tumor classification (benign vs. malignant), 
staging, treatment efficacy evaluation, and survival analysis. 
Dimensionality reduction techniques (e.g., PCA, t-distributed 
stochastic neighbor embedding [t-SNE]) may visualize these 
features before downstream model integration (36). 

Deep learning offers advantages in processing large-scale data 
with minimal human intervention, ensuring feature consistency 
and efficiency. It excels at identifying subvisual patterns 
imperceptible to human observers, enhancing predictive 
performance. Nevertheless, critical challenges persist: the “black-
box” nature of deep neural networks limits feature interpretability 
and clinical translatability; high-quality annotated datasets costly to 
acquire in medical domains are required for robust training; and 
overfitting risks escalate with limited data. Thus, while deep 
learning demonstrates transformative potential, its clinical 
adoption necessitates rigorous validation against domain 
knowledge and multimodal integration (37, 38). 
3 Data sources and literature search 
strategy 

This review was prepared following the Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses (PRISMA 2020) 
guidelines and includes a systematic literature search with quality 
assessment, as well as an integrated evaluation of study quality and 
risk of bias. We provide a comprehensive analysis of recent artificial 
Frontiers in Oncology 05 
intelligence–based approaches for predicting epidermal growth 
factor receptor (EGFR) mutation status in non-small cell lung 
cancer (NSCLC), detailing the research methods, data modalities, 
and model performance (39, 40). 
3.1 Search strategy 

A systematic literature search was conducted up to December 
2024 in PubMed (Medline), Web of Science, and IEEE Xplore. The 
search strategy combined controlled vocabulary (e.g., MeSH) and 
free‐text terms, including “EGFR,” “epidermal growth factor 
receptor,” “mutation,” “deep learning,” “artificial intelligence,” 
“radiomics,” “machine learning,” and “non‐small cell lung 
cancer,” with Boolean operators. To ensure comprehensiveness, 
we also performed supplementary screening by examining the 
reference lists of all relevant articles. 
3.2 Inclusion and exclusion criteria 

Study selection was performed according to the following 
inclusion and exclusion criteria: as shown in Table 1. 
3.3 Study selection process 

A total of 285 records were identified, of which 78 duplicates 
were removed, leaving 207 unique records. Title and abstract 
screening excluded 55 irrelevant studies, resulting in 155 articles 
FIGURE 3 

Computer vision has evolved from simple, specialized, shallow models to deep, multimodal, general-purpose models. 
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for full-text review. Applying the predefined inclusion and 
exclusion criteria led to the exclusion of 96 articles, and 59 
studies were ultimately included in the analysis. The detailed 
screening workflow is presented in Figure 4. For every included 
study, we recorded the point estimate of the AUC; when a 95% 
confidence interval (CI) was provided, it was extracted alongside the 
point estimate. If the CI was absent, the entry was labelled “NR (Not 
Reported)”, as noted in the footnote of the results table. 

3.4 Risk of bias and applicability 
assessment 

To systematically evaluate the methodological quality, risk of 
bias, and clinical applicability of the included studies, we applied the 
QUADAS-2 tool (Quality Assessment of Diagnostic Accuracy 
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FIGURE 4 

Literature data retrieval and screening process. 
TABLE 1 Inclusion and exclusion criteria. 

Inclusion criteria Exclusion criteria 

• Patients diagnosed with non-small 
cell lung cancer (NSCLC) 

• Review articles, conference abstracts, 
editorials, or letters 

• Studies employing AI techniques to 
predict EGFR mutation status; 

• Non-human studies (e.g., animal or 
cell experiments) 

• Original research (prospective 
or retrospective); 

• Studies not involving EGFR 
prediction or without any AI– 
based analysis 

• Reporting at least one model 
performance metric (e.g., accuracy, 
AUC, sensitivity, or specificity); 

• Duplicate publications (only the 
most complete report retained) 

• Full text available in English 
or Chinese 

• Insufficient data to support 
quantitative analysis 
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Studies 2). Eight original studies that developed AI models for 
EGFR mutation prediction using real-world clinical data were 
selected for this analysis. 

QUADAS-2 evaluates: 
Fron
1. Risk of Bias, across four domains: 
tiers in 
◦ Patient Selection 
◦ Index Test (i.e., the AI model) 
◦ Reference Standard (EGFR mutation detection method) 
◦ Flow and Timing (appropriateness of the sequence 

and  interval  between  data  col lect ion  and  
model evaluation) 
2. Applicability Concerns, addressing the first three domains 
(Patient Selection, Index Test, Reference Standard) in terms 
of clinical relevance and generalizability. 
Two reviewers performed all assessments independently, and 
any discrepancies were resolved through discussion. The summary 
of these evaluations is presented in Figure 5. 
Oncology 07 
4 Radiomics-based prediction of 
genetic mutation status in non-small 
cell lung cancer 

Radiomics is a systematic methodology encompassing the entire 
workflow from image acquisition to predictive performance 
evaluation. This approach involves critical steps: (1) image 
acquisition and reconstruction, (2) tumor segmentation, (3) 
feature extraction and filtering, (4) predictive model development, 
and (5) validation and performance assessment. During model 
construction, researchers commonly employ diverse classifiers for 
data analysis. Radiomics has evolved through three distinct phases 
based on classifier technologies: Traditional Statistical Radiomics 
(TSR), Machine Learning-based Radiomics (MLR) (particularly 
shallow learning algorithms), and Deep Learning (DL). These 
subcategories reflect iterative advancements in radiomics, each 
with unique characteristics and applicable clinical scenarios 
(Figure 6). TSR relies on statistical hypothesis testing (e.g., t-tests, 
ANOVA) to identify imaging biomarkers, while MLR leverages 
FIGURE 5 

Assessment results (risk of bias and applicability assessment). 
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classical algorithms (e.g., SVM, RF) to map radiomic features to 
mutation probabilities. DL further automates feature engineering 
through hierarchical representation learning. Methodological 
divergences in data processing and feature analysis underscore 
both technological progress and context-specific problem-solving 
strategies (41, 42). 

Traditional Statistical Radiomics (TSR) (43, 44) employs

radiomic feature extraction (e.g., shape-, histogram-, and texture-
based features) combined with statistical methodologies such as the 
least absolute shrinkage and selection operator (LASSO) to identify 
key features with non-zero coefficients. These features are then 
weighted to compute a radiomics score (Rad-score) for each lesion, 
representing a linear combination of selected features. In TSR, 
Frontiers in Oncology 08
classical logistic regression (LR) serves as the primary classifier 
for model construction. Renowned for its simplicity and 
interpretability, TSR remains a foundational and clinically 
transparent approach in radiomics, enabling quantitative lesion 
characterization  to  inform  diagnostic  and  therapeutic  
decision-making. 

Machine Learning-based Radiomics (MLR) (41, 45) represents 
a mature, mainstream methodology for building classification/ 
prediction models following feature extraction and optimization. 
Commonly used classifiers include random forests (RF), support 
vector machines (SVM), decision trees (DT), Bayesian networks 
(BN), and k-nearest neighbors (KNN). Subsequent to MLR, deep 
learning radiomics (DLR) (42) has emerged, leveraging artificial 
FIGURE 6 

The processing of the three methods. 
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neural networks (ANNs) such as convolutional neural networks 
(CNNs) to extract deep features and construct predictive models. 
Unlike TSR and MLR which rely on manual feature engineering 
DL-based approaches utilize multi-layered nonlinear neural 
networks to automate feature learning directly from images via 
end-to-end workflows, eliminating human intervention. 
 

4.1 Statistical prediction methods 

Prior to the advent of radiomics, the prediction of EGFR 
mutation status in lung adenocarcinoma predominantly relied on 
clinical characteristics. Multiple studies have demonstrated 
significant associations between EGFR mutations and female sex, 
non-smoking status, and specific adenocarcinoma histologic

subtypes. Additionally, CT imaging features including tumor 
maximal diameter, location, density, ground-glass opacity, pleural 
retraction, and air bronchogram have been validated as predictive 
biomarkers for EGFR mutations. Recent investigations further 
suggest that reduced tumor long-axis diameter correlates with 
increased EGFR mutation risk, while ground-glass opacity 
patterns are strongly linked to EGFR-mutant tumors. Yip et al. 
(43) highlighted the potential of radiomic features to quantify 
metabolic phenotypes for EGFR mutation prediction. 

However, radiomic features primarily reflect imaging data and 
may insufficiently capture comprehensive disease profiles. To 
address this, researchers increasingly integrate clinical variables 
(including CT features) into radiomic models to enhance 
accuracy in identifying EGFR mutation status and subtypes. 
Recent studies indicate that models combining clinical and PET-
derived features exhibit superior diagnostic performance and 
goodness-of-fit. For example, Li et al. (46) extracted 2,632 
radiomic  features  from  PET/CT  images  of  179  lung  
adenocarcinomas, randomly splitting the cohort into training 
(n=125) and testing (n=54) sets. Their models achieved AUCs of 
0.708 and 0.652 for predicting exon 19 deletions and L858R 
mutations, respectively. Zhang et al. (45) retrospectively analyzed 
18F-FDG PET/CT data from 173 NSCLC patients (71 EGFR+, 102 
EGFR−), with 39% (68/173) at stages I/II and 61% (105/173) at 
stages III/IV. A combined PET/CT radiomics-clinical model 
achieved modest predictive performance (AUC=0.661). Nair et al. 
(47) demonstrated that PET/CT features outperformed CT alone in 
discriminating exon 19 and 21 mutations (AUC=0.86) using 326 
features from 50 NSCLC patients, though limited sample size and 
absence of independent validation constrained generalizability. 

Despite the rapid evolution of radiomics, traditional statistical 
regression (TSR) remains widely utilized due to its interpretability 
and clinical accessibility. TSR effectively transforms complex data 
into interpretable scores, often visualized via nomograms. However, 
TSR is limited by lower predictive efficiency compared to machine 
learning classifiers, driving the adoption of multivariate logistic 
regression (MLR) approaches. 
Frontiers in Oncology 09
4.2 Machine learning-based prediction 
methods 

Machine learning (ML), a pivotal artificial intelligence (AI) 
methodology, involves constructing probabilistic statistical models 
from data to enable predictive analytics (48). Widely applied in 
medical imaging (MRI, CT, ultrasound), ML classifier selection 
requires careful consideration of data characteristics, model 
performance, computational resources, and clinical utility, with 
optimal algorithms typically identified through empirical validation. 

Duan Yanan et al. (49) evaluated CT radiomics-driven ML 
models for EGFR mutation prediction in NSCLC. Their study 
enrolled 198 patients, extracting 1,050 radiomic features per case, 
ultimately selecting 16 features through dimensionality reduction. 
Seven classifiers logistic regression (LR), decision tree (DT), 
random forest (RF), neural network (NN), support vector 
machine (SVM), naïve Bayes (NB), and k-nearest neighbors 
(KNN) were tested. RF demonstrated superior performance, 
achieving AUC and F1 scores of 0.988/0.983 in the training 
cohort and 0.793/0.653 in the validation cohort. Delzell et al. (50) 
analyzed 416 quantitative imaging biomarkers from 200 lung 
nodule CT scans, employing three feature selection methods 
(linear combination filter, pairwise correlation filter, PCA) and 
three classifiers (linear, nonlinear, ensemble). Elastic net and 
SVM with linear/correlation-based feature selection yielded 
optimal tumor classification accuracy, while RF and bagged trees 
underperformed. Their findings underscore the efficacy of 
radiomic-ML integration in reducing false-positive rates. Naïve 
et al. (51) utilized gene expression (GDS3257) and DNA 
methylation b-values from The Cancer Genome Atlas (TCGA) to 
classify LUAD and LUSC subtypes. Bayesian and ReliefF/Limma 
feature selection identified 19 predictive genes, achieving AUC=0.89 
across datasets. However, the absence of prospective validation 
limited clinical applicability. Key studies leveraging ML classifiers 
for NSCLC EGFR mutation prediction are summarized in Table 2, 
providing a comparative overview of recent advancements. 

Based on the summary analysis of Table 2, traditional machine 
learning (ML) demonstrates clear advantages, primarily due to the 
relative simplicity of the models, ease of implementation, and 
strong clinical interpretability. Commonly used algorithms, such 
as logistic regression (LR) and decision trees (DT), can explicitly 
highlight feature importance and decision pathways, making them 
particularly understandable and trustworthy for clinicians; 
consequently, they have been widely adopted in studies like those 
by Chang (2021), Wu (2020), Tu (2019), and Weng (2021). 
Furthermore, certain studies, including that by Duan et al., 
utilized random forest (RF) algorithms, achieving notably high 
training performance (AUC: 0.988, accuracy: 0.983) by effective 
feature selection (reducing 1050 features down to 16), indicating 
that traditional ML can provide excellent internal predictive 
performance  under suitable  data scales and  optimized 
feature engineering. 
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However, significant limitations are also evident in traditional 
ML-based EGFR mutation prediction studies. First, the predictive 
performance of these models varies substantially among different 
studies, even when applying the same algorithm. For instance, the 
accuracy of LR reached as high as 0.97 in Wu (2020), whereas Lu 
(2020) reported accuracies ranging from only 0.48 to 0.74 using 
algorithms such as KNN, SVM, and RF. This highlights significant 
instability, potentially attributable to differences in imaging 
protocols, feature selection methodologies, and inherent dataset 
heterogeneity across studies. Second, most of these studies included 
relatively small sample sizes (generally between 100–300 cases), 
predominantly from single-center retrospective cohorts, which may 
not adequately represent broader population characteristics or 
variations in imaging protocols, thereby limiting generalizability. 
Additionally, very few studies (e.g., Duan et al.) have reported 
independent external validation results, where external validation 
performance (AUC: 0.793) was substantially lower compared to 
internal training results (AUC: 0.988), reflecting significant 
overfitting risks and limited cross-institution applicability. 

Overall, although traditional ML models hold advantages in 
terms of interpretability and implementation costs, the insufficient 
generalizability, sensitivity to data quality and feature selection, and 
instability across diverse clinical settings remain critical issues 
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requiring further attention. Thus, future research should prioritize 
increasing sample sizes and data diversity, optimizing feature 
selection strategies, enhancing model generalizability, and 
emphasizing multicenter and independent external validations to 
facilitate the broader clinical implementation and application of 
traditional ML-based models. 
4.3 Deep learning-based prediction of 
EGFR Gene mutations 

Deep learning-based approaches for analyzing lung tumors and 
predicting genetic mutations hold broad prospects and significant 
clinical value, offering critical implications for improving 
therapeutic outcomes and patient survival rates. Research on 
constructing classification and predictive models for lung cancer 
using deep learning techniques has emerged as a global research 
focus. Deep learning demonstrates substantial potential for 
automating feature extraction processes from medical images, 
thereby streamlining workflows and enhancing predictive analyses 
(71). By autonomously learning abstract, high-level features from 
datasets and continuously improving model performance through 
iterative training, deep learning has enabled researchers to develop 
TABLE 2 Research on EGFR mutation prediction of lung cancer based on different machine learning classifiers. 

Author/time 
of publication 

Data Training data set Prediction model Accuracy rate 

Chang 2021 (52) PET/CT 408 
LR,nomogram, decision 

curve analysis 
0.70~0.81 

Guojin Zhang 2021 (53) CT 546 DT,LR,SVM 0.74~0.4 

Hong 2020 (34) CT 140 NBS, KNN, RF, SVM, DT, LR 0.83–0.85 

Jia 2019 (54) CT 345 RF 0.65-0.83 

Jiang 2019 (55) PET/CT 80 LR, SVM 0.73-0.95 

Jiang 2021 (56) MRI 77 LR 0.63–0.77 

Mu W 2020 (57) PET/CT 175 LR 0.69–0.87 

Le 2021 (58) CT 143 RF, XGBoost 0.89 

Liu G 2020 (59) CT 210 LR 0.65–0.76 

Lu L 2020 (60) CT 105 KNN, SVM, RF, bagging 0.48–0.74 

Ninomiya 2021 (61) CT 99 SVM 0.65–0.86 

Rossi 2021 (62) CT 109 SVM 0.85 

Shu Li 2019 (63) CT 236 LR 0.57–0.81 

Tu W 2019 (64) CT 243 LR 0.53–0.82 

Weng 2021 (65) CT 210 LR 0.67–0.75 

Wu 2020 (66) CT 67 LR 0.84–0.97 

Zhao 2019a (67) CT 322 LR 0.73 

Zhu 2021 (68) CT 161 SVM 0.75–0.79 

Ruan 2022 (69) CT 100 SVM 0.793 

Shiri 2022 (70) CT 136 RF 0.92–0.94 
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models for predicting EGFR mutation status with promising results. 
These advancements bridge fundamental, translational, and clinical 
research in non-small cell lung cancer (NSCLC). 

Xiao et al. (72) collected PET/CT imaging data from 150 EGFR-
mutant patients between 2016 and 2019, generating 3,794 PET/CT 
fusion datasets after 2D slicing (1,913 wild-type and 1,881 EGFR-
mutant samples). Their study proposed a deep learning framework 
based on the EfficientNet-V2 model. First, 32 two-dimensional 
views were extracted from 3D cubic volumes of each pulmonary 
nodule. Deep features from these views were then utilized to predict 
EGFR mutation status. The deep learning model achieved AUCs of 
83.64% and 82.41%, respectively, demonstrating promising efficacy 
in EGFR mutation prediction. 

Seonhwa Kim et al. (73) retrospectively analyzed CT scans and 
clinical data from 1,280 NSCLC patients tested for EGFR mutations 
(454 mutant-type and 826 wild-type). The team developed a novel 
hybrid method integrating deep learning and radiomics to predict 
EGFR mutations. Radiomic features were extracted from 
preprocessed CT images of NSCLC tumors and combined with 
tumor images and clinical data as input for the predictive model. 
This approach achieved AUCs of approximately 0.81 and 0.78 in 
the initial cohort and external validation, respectively, highlighting 
the feasibility of combining radiomic analysis with deep learning for 
EGFR mutation prediction. 

Chengdi Wang et al. (74) collected clinical information, 
histopathology reports, CT imaging data, and genetic testing 
results from 1,262 patients. The dataset was partitioned into 
training (N=882), validation (N=125), and test (N=255) sets at a 
7:1:2 ratio. They proposed a novel deep learning method to predict 
EGFR mutation and PD-L1 expression status in NSCLC patients, 
integrating selected features to construct a prognostic model. A 3D 
convolutional neural network (CNN) was employed, achieving 
AUCs of 0.96 (95% CI: 0.94–0.98), 0.80 (95% CI: 0.72–0.88), and 
0.73 (95% CI: 0.63–0.83) in the training, validation, and test 
cohorts, respectively. 

Abhishek Mahajan et al. (48) analyzed CT imaging data from 
990 patients with primary lung adenocarcinoma confirmed by 
genetic testing. The team developed and validated a deep 
learning-based radiogenomics (DLR) model combined with 
radiomic features to predict EGFR mutations in NSCLC, while 
evaluating semantic and clinical features associated with mutation 
detection. An end-to-end pipeline was applied to CT images from 
two NSCLC trials without precise segmentation. Two 3D CNNs 
were used to segment lung masses and nodules. The combined 
radiomic-DLR model achieved an AUC of 0.88 ± 0.03 for EGFR 
mutation prediction, outperforming individual models. Integration 
of semantic features further improved accuracy, yielding an AUC of 
0.88 ± 0.05. 

Shuo Wang et al. (75) compiled CT imaging  and EGFR

sequencing data from 18,232 lung cancer patients across nine 
cohorts in China and the U.S., including a prospective Asian 
cohort (n=891) and The Cancer Imaging Archive (TCIA) cohorts 
of White populations stratified into thick-slice and thin-slice CT 
groups. The authors proposed a fully automated artificial 
intelligence system (FAIS) to extract whole-lung information 
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from CT scans for predicting EGFR genotype and prognosis of 
EGFR-TKI therapy. FAIS was evaluated using AUC for EGFR 
genotype prediction and Kaplan-Meier analysis for progression-
free survival (PFS) in EGFR-TKI-treated patients. 

Wentao Zhu et al. (76) analyzed CT scans from 191 patients 
with biopsy-confirmed lung adenocarcinoma (LUAD) and 
squamous cell carcinoma (LUSC). They introduced a self-
generating hybrid feature network (SGHF-Net) to classify lung 
cancer subtypes on CT images. A pathological feature synthesis 
module (PFSM) was innovatively designed to quantify cross-modal 
correlations via deep neural networks, deriving “gold-standard” 
pathological information from CT images. Simultaneously, a 
radiomic feature extraction module (RFEM) fused CT-derived 
features with pathological priors under an optimized framework, 
enhancing the model’s ability to generate discriminative and 
subtype-specific features for accurate prediction. 

Le NQK et al. (77–79) compiled CT imaging and bed data from 
576 patients diagnosed with non-small cell lung cancer (NSCLC). 
The dataset was partitioned into a training set (N = 420) and a test 
set (N = 156). A multimodal deep learning framework was 
subsequently developed, integrating 3D CNN survival analysis 
and DeepSurv methodologies. By combining deep radiomics, 
traditional radiomics, and clinical parameters, the model 
predicted the survival status of NSCLC patients. The findings 
indicate  that  the  DeepSurv  CT  deep  radiomics  model  
outperforms the conventional Cox-PH model, and the integration 
of multiple parameters enhances prediction accuracy. 

Other research findings regarding the prediction of EGFR 
mutations in lung cancer using deep learning methods, along 
with detailed information on data sources, scanner heterogeneity, 
and validation designs, are presented in Table 3. 

In medical imaging, acquiring large-scale training datasets 
remains  challenging.  Transfer  learning  (TL)  strategies  
theoretically address this limitation by leveraging visual feature 
similarities across domains (92). However, the scarcity of pre-
trained models in medical imaging restricts TL applications. 
Recent advances propose semi-supervised learning techniques, 
such as pseudo-labeling and generative adversarial networks 
(GANs), to utilize unlabeled data and mitigate sample size 
constraints (93). These innovations hold significant potential for 
EGFR mutation prediction and warrant further exploration (94). 
Additionally, training deep learning models demands substantial 
computational resources (e.g., CPUs, GPUs, and memory). In 
resource-limited settings, traditional regression (TR) may offer a 
pragmatic alternative. The “black box” nature of deep neural 
networks also poses interpretability challenges, as their high 
complexity and multi-parametric architecture obscure internal 
decision-making processes (95). 

Through comprehensive analysis, deep learning (DL) models 
exhibit remarkable advantages in the automatic extraction of 
medical imaging features and classification accuracy, with most 
studies reporting predictive accuracies (AUC values) ranging 
between 0.76 and 0.96. For instance, the DL-based approach 
proposed by Wang et al. demonstrated high stability across a 
multicenter independent validation dataset, achieving an AUC 
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ranging from 0.748 to 0.813, indicating potential cross-institutional 
generalizability. Additionally, several studies (e.g., Gui, 2022; 
Zhang, 2024) highlight that deep learning techniques, particularly 
through advanced feature extraction and multimodal data 
integration (e.g., PET/CT combined with clinical information), 
significantly enhance prediction performance, reaching AUC 
values as high as 0.86 to 0.88. 

However, current DL models for EGFR mutation prediction still 
encounter notable limitations and challenges. Firstly, most studies 
predominantly rely on single-center datasets (more than half 
conducted validations solely within single-center cohorts), with 
limited multicenter and cross-device validation, potentially restricting 
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the model’s true generalizability. Specifically, among the published 
studies, only 17 out of 59 (29%) conducted external validation using 
independent datasets, and merely 10 out of 59 (17%) involved 
multicenter validations using scanners from different manufacturers. 
Notably, the pooled AUC was 0.86 ± 0.07 on internal test sets, yet this 
performance decreased to 0.77 ± 0.06 during external validations. 
Secondly, substantial variations in sample size exist among studies, 
ranging from several hundred to tens of thousands of cases (e.g., Wang 
et al. included a sample size of 18,232), highlighting the lack of 
consensus on data diversity and standardization across research 
efforts. Additionally, the inherent “black box” nature of DL models 
significantly limits their clinical interpretability. 
TABLE 3 Studies on prediction of EGFR mutation in lung cancer based on deep learning methods. 

Author/ 
time 
of 

publication 

Data Training 
set Method Type of 

validation Aceuraey rate Multicenter External 
verification 

Cross-
vendor 
scanning 

Shuo Wang 
2019 (80) 

CT 844 DL 

5-fold cross validation 
and independent 

validation with two-
center data 

0.81 
(95% CI:0.79 - 0.83) 

Yes Yes Yes 

Shuo 
Wang (81) 

CT 18232 DL 
Independent validation 
with multi-center data 

0.748-08 13(95% 
CI:0.732 - 0.853) 

Yes Yes Yes 

Dongqi Gui 
2022 (82) 

CT 280 DL Independent validation 
0.8599 
(NR) 

Yes Yes Yes 

Wei 
Mu,2020 (62) 

PET/ 
CT 

616 DL 
Independent validation 
with multiceter data 

0.81 
(NR) 

Yes Yes Yes 

Chengdi Wang, 
2022 (83) 

CT 1135 DL 
5-fold cross validation 
with single hospital data 

0,950 (95% CI, 0.938 -
0.960), 0.934, (95% CI, 
0.906 - 0.964) and 0.946 
(95% CI, 0.933 - 0.958) 
for PD-L1 expression 
signature <1%, 1~49%, 

and≥ 50% 

No No Yes 

Zhengbo Song, 
2021 (84) 

CT 937 DL 
5-fold cross validation 
with three hospitals data 

0.7754 
(95% CI 0.7199–0.8310) 

Yes Yes Yes 

Panwen Tian, 
2021 (85) 

CT 939 DL 
Independent validation 
with single-center data 

0.76 
(95% CI: 0.66~0.85) 

No No No 

Chengdi Wang, 
2022 (86) 

CT 818 DL 
Independent validation 
with single-center data 

0.842 
(95% CI, 0.825-0.855) 

No No No 

Tiening Zhang, 
2021 (87) 

CT 134 ML DL 
5-fold cross validation 
with single-center data 

0.78 
(95% CI: 0.70–0.86) 

No No No 

Zhao, 
Yu,2024 (88) 

CT 1719 DL 
15-fold cross validation 
with single-center data 

0.82 (95% CI 0.71 ~ 
0.93) ~ 0.96(95%0.91 

~ 1.00) 
Yes Yes Yes 

Wang 
S,2021 (80) 

CT 844 DL 
Independent validation 
with single-center data 

0.81 
(95% CI 0.79-0.83) 

Yes Yes Yes 

Song 
J,2021 (89) 

CT 665 DL 
Independent validation 
with single-center data 

0.78 
(NR) 

Yes Yes Yes 

ZhangX,2024 
(90) 

CT 508 DL 
Independent validation 
with single-center data 

0.884 
(95% CI 0.876 - 0.892) 

Yes Yes Yes 

Dong 
Y,2021 (91) 

CT 363 DL 
Independent validation 
with multi-center data 

0.7943 
(NR) 

Yes Yes Yes 
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In conclusion, future research should prioritize expanding 
multicenter validation datasets, standardizing imaging protocols 
and data quality control, and enhancing model interpretability 
studies, ultimately promoting the practical application and 
widespread adoption of deep learning models in clinical practice. 
5 Novel artificial intelligence 
approaches for predicting EGFR 
mutations in non-small cell lung 
cancer 

Although radiomics-based machine learning (ML) and deep 
learning (DL) models have demonstrated potential in EGFR 
mutation detection (e.g., CT radiomics models achieving AUCs of 
0.82–0.88) (96, 97), current studies remain constrained by several 
limitations. First, single-modality imaging data primarily reflect 
tumor morphology or functional characteristics, failing to capture 
molecular dynamics or microenvironmental heterogeneity linked to 
EGFR mutations. Second, traditional models rely on manual feature 
engineering or isolated DL architectures, limiting their capacity to 
model cross-scale biological correlations and resulting in poor 
interpretability (only ~35% of key feature contributions are 
explainable). Third, most studies utilize static imaging data, lacking 
dynamic tracking of EGFR mutation evolution during treatment. To 
address these challenges, novel artificial intelligence (AI)-driven 
multimodal data fusion strategies are emerging as pivotal solutions. 
By integrating radiomics, liquid biopsy, pathomics, and dynamic 
clinical data, next-generation models can construct cross-dimensional 
feature association networks (e.g., spatiotemporal coupling of imaging 
texture features and ctDNA methylation profiles). Leveraging graph 
neural networks (GNNs) and federated learning, these models enable 
collaborative optimization of multicenter heterogeneous data, 
enhancing predictive performance (AUC projected to exceed 0.95) 
while elucidating EGFR mutation-driven mechanisms and drug 
resistance evolution, thereby supporting precision therapeutic 
decision-making across the treatment continuum (15, 98). 
5.1 Multimodal data fusion for predicting 
lung cancer gene mutations 

Recent advances in multimodal data fusion have significantly 
improved EGFR mutation prediction in non-small cell lung cancer 
(NSCLC). Researchers worldwide have developed innovative 
predictive models by integrating radiomics, genomics, pathology, 
and clinical data. The core advantage of multimodal models lies in 
their ability to fuse heterogeneous, multidimensional data for 
comprehensive and precise EGFR mutation prediction (99–102). 
The analytical workflow typically involves four key stages: 
Fron
1. Data Preprocessing: Standardization of heterogeneous data 
sources, including CT image resampling and normalization, 
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genomic variant annotation and feature selection, and 
clinical data imputation and encoding. 

2. Feature Extraction: High-dimensional feature extraction 
from multimodal data using DL or traditional ML 
methods. Examples include texture feature extraction from 
CT images via convolutional neural networks (CNNs) and 
semantic feature extraction from pathology reports using 
natural language processing (NLP). 

3. Feature Fusion: Alignment and integration of multimodal 
features through early fusion, late fusion, or intermediate 
fusion strategies. Common techniques include graph neural 
networks (GNNs), attention mechanisms, and multimodal 
Transformer architectures. 

4. Model Training and Validation: Performance evaluation 
via cross-validation or independent test sets, coupled with 
interpretability tools (e.g., SHAP values or Gradient-
weighted Class Activation Mapping [Grad-CAM]) to 
quantify key feature contributions. 
This approach not only enhances EGFR mutation prediction 
accuracy (AUC improvements of 10%–15%) but also provides novel 
insights into the interplay between imaging features and 
molecular mechanisms. 

Internationally, research consortia have demonstrated leading 
expertise in imaging-genomics joint modeling, multi-omics 
integration, and dynamic predictive system development. The 
Harvard Medical School team (2021) proposed the “Radiogenomic 
Fusion Network” (103), which employs graph convolutional networks 
(GCNs) to achieve deep integration of high-resolution CT imaging 
features with whole-exome sequencing (WES) data. Validated in a 
cohort of 412 NSCLC patients, the model achieved an AUC of 0.93 for 
EGFR mutation prediction and first identified a specific association 
between “ground-glass opacity” on CT imaging and the EGFR L858R 
mutation. The Memorial Sloan Kettering Cancer Center (MSK) Cancer 
Data Science Initiative Group (2024) (104) developed a framework 
integrating patient-reported clinical genomic data with natural language 
processing (NLP) techniques and multimodal biomarkers to improve 
the accuracy of overall survival (OS) prediction in cancer patients. The 
research team constructed a comprehensive dataset encompassing 
patients with non-small cell lung cancer (NSCLC), breast cancer, 
colorectal cancer, and other malignancies. NLP methodologies were 
employed to extract critical information from unstructured textual data, 
including clinical notes and diagnostic reports, while structured data— 
such as treatment histories, survival outcomes, and tumor characteristics 
—were systematically integrated to build a multimodal predictive 
model. Through rigorous cross-validation and external validation, the 
NLP component demonstrated stable performance across cancer 
subtypes. Notably, in NSCLC cohorts, the model achieved a precision 
of 0.78, an AUC of 0.98, and a recall of 0.92 for identifying prior 
treatment histories. The multimodal fusion approach effectively 
processed heterogeneous data types (unstructured text and structured 
clinical parameters), enabling robust survival prediction. This 
methodology provides clinicians with enhanced capabilities for 
personalized treatment planning, potentially improving therapeutic 
frontiersin.org 

https://doi.org/10.3389/fonc.2025.1576461
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://0.82�0.88


Haixian et al. 10.3389/fonc.2025.1576461 
outcomes and patient survival rates.The research team led by Rui-Jiang 
Li and Sen Yang at Stanford University developed MUSK(2025) (105), a 
pre-trained foundational model based on the BeiT3 architecture. MUSK 
effectively leverages unlabeled and unpaired image-text data through a 
unified masked modeling approach. The model was trained on an 
extensive dataset comprising 50 million pathological image patches and 
1 billion text tokens. To address the distinct visual characteristics and 
data distribution differences between pathological images and natural 
images, the team implemented several tailored optimizations: a multi-

scale training strategy, pathological staining data augmentation, noisy 
data bootstrapping enhancement, and fine-grained multimodal 
alignment techniques. These methodological adaptations significantly 
improved the model’s learning capability for pathological data, resulting 
in enhanced clinical prediction accuracy. 

Domestically, multimodal modeling research has prioritized 
clinical translation and optimization for region-specific healthcare 
contexts. The team led by Professor Lu Shun at Shanghai Chest 
Hospital, affiliated with Shanghai Jiao Tong University (2024) (106), 
innovatively integrated multiple non-invasive biomarkers to explore 
the potential for early identification of non-small cell lung cancer 
(NSCLC) patients who may derive durable clinical benefits from 
immune checkpoint inhibitor (ICI) therapy. The team developed a 
multiparameter predictive model incorporating standardized bTMB, 
dynamic changes in ctDNA during early treatment, and RECIST 
response to predict durable clinical benefit (DCB) from ICI therapy. 
This model demonstrated robust predictive performance in both the 
training and validation cohorts, with AUC values of 0.854 and 0.798, 
and accuracy rates of 79.5% and 74.7%, respectively. The inclusion of 
RECIST response further enhanced the model’s predictive capability, 
particularly in the validation cohort, where both sensitivity and 
specificity showed improvement.The research team led by Professor 
Li Weimin at Sichuan University (2024) (107) developed a 
multimodal artificial intelligence (MMI) system that integrates 
multidimensional clinical data—including clinical texts, imaging 
data, and laboratory indicators—to achieve accurate prediction of 
pulmonary infectious diseases, pathogen types, and timely 
identification of critical illness, thereby providing robust support 
for clinical decision-making. The MMI model was trained on 24,107 
patient records comprising clinical texts and CT images to distinguish 
bacterial, fungal, viral pneumonia, and tuberculosis. The system 
demonstrated exceptional performance in both internal and 
external validation datasets, achieving AUC values of 0.910 (95% 
CI: 0.904–0.916) and 0.887 (95% CI: 0.867–0.909), respectively, 
comparable to the diagnostic accuracy of experienced clinicians. 
Furthermore, the MMI system rapidly differentiated viral and 
bacterial subtypes, with mean AUCs of 0.822 (95% CI: 0.805– 
0.837) for viral subtypes and 0.803 (95% CI: 0.775–0.830) for 
bacterial subtypes. Notably, the system also facilitated personalized 
medication recommendations to mitigate antibiotic misuse and 
exhibited significant advantages in predicting critical illness risks, 
offering a promising tool to optimize clinical workflows.A research 
team led by Beihang University (2022) (95) developed a fully 
automated artificial intelligence system (FAIS) that leverages whole-
lung CT imaging information to predict EGFR genotype and evaluate 
prognosis in patients receiving EGFR-TKIs therapy. This multicenter 
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study encompassed 18,232 lung cancer patients across nine Chinese 
and American cohorts, incorporating both prospective and 
retrospective data from Asian and Caucasian populations. 
Participants were stratified into thick- and thin-section CT groups. 
FAIS demonstrated capability in predicting EGFR mutation status 
and progression-free survival for EGFR-TKIs treated patients, with 
performance validated through AUC metrics and Kaplan-Meier 
analysis. Compared with two tumor region-based deep learning 
models, FAIS showed superior performance across multiple test 
cohorts, achieving AUC values ranging from 0.748 to 0.813. The 
FAIS-C model integrating clinical factors exhibited significant 
correlation with EGFR-TKIs therapeutic outcomes (log-rank 
p < 0.05), suggesting its potential as an effective complement to 
genetic sequencing methods. 
5.2 Applications of large language models 

Large Language Models (LLMs) are deep learning-based natural 
language processing models trained on massive textual datasets, 
enabling comprehension and generation of human language. Their 
core architecture typically relies on the Transformer framework, which 
utilizes self-attention mechanisms to capture long-range dependencies 
in text, facilitating deep contextual semantic understanding. Recent 
advances in computational power and data scalability have 
demonstrated the robust capabilities of LLMs across diverse 
domains, exemplified by models such as the GPT (Generative Pre-
trained Transformer) series, DeepSeek, Qwen series, BERT 
(Bidirectional Encoder Representations from Transformers), and 
ChatGLM. These models excel not only in general natural language 
tasks (e.g., text generation, translation, and question answering) but 
also show significant potential in medical applications (108, 109). 

In recent years, the utility of LLMs in predicting epidermal growth 
factor receptor (EGFR) mutations in non-small cell lung cancer 
(NSCLC) has garnered substantial interest. Leveraging their 
advanced natural language processing and contextual reasoning 
capabilities, LLMs can effectively integrate textual information 
from multimodal data (e.g., pathology reports, clinical notes, and 
genomic annotations) to enhance predictive performance. 
Researchers have proposed novel technical approaches to optimize 
LLMs for lung cancer mutation prediction, achieving promising results 
(27, 110, 111). As illustrated in Figure 7, the  LMOE  (Large  Mixture of  
Experts) framework exemplifies such innovation. This model integrates 
multimodal inputs—including medical imaging (CT scans, 
histopathology images) and clinical data—through image 
enhancement, data alignment, and structured processing to construct 
a unified high-dimensional feature space (wide-table transformation). 
It employs a lightRAG module for cross-modal semantic association 
and utilizes Qwen-series algorithms for final mutation classification. 
The LMOE framework directly addresses critical challenges in 
integrating multi-source heterogeneous clinical data, offering the 
following advantages: 
1. Depth of Data Integration: Moving beyond traditional 
single-modality analyses, the model fuses histopathological 
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texture features (via the MadSAM module), 3D spatial 
information from CT imaging, and temporal clinical 
parameters to better reflect the biological heterogeneity of 
lung cancer. For example, dynamic correlations between 
locally enhanced histopathological features (e.g., H&E-

stained regions) and volumetric changes in CT-detected 
pulmonary nodules may reveal radiomic biomarkers 
specific to mutations such as EGFR or ALK. 

2. Clinical Interpretability: A standardized output module 
maps predictions to mutation classification systems in 
clinical guidelines (e.g., NCCN criteria), ensuring model 
outputs directly inform targeted therapy decisions. This 
end-to-end clinical alignment significantly outperforms 
traditional “black-box” models. 

3. Technical Extensibility: The Mixture of Experts (MOE) 
architecture supports phased validation, where clinical data 
serve as prior knowledge to constrain model training. 
Additionally, the Qwen2-VL module’s vision-language 
alignment capability provides scalable interfaces for 
integrating pathology report text with image features, as 
shown in Figure 8. 
tiers in Oncology 15 
Multiple international and domestic research teams have 
conducted in-depth investigations into the application of large 
language models (LLMs) for predicting lung cancer gene 
mutations, achieving notable progress. For instance, the Google 
Health team (2022) (112) proposed the “Med-PaLM” model, which 
fine-tunes LLMs (e.g., GPT-3) to integrate pathology reports with 
radiomics data, achieving an AUC of 0.89(NR) in NSCLC EGFR 
mutation prediction, significantly outperforming conventional 
methods. The “BB-TEN” model, developed by a Columbia 
University research team (2025) (113), enables automated TNM 
(tumor size, regional lymph node involvement, and distant 
metastasis) classification from pathology report text. This 
framework employs a BERT architecture for semantic analysis of 
pathology reports combined with CT imaging features. Evaluated 
on nearly 8,000 pathology reports from Columbia University 
Medical Center, the model demonstrated robust performance 
with AUC values ranging from 0.815 to 0.942(NR). Harvard 
Medical School(2024) has developed PathChat (114), a vision-
language general-purpose AI assistant for human pathology slide 
analysis. The system was pre-trained via self-supervised learning on 
image patches derived from over 1 million histopathological slides, 
FIGURE 7 

General framework for predicting gene mutation based on multimodal fusion method. 
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enabling accurate disease identification from biopsy specimens with 
an accuracy rate approaching 90%. This performance surpasses that 
of GPT-4V, demonstrating its advanced diagnostic capabilities in 
computational pathology. In the same year, Professor Kunxing Yu 
at Harvard University developed the Clinical Histopathology 
Imaging Evaluation Foundation (CHIEF) model (115), a 
foundational framework for histopathological image analysis. The 
CHIEF model demonstrates diagnostic capabilities for 19 cancer 
types originating from pulmonary, breast, prostate, colorectal, 
gastric, esophageal, renal, cerebral, hepatic, thyroid, pancreatic, 
cervical, uterine, ovarian, testicular, cutaneous, soft tissue, 
adrenal, and bladder tissues, achieving a diagnostic accuracy 
approaching 94%. The research team led by Guangyu Wang at 
Beijing University of Posts and Telecommunications has developed 
“MedFound,” (116) a 176-billion-parameter medical large language 
model (LLM). This general-purpose model was pre-trained on a 
large-scale corpus comprising diverse medical texts and real-world 
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clinical records. Through fine-tuning, MedFound employs a self-
bootstrapping chain-of-thought approach to emulate physicians’ 
diagnostic reasoning processes, while incorporating a unified 
preference alignment framework to ensure consistency with 
standardized clinical practices. A study conducted by the First 
Affiliated Hospital of Sun Yat-sen University on the imaging and 
pathological evaluation of thyroid nodules demonstrated that in a 
comparison of 1,161 thyroid nodule imaging diagnoses from 725 
patients, ChatGPT 4.0 and Bard exhibited significant to nearly 
perfect internal consistency. This performance was comparable to 
the human-machine interaction strategies employed by two senior 
radiologists and one junior radiologist, and surpassed the strategy 
involving only a single junior radiologist (117). Additionally, a large 
diagnostic model for pneumoconiosis, named “PneumoLLM” 
(118), developed by Chinese researchers, has established a novel 
paradigm for applying Large Language Models (LLMs) to data-
scarce occupational diseases, as shown in Table 4. Extensive
FIGURE 8 

Classification process of NSCLC gene mutation predicted by LMOE model. 
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experiments have demonstrated the superior diagnostic capabilities 
of this large model in identifying pneumoconiosis. 

Analysis of these studies reveals that LLMs excel in NSCLC EGFR 
mutation prediction by efficiently utilizing unstructured textual data 
(e.g., pathology reports, clinical notes), addressing the 
underutilization of such data in traditional approaches. 
Furthermore,  LLMs  demonstrate  superior  contextual  
understanding, enabling robust cross-modal feature alignment and 
fusion across imaging, text, and genomic data. Their capacity for 
temporal data modeling allows tracking of dynamic EGFR mutation 
changes during treatment, while attention mechanisms and feature 
contribution analyses provide biologically interpretable insights. 
However, despite their promise, challenges persist in medical 
applications of LLMs. Key limitations include the reliance on 
massive annotated datasets, which are scarce in medicine; high 
computational demands for training and inference, hindering 
deployment in resource-limited settings; suboptimal domain-

specific terminology comprehension by general-purpose LLMs; and 
privacy risks during multi-center data sharing and model training. 

As artificial intelligence advances in NSCLC mutation prediction, 
LLMs are driving dual evolutionary pathways: technological 
paradigm restructuring and clinical value enhancement. Current 
trends indicate future LLM development will focus on synergistic 
optimization of efficiency, dynamism, security, and interpretability, 
bridging the gap from algorithmic validation to clinical 
implementation. On one front, lightweight architectures (e.g., Med-
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GPT) leveraging domain-specific knowledge distillation—via 
parameter pruning and attention mechanism optimization—are 
reducing computational costs while enhancing analysis of radiomic 
features (e.g., CT texture heterogeneity) and temporal clinical data 
(e.g., treatment response dynamics), offering accessible molecular 
subtyping tools for primary care settings. Concurrently, multimodal 
dynamic modeling, integrating time-series Transformer architectures 
with liquid biopsy data (e.g., ctDNA mutation burden), enables 
construction of spatial-temporal models of EGFR mutation 
evolution. These models capture dynamic correlations between 
tumor heterogeneity (e.g., lung nodule volume growth rates) and 
molecular biomarkers, predicting tyrosine kinase inhibitor (TKI) 
resistance trajectories. Privacy-preserving technologies, such as 
federated learning frameworks (FedLLM) with homomorphic 
encryption and differential privacy, are overcoming multi-center 
data silos, enabling collaborative training on cross-institutional 
pathology and genomic datasets. Notably, enhanced interpretability 
methods (e.g., medical-specific SHAP analysis) are quantifying 
associations between radiomic features (e.g., ground-glass nodule 
CT value distributions) and EGFR mutation subtypes (e.g., L858R or 
exon 19 deletions), building trust between AI predictions and clinical 
decision-making. This technological evolution not only addresses 
disparities in genetic testing resource allocation but also promises 
seamless integration with PACS systems, bridging radiological 
diagnosis to molecular pathology inference and advancing precision 
medicine toward preemptive intervention and dynamic monitoring. 
TABLE 4 Multimodal predictive modeling in lung cancer research. 

Author and time 
of publication 

Data source Training 
set size 

Method Feature 
extraction 

Prediction 
model 

Accuracy/ 
AUC 

Harvard Medical School 2021 (103) CT + WES 412 Cases GCN 3D texture feature 
Radiogenomic 
Fusion Network 

0.93 
(NR) 

Memorial Sloan Kettering Cancer 
Center 2022 (104) 

Clinical data 
+ genome 

24950 
Cases 

multimodal 
Context information 

Genomic data 
Multimodal 

prediction model 
0.98 
(NR) 

Stanford University2023 (105) 
Clinical data 

+pathological images 
11577 
Cases 

multimodal 
Pathological 
morphological 
characteristics 

MUSK model – 

Shanghai Jiao Tong University 
Chest Hospital 2024 (106) 

Clinical data + 
genetic data 

328 
Cases 

multimodal 
Clinical treatment data 

Genomic data 
Multimodal 

prediction modet 
0.798 
(NR) 

Pathological 
morphological 

0.887 
Sichuan University 2024 (107) Clinical data +CT 24,107 Cases multimodal 

characteristics 
MMO (95% CI: 

Image feature 
0.867-0.909) 

Beijing University of Aeronautics 
and Astronautics 2022 (95) 

Multicenter CT 
+ gene 

18232 
Cases 

multimodal 
Imaging, pathological and 

clinical features 
FAIS 

0.748-08 13(95% 
CI:0.732 - 0.853) 

M.d. Anderson Cancer Center 
2023 (131) 

Pathological data + 
CT + clinical data 

976 
Cases 

multimodal 
Imaging, pathological and 

clinical features 
Deep-CT model 
Benchmark model 

0.75 
(NR) 

University of Science and 
Technology of China 2022 (132) 

CT + clinical data 
570 
Cases 

multimodal 
Metabolic characteristics 

+ imaging features 
ESBP 

0.754-0.804 
(NR) 

West China Medical College, CT + genetic data Imaging, pathological and Multimodal 
0.842 

Sichuan University 2022 (86) + clinical 
3816 Cases multimodal 

clinical features prediction modet 
(95% CI, 

0.825-0.855) 
frontiersin.org 

https://doi.org/10.3389/fonc.2025.1576461
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Haixian et al. 10.3389/fonc.2025.1576461 
6 Future prospects and challenges 

6.1 Data sources and standardization 

The current performance bottlenecks of artificial intelligence 
(AI) models in predicting EGFR mutations in non-small cell lung 
cancer (NSCLC) primarily stem from fragmented data ecosystems 
and a lack of standardization. Although multimodal data 
integration—including CT imaging, histopathology slides, liquid 
biopsies, and clinical narratives—has emerged as the mainstream 
paradigm, significant heterogeneity persists in data acquisition 
protocols. For instance, in medical imaging, variations in CT 
scanner parameters (e.g., kVp, slice thickness, and reconstruction 
algorithms) across manufacturers (e.g., Siemens, GE Healthcare, 
Philips) induce texture feature distribution shifts (domain shift). 
Studies demonstrate that increasing slice thickness from 1 mm to 
5 mm elevates radiomic feature variability by 27%. In genomic 
profiling, differences in sensitivity between next-generation 
sequencing (NGS, 0.1%) and digital PCR (1%) introduce 
substantial labeling noise for low-abundance mutations (e.g., 
EGFR T790M) (119, 120). 

Future efforts must prioritize the development of cross-modal 
data standardization frameworks. For example, domain adaptation 
techniques using generative adversarial networks (CycleGAN) 
could harmonize CT images across scanner vendors, while ISO/ 
IEC 20547-compliant biomedical data lake architectures may 
enable dynamic alignment and version control of multicenter data. 

In data processing, conventional manual annotations (e.g., 
tumor ROI delineation) suffer from subjectivity and poor 
reproducibility.  Recent  advancements  propose  “hybrid  
annotation” strategies that integrate expert annotations (following 
RECIST 1.1 criteria) with weakly supervised learning (e.g., text-
image alignment using pathology reports) to extract cross-modality 
consistent features via contrastive learning. For small-sample 
mutation subtypes (e.g., EGFR exon 20 insertion mutations, <10% 
of EGFR mutations), diffusion models (DMs) show promise in 
synthetic data generation. Experiments reveal that synthetic CT 
images generated via Stable Diffusion architectures improve model 
AUC for rare mutations by 12% (121–123). 

Furthermore, breakthroughs in federated learning (FL), such as 
the FedMA algorithm (an enhanced variant of FedAvg), will 
facilitate cross-institutional collaboration. These frameworks 
enable distributed model training on global multicenter datasets 
(e.g., the NSCLC-Radiomics-Genomics Consortium) while 
ensuring  compliance  with  patient  privacy  regulations  
(GDPR/HIPAA). 

Cross-population generalisability remains the principal 
bottleneck. More than 60% of published cohorts originate from 
single-centre East-Asian datasets, while African-American and 
Hispanic patients are virtually absent. Scanner-parameter 
variability is seldom quantified; for example, increasing slice 
thickness from 1 mm to 5 mm can alter radiomic features by up 
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to 27%. Although the multinational, nine-centre FAIS dataset 
demonstrates that broader sampling is feasible, such resources 
remain exceptional. Future work should employ prospective 
PROBE designs that cover multiple ethnic groups and acquisition 
protocols, and integrate domain-adaptation or federated-learning 
strategies to improve out-of-domain performance. 
6.2 Model interpretability and repeatability 

The limited interpretability of artificial intelligence (AI) models 
has become a critical barrier to their clinical adoption, despite their 
expanding applications in medicine. While existing methods (e.g., 
Grad-CAM, LIME) can visualize critical imaging regions (e.g., 
ground-glass opacity contributing to EGFR mutation predictions), 
they fail to provide biologically meaningful explanations of 
molecular mechanisms. Recent research trends focus on cross-
modal causal inference to bridge this gap (124). For example, 
integrating radiomic features with spatial transcriptomic atlases of 
the tumor microenvironment (TME): spatial transcriptomic 
sequencing (10x Visium) generates gene expression matrices of 
tumor regions, and graph attention networks (GATs) establish 
quantitative models linking CT imaging texture features (e.g., 
gray-level co-occurrence matrix entropy) to EGFR signaling 
pathway activation (e.g., PI3K-Akt-mTOR). Such studies have 
demonstrated that peritumoral vascular tortuosity on CT scans 
(quantified by fractal dimension) strongly correlates with VEGF 
overexpression (r=0.73, p<0.001), offering mechanistic insights into 
imaging-based predictions of EGFR-TKI resistance (125). 

For dynamic interpretability, Transformer-based time-series 
models (e.g., TimeSformer) enable tracking of EGFR mutation 
evolution during treatment. By integrating serial CT imaging (3-
month follow-ups) with ctDNA monitoring data, these models can 
detect imaging phenotype shifts in EGFR L858R mutations (e.g., 
reduced ground-glass opacity with increased solid components) and 
predict the risk of T790M resistance mutations (HR=2.34, 95% CI 
1.87–2.93). 

Additionally, knowledge graphs enhance model transparency 
by embedding clinical guidelines (e.g., NCCN), databases (e.g., 
OncoKB), and imaging features into unified graph structures. 
This approach renders model decision pathways traceable to 
evidence-based clinical linkages, such as associations between 
specific imaging patterns and EGFR-TKI response rates (126, 127). 

Our pooled analysis shows that, among the 59 eligible studies, 
only 11 prediction models (18.6%) have made their source code or 
executable software publicly available, and none of these releases 
include the corresponding trained weights or underlying datasets. 
Furthermore, just one study has employed a prospective, PROBE-
style multicentre design and is prospectively registered on 
ClinicalTrials.gov. The scarcity of shared code and weights makes 
it impossible to quantify the net clinical benefit, potential risks, and 
reproducibility of the vast majority of proposed models. 
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6.3 Clinical translation trends 

The clinical translation of AI technologies continues to face 
critical challenges (128), including: 
Fron
1. Technical Validation Frameworks: Most current studies 
rely on retrospective single-center data. Future efforts 
must prioritize prospective multicenter validation 
platforms (e.g., NCT04253679 trial) employing a 
Prospective Randomized Open Blinded Endpoint 
(PROBE) design to evaluate AI models’ impact on clinical 
endpoints. For example, comparing the detection rate 
differences (targeting ≥15% improvement) between AI-
guided biopsy localization (targeting regions with high 
predicted mutation probabilities) and conventional 
random biopsy. 

2. Workflow Integration: Developing embedded AI diagnostic 
systems that seamlessly interface with hospital Picture 
Archiving and Communication Systems (PACS). The 
Philips IntelliSpace AI platform has demonstrated real-
time CT image analysis capabilities (latency <3 seconds), 
but its EGFR mutation prediction module still requires 
FDA’s Center for Devices and Radiological Health (CDRH) 
certification. A key breakthrough lies in constructing 
lightweight models (e.g., MobileNetV3-enhanced 
architectures)  that  maintain  AUC  >0.85  while  
compressing parameter counts to <5M, enabling 
deployment on edge computing devices (e.g., CT scanner-
integrated GPUs). 
Future clinical applications of AI will likely follow two 
trajectories (126, 129, 130): 
▪ Dynamic Precision Monitoring: AI-driven “digital twin” 
models simulating tumor evolution. For instance, 
generating virtual clones based on baseline CT imaging 
and genomic data to predict spatiotemporal changes in 
EGFR mutation abundance under different therapeutic 
strategies (e.g., osimertinib vs. chemotherapy), thereby 
guiding personalized treatment planning. 

▪ Health Economics Optimization: Markov decision models 
quantifying AI’s cost-effectiveness ratios. Preliminary 
studies indicate that AI-guided EGFR mutation screening 
reduces genomic testing costs by 38% (via minimizing 
unnecessary NGS assays) while improving targetable 
population identification rates by 22%. 
Ethical and regulatory challenges remain critical. Robust 
accountability mechanisms must be established to address 
diagnostic errors (e.g., false negatives causing treatment delays), 
clarifying legal liabilities. Furthermore, mitigating model bias is 
paramount—transfer learning strategies tailored to ethnic groups 
(Asian vs. Caucasian populations) can reduce AUC disparities in 
EGFR mutation prediction from 0.12 to 0.04. 
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7 Conclusion 

Analysis indicates that radiomics-based machine-learning 
models, which rely on handcrafted feature engineering, require 
smaller sample sizes and offer high interpretability—advantages in 
data-limited settings or when traceable decision paths are needed. 
However, handcrafted features cannot fully characterise the tumour 
micro-environment, thus capping predictive performance. Deep-
learning models, by contrast, learn end-to-end representations that 
automatically capture high-dimensional textures and contextual 
cues ,  uncovering  richer  EGFR-associated  patterns  in  
heterogeneous images and therefore hold a higher theoretical 
ceiling. Yet, despite encouraging internal results (pooled AUC ≈ 
0.84), the absence of external validation, heightened risk of bias, and 
variability in scanning protocols and patient demographics 
continue to impede clinical translation. 

To advance these models toward bedside application, we 
advocate: (i) multicentre, prospective PROBE-style studies 
supplemented by federated learning to broaden data coverage; (ii) 
domain-adaptation strategies to mitigate scanner and protocol 
discrepancies; (iii) routine release of model code and weights, 
decision-curve and cost–benefit analyses; and (iv) enhanced 
explainability and seamless integration into clinical workflows. 
Only through sustained verification across diverse populations 
and devices—and adherence to STARD-AI and CLAIM reporting 
standards—can AI-based predictors evolve from research 
prototypes into reliable tools for precision management of 
lung cancer. 
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