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Pseudouridine synthases (PUSs) are associated with the development and

progression of various cancers. However, the role of pseudouridine synthase 1

(PUS1) on HCC is unclear. The purpose of this study is to explore the biological

role and mechanism of PUS1 in HCC growth and progression. We identified the

expression of PUS1 in HCC. The biological roles and downstream cell signaling

pathways of PUS1 were explored to clarify the molecular mechanism of PUS1 in

the growth and development of HCC. The results showed that the expression of

PUS1 was correlated with HCC progression, metastasis, and poor survival. In

addition, the knockdown of PUS1 dramatically inhibited cell proliferation and

colony formation and promoted cell apoptosis. GSEA analysis revealed that c-

MYC, DNA repair, and mTORC1 pathways were significantly enriched in patients

with high PUS1 expression. An intersection of the PUS1-dependent Y
modification genes and c-MYC or mTORC1 pathway genes was performed.

The expression of a part of these genes changed after PUS1 knockdown.

Meanwhile, the expression of c-MYC and mTOR were down-regulated after

PUS1 knockdown, but the inhibitory effect of PUS1 on cell growth capacity was

not enhanced after inhibiting c-MYC or mTOR pathways. In conclusion, PUS1

regulates the occurrence and development of HCC through c-MYC and mTOR-

related signaling pathways. It could be a novel molecule for clinical diagnosis,

progression surveillance, prognosis assessment and therapeutic target of HCC.
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1 Introduction

Hepatocellular carcinoma (HCC), the most common type of liver

cancer, is the third leading cause of cancer death worldwide, with a

relative 5-year survival rate of approximately 18% (1). Several factors

may increase the risk of HCC, including chronic hepatitis B and

hepatitis C, alcohol dependence, metabolic liver disease (especially

nonalcoholic fatty liver disease), and dietary toxins (2–4).

Unresectable HCC patients still face unmet medical needs and a

poor prognosis (5, 6). Early diagnosis and timely treatment of HCC

are the most fundamental solution to improve the prognosis of

patients. Currently, abdominal ultrasound is the standard screening

test used in clinical practice, but its sensitivity is only around 50% (7).

In patients with obesity, ultrasonography becomes even less sensitive.

A few HCC biomarkers with a real clinical effect have emerged.

Alpha-fetoprotein (AFP) has been used for more than 60 years.

However, a recent study showed that AFP is insufficiently sensitive to

HCC (8).Elevated serum des-gamma-carboxy prothrombin (DCP)

expression is associated with HCC and poor prognosis (9). However,

current limitations for the early diagnosis of HCC highlight the need

for more effective HCC surveillance tests.

Pseudouridylation (Y) is the most abundant and widespread

type of RNA epigenetic modification in living organisms, and theY
of the noncoding RNAs of the translation and splicing machineries

is important for their functions (10). However, the biological role of

Y remains poorly understood.

In yeast, most mRNA pseudouridines have been genetically

assigned to two conserved pseudouridine synthases (PUSs), i.e.,

PUS1 and PUS7 (11), which are nuclear-localized during normal

growth. Human PUSs localize to the nucleus or have nuclear

isoforms (12) and are active in the nucleus, where they target pre-

mRNA (13). Previous studies on PUSs associated human diseases

are primarily focus on the PUS7 and dyskerin pseudouridine

synthase 1 (DKC1). PUS7 plays a critical role in development and

brain function as a versatile RNA modification enzyme targeting

many RNAs (14). DKC1 is markedly upregulated in many different

human cancer tissues, including HCC and colorectal cancer, which

impacts the overall survival and progression-free survival outcomes

of patients (15, 16). Recent results for a rapid, high-throughput in

vitro assay to quantitatively assess Y of thousands of sequences in

parallel validated 83% of mRNA Y genetically assigned to yeast

PUS1 in vivo. Unfortunately, these studies failed to detectY of some

known human PUS1 tRNA targets in vitro (17). Despite the latest

research reported that PUS1 promotes HCC through mRNA

pseudouridylation to enhance the translation of oncogenic

mRNAs (18), the biological role and mechanism of PUS1 remain

poorly understood, especially in human cancer.

Herein, the objectives of this study are to (1) investigate the

prognostic value of PUS1 gene expressions in HCC using datasets

from The Cancer Genome Atlas (TCGA), the Clinical Proteomic

Tumor Analysis Consortium (CPTAC), the UALCAN website,

THE HUMAN PROTEIN ATLAS, the TCGA-HCC database, and

HCC patients’ tumor tissues; (2) investigate the potential

mechanism of PUS1 affecting occurrence and development of

HCC; and (3) verify the mechanism based on experiments on
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HCC cell lines. This study provides a potential novel biomarker

and therapeutic target for improving clinical diagnosis, progression

surveillance, and prognosis assessment of HCC.
2 Materials and methods

2.1 The expression analysis of PUSs in HCC

TGCA_HCC database (https://xena.ucsc.edu/) was used to

confirm the mRNA expression of 13 PUSs. CPTAC database

(https://cptac-data-portal.georgetown.edu/) was used to confirm

the protein expression of 12 PUSs (Project: Integrated

Proteogenomic Characterization of HBV-related HCC).
2.2 PUS1 expression analysis in HCC

UALCAN (http://ualcan.path.uab.edu/) was used to analyze the

mRNA (TCGA module) and protein (CPTAC module) expression

for PUS1. The PUS1 expression based on sample types, individual

cancer stage, and tumor grade was analyzed in “Expression”

module. Additionally, the PUS1 expression in E-MTAB-6695, E-

MTAB-4171, GSE39791, GSE47197, GSE54236, GSE25079, E-

MTAB-8887, GSE17548, GSE56140, and GSE54238 databases

based on sample types, liver disease, and tumor grade was

extracted from ArrayExpress (https://www.ebi.ac.uk/arrayexpress/,

accessed on 25 August 2022).
2.3 The IHC analysis of PUS1 in THE
HUMAN PROTEIN ATLAS

The immunohistochemistry (IHC) staining and subcellular

localization analysis of PUS1 in HCC were obtained from THE

HUMAN PROTEIN ATLAS (https://www.proteinatlas.org/)

TISSUE and PHATHOLOGY module. ImageJ was used for

quantitative analysis.
2.4 Survival analysis in Kaplan–
Meier plotter

Kaplan–Meier plotter (http://kmplot.com/analysis/) was used

to assess the correlation between the expression of 30,000 genes and

patient survival. The overall survival (OS), disease-specific survival

(DSS), progression-free survival (PFS), and relapse-free survival

(RFS) curves of 13 PUSs were analyzed. The high and low PUSs

expression groups were defined as above or below the median

expression value of the 13 PUSs in Kaplan–Meier Plotter website

“using multiple genes” module (17). The expression cutoff was split

by “auto select best cutoff” option. When this checkbox was

selected, all possible cutoff values between the lower and upper

quartiles were computed, and the best performing threshold was
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used as a cutoff. After excluding the biased arrays, the Kaplan–

Meier survival curves were obtained. Using the “restrict analysis to

subtypes” option, correlation of PUS1 mRNA expression and

clinical prognosis in HCC with different clinicopathological

factors was obtained.
2.5 GSEA analysis

TGCA_HCC databases (https://xena.ucsc.edu/) were downloaded

and mined. Data from patients with the top 30 tumors with the

highest PUS1 expression and the bottom 30 tumors with the lowest

PUS1 expression in TCGA_HCC were used for gene set enrichment

analysis (GSEA) using hallmark gene sets.
2.6 Cell culture and transfection

LO2, SNU449, HepG2, and PLC/PRF/5 cell lines were

purchased from the American Type Culture Collection (ATCC;

Manassas, VA, USA). Cells were cultured and maintained in

Dulbecco’s modified Eagle medium (DMEM); supplemented with

10% fetal bovine serum(FBS), 100 U/mL penicillin, and 100 µg/mL

streptomycin. Cells were incubated in a humidified chamber at 37°

C under 5% CO2.SNU449 and HepG2 cell lines were transfected by

PUS1–siRNA (siPUS1#1: GCCAGAGCTTCATGATGCA;

siPUS1#2: GTCGGGTCCTCACAATTCA; negative control (NC):

TTCTCCGAACGTGTCACGT, from RIBOBIO (China)). The

transfection was performed according to the protocol (Beyotime,

lp8000, C0533-1.5 ml, Shanghai, China).
2.7 Antibodies

Several antibodies were obtained, including anti-PUS1

(EPR13235(B); Abcam), anti-mTOR (66888-1-1g; Proteintech;

Rosemont, IL, USA), anti-c-Myc (9402; Cell Signaling

Technology; Danvers; MA, USA), Phospho-S6 Ribosomal Protein

(Ser235/236) (2211S; Cell Signaling Technology; Danvers; MA,

USA) and anti-GAPDH antibodies (AB9132; Promega

Corporation; Madison, WI, USA). Goat anti-rabbit Alexa Fluor

488 (A-31566) and goat anti-mouse Alexa Fluor 647 (A-21242)

were used as the secondary antibodies.
2.8 Cell viability assay

Cell viability was evaluated using classical MTT assay. Cell

cultures with a density of 3,000 cells/well were cultured in 96-well

plates for 24 h. Cells were transfected with siPUS1 and NC. After

being cultured for 72 h and washed thrice with phosphate buffered

saline (PBS) buffer, the cells were treated withMTT (5mg/mL) for 4 h.

The formazan was dissolved in 150 mL of dimethyl sulfoxide (DMSO)

after removal of supernatants. A microplate reader (Biotek Cytation5)

was used for colorimetric measurements at 490 nm wavelength.
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2.9 Colony forming assay

Adherent cells were transfected with siPUS1 and NC in 6-well

plates (500−1,000 cells/well). Following incubating without

changing the cell culture medium for 14 days, crystal violet

staining (0.1%) was performed after 15 min of fixation with 4%

paraformaldehyde. Results were visualized by camera.
2.10 Western blotting

Adherent cells were transfected with siPUS1 and NC in 24-well

plates (2 × 104 cells/well). Following incubating without changing

the cell culture medium for 72 h, protein lysates were collected with

radio-immunoprecipitation assay (RIPA) buffer (Sangon; Shanghai,

China). The protein concentration was determined by the

ThermoFisher Scientific BCA protein assay kit (NCI3225CH). A

total of 20 mg of total proteins from supernatant was analyzed on

sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-

PAGE), and then transferred to nitrocellulose membrane.

Following blocking with 5% non-fat milk diluted in 1× Tris-

buffered saline with 0.1% Tween-20 (TBST) buffer for 1 h, these

nitrocellulose membranes were incubated with primary antibodies

at 4°C overnight. Subsequently, the nitrocellulose membrane was

washed by TBST, and then incubated with an HRP-conjugated

secondary antibody (1:5000) at room temperature for 1.5 h. The

protein bands were visualized by enhanced chemiluminescence

(ECL) reagents and chemiluminescence system (GE Amersham

Imager 600; Boston, MA, USA).
2.11 Flow cytometric analysis of Annexin V
apoptosis assay

Apoptotic and necrotic cells, following treatment, were detected

by the Annexin V-FITC Apoptosis Detection Kit (No. K101-25;

BioVision). A total of 5 × 105 cells were cultured in 6-well plates,

and then they were transfected with siPUS1 and NC, followed by

incubation for 72 h without changing the cell culture medium. A

total of 1 × 105 cells were collected and resuspended in 500 mL, and
then the binding buffer of 5 mL of Annexin V-FITC and 5 mL of

propidium iodide (PI) was added, which was incubated at room

temperature in the dark for 5 min. Annexin V-FITC binding was

analyzed by flow cytometry (excitation, 488 nm; emission, 530 nm).
2.12 IHC staining

The immunohistochemical (IHC) method was used to detect

the expression of PUS1 protein in 45 pairs of paraffin-embedded

HCC tissues and matched adjacent normal liver tissues. The slices

were heated, dewaxed, rehydrated, and put into sodium citrate

buffer (pH buffer = 6. 0) for antigen repair. The slide was then

soaked in 3% hydrogen peroxide to inhibit endogenous peroxidase

activity and sealed with sheep10% FBS/PBS. After rinsing three
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times, The slides were incubated with primary antibody against

PUS1 (1:100; AB175240; Abcam; Cambridge, UK) overnight at 4°C.

Slices were washed three times using PBS and then treated with a

second antibody (anti-rabbit Ig GJI 1D 2000 diluted, # 7074; Cell

signal, Danvers, MA, USA) for 40 min at 37°C. After being stained

with 3BI-3-diaminobenzidine (DAB), it was stained with

hematoxylin, dehydrated, sealed, and observed.

The IHC staining scores were evaluated by two pathologists

blinded to clinical materials. A quick scoring system from 0 to 12

that combined the intensity and percentage of the positive signal

was used. About the intensity of, 0, 1, 2, and 3 represented no

staining, weak staining, intermediate staining, and strong staining,

respectively. According to the percentage of the positive staining,

the staining degree is scored as 0 (0), 1 (1%–25%), 2 (26%–50%), 3

(51%–75%), and 4 (76%–100%). The score of the intensity and

range of an image was used as the final score of PUS1 (0–12). Tissue

protein expression was defined as high level when the score was ≥7

and low level when the score was ≤6.
2.13 RT-PCR

RNA extraction with Trizol (Invitrogen; Carlsbad, CA, USA)

and real-time (RT)-PCR was performed for gene expression. All the

reactions were performed with Takara SYBR Premix Ex Taq

(Takara; Dalian, Liaoning, China) and quantified by a CFX96

Real-Time PCR System (Bio-Rad) for the qPCR-based mRNA

export analysis. The 2(-Delta Delta C (T)) method was used for

calculating the relative fold changes in cytoplasmic/nuclear ratios.

The primer pairs used for qPCR are listed in Supplementary

Material (Supplementary Table S1).
2.14 Statistical analysis

Student’s T-test and one-way analysis of variance (ANOVA)

test were performed to analyze the difference between two groups

and among more than two groups, respectively. Pearson analysis

was performed for correlation analysis. Data were presented as the

mean ± standard error of mean, and P < 0.05 was considered

statistically significant.
3 Results

3.1 PUSs expression increased in HCC and
predicted poor prognosis

The mRNA expression of most PUSs, such as RPUSD1, PUS7,

PUS7L, RPUSD3, RPUSD2, PUSL1, PUS1, and DKC1 (Figure 1A),

and protein expression of PUS1, PUS7, and DKC1 were

significantly increased in tumors (Figure 1B). The results from

Kaplan–Meier Plotter website demonstrated that HCC patients
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with high PUSs expression predicted shorter OS, DSS, and RFS

time (Figures 1C–F). The detail of survival analysis on the 13 PUSs

is shown in Supplementary Material (Supplementary Table S2). In

summary, most PUSs expression increased in HCC, and high PUSs

expression predicted shorter OS, DSS, and RFS time.
3.2 PUS1 expression increased in HCC

It was found that PUS1 expression was increased in HCC in the

TCGA and CPTAC datasets (Figures 2A, B). To further confirm the

high expression of PUS1 in HCC tissues, RNA sequencing data of

HCC and normal liver tissues were obtained from ArrayExpress

website. Six datasets were analyzed and all the results showed that

PUS1 expression was increased in tumor tissues (Figures 2C–H). It

was also observed that PUS1 expression was increased in HCC cell

lines, including Huh7, HepG2, SUN449, and PLC/PRF/5, compared

with normal cell lines LO2 andWRL68 (Figure 2I). Moreover, results

based on the immunohistochemically staining of PUS1 in cancer and

normal tissues of HCC patients in THE HUMAN PROTEIN ATLAS

database showed that PUS1 was highly expressed in HCC patients

(Figures 2J, K). Meanwhile, immunohistochemical staining was

performed on 45 pairs of tissues (tumors and normal liver tissues)

collected from the HCC patients of our hospital, and the results

consistently suggested that PUS1 was elevated in liver tumor tissues

(Figures 2L, M). In short, PUS1 is highly expressed in HCC and may

be a novel biomarker for HCC.
3.3 High PUS1 expression was positively
correlated with occurrence and
progression of HCC

Subgroup analysis of PUS1 expression in HCC based on the

ArrayExpress database was performed. The expression of PUS1 was

increased in tumor compared to hepatitis or cirrhosis (Figures 3A–

C). The PUS1 expression in HCC tissues collected from patients

with different stages and metastasis status proved that PUS1

expression was higher in patients with stage III/IV than in

patients with stage I/II(Figures 3D, F–H), and PUS1 expression

was higher in patients with metastasis than in primary tumors

(Figure 3E). The expression of PUS1 in HCC was positively

correlated with tumor stemness (Supplementary Figure S1). These

results indicated that high expression of PUS1 was related to the

occurrence and malignant progression of HCC.
3.4 High PUS1 expression in HCC predicted
poor prognosis

HCC patients were divided into high- and low-expression

groups based on the best cutoff value in Kaplan–Meier Plotter

website. The relationship between the PUS1 expression and clinical
frontiersin.org
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characteristics of HCC patients is shown in Supplementary Excel

(Excel 1). HCC patients with high PUS1 expression had a shorter

OS time (Figure 4A). Furthermore, high PUS1 expression predicted

shorter PFS, RFS, and disease-specific survival time (Figures 4B–D),

and the detail of PUS1 survival analysis is shown in the

Supplementary Material (Supplementary Table S3), indicating

that PUS1 was related to the malignant progression. Overall, high

expression of PUS1 predicted a poor prognosis in HCC patients.
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3.5 PUS1 silencing inhibited HCC cell
proliferation and colony formation, and
promoted cell apoptosis

To explore the functional role of PUS1 in the malignant behavior

of HCC cells, the expression of PUS1 in HCC cells was knocked down

using two different siRNAs targeting PUS1 (siRNA#1 and siRNA#2)

(Figures 5A, B). MTT assay showed that PUS1 siRNA could suppress
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the growth in SNU449 and HepG2 cells (Figures 5C, D). Colony

formation assay demonstrated that SNU449 and HepG2 cells treated

with PUS1 siRNA generated fewer colonies than the NC group

(Figures 5E, F). Apoptosis assay by flow cytometric analysis

revealed that PUS1 siRNA promoted apoptosis of SNU449 and

HepG2 cells (Figures 5G, H). In contrast, PUS1 knockdown did

not inhibit cell growth and colony formation in normal liver cell lines

(LO2, WRL68) (Figures 5I–K). In summary, PUS1 is an important

target that promotes the proliferation of HCC cells.
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3.6 PUS1 promoted tumorigenesis and
progression of HCC dependent on the
mTOR and MYC pathways

To better understand the potential mechanisms and the

downstream targets of PUS1 in HCC, GSEA analysis between high

and low PUS1 expression patients using hallmark gene sets based on

TCGA_HCC database was performed. Results indicated that MYC

pathways, DNA repair, and MTORC1 pathways are the potential
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downstream pathways (Figures 6A–E). In order to determine the

downstream potential targets of PUS1 regulating MYC or MTORC1

pathways, an intersection of the PUS1-dependent Y modification

genes and MYC or MTORC1 pathway genes was performed. A total

of 14 genes were found Supplementary Excel (Excel 2). These genes
Frontiers in Oncology 07
might be potential downstream targets of PUS1 (Figures 6F–H). After

knocking down PUS1, the expression of potential downstream

oncogenic genes of MYC pathway, including WDR43, EIF4G2,

HNRNPC, and HNRNPA2B1, were down-regulated (Figure 6I).

Moreover, the expression of potential downstream tumor suppressor
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genes of MTORC1 pathway, including ACSL3, DHCR24, and

ACACA, were increased after knocking down PUS1 (Figure 6J).

Then, we investigated whether PUS1 promoted tumorigenesis

and progression of HCC were dependent on the mTOR and MYC

pathways. As expected, knocking down PUS1 in SNU449 and

HepG2 cells, the mRNA expression of MYC, pre-MYC, mTOR

and pre-mTOR were significantly down-regulated (Figures 7A, B).

Meanwhile, Western blotting demonstrated that the expression of

MYC, p-mTOR and mTOR pathway‐related protein P-S6 were

decreased in SNU449 and HepG2 cells (Figures 7C, D). In addition,

to explore the impact of MYC and mTOR on PUS1‐mediated cell

proliferation, SNU449 and HepG2 cells with PUS1 knockdown

were treated with inhibitors of MYC (10058-F4) or mTOR

(rapamycin) against MYC and mTOR pathways. It was found

that the inhibitory effect of PUS1 on cell growth capacity was not

enhanced after MYC or mTOR pathways inhibition (Figures 7E–
Frontiers in Oncology 08
H). Altogether, these results suggested that the role of PUS1

promoted tumorigenesis and progression of HCC is dependent

on the mTOR and MYC pathways (Figure 8).
4 Discussion

Our results showed that the expression of most PUSs is

increased in HCC tissues, indicating that high PUSs expression

predicted a worse prognosis. According to previous studies,Y plays

a key regulatory role in the development and progression of various

human cancers (19). Y has been associated with tumorigenesis via

dysregulation of Y installation machinery (20). For example, high

PUS7 expression levels are associated with poor survival in patients

with glioblastoma (21); Y in difficult-to-treat subsets of MDS is

characterized by high risk of progression to acute myeloid
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leukaemia (22); miR-10b modulates U6 N-6-adenosine Y
promoting glioblastoma tumorigenesis (23); loss of NOP10 and

subsequent reduction in H/ACA box snoRNAs and rRNA Y
inhibited lung cancer tumorigenesis (24); lacking SNORA24-

guided Y is associated with liver cancer tumorigenesis (25).

Hence, abnormal expression of PUSs can catalyze the formation

of Y and play an important regulatory role in HCC growth

and progression.
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Our result indicated that PUS1 expressed significantly higher in

cancer tissues than adjacent liver tissues of HCC patients, in line

with the results of the patient data analysis of THE HUMAN

PROTEIN ATLAS database. It was also found that mRNA

expression of PUS1 was increased in HCC tumor tissues

compared with normal liver tissues in the UALCAN website, E-

MTAB-6695, E-MTAB-4171, GSE39791, GSE47197, GSE54236,

and GSE25079. In addition, protein expression of PUS1 in
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different HCC cell lines was also higher than in normal liver cells.

Therefore, PUS1 is highly expressed in liver cancer patients and

may be a novel diagnostic biomarker. Through subgroup analysis, it

was found that expression of PUS1 was abnormally elevated in
Frontiers in Oncology 11
tumor compared to hepatitis or cirrhosis; it was higher in patients

with stage III/IV than in patients with stage I/II, and it was also

higher in patients with metastatic tumors than in primary tumors.

These results indicated that PUS1 was related to malignant
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PUS1 promotes cell proliferation depending on the mTOR and MYC pathways. (A, B) RT–PCR analysis of the mRNA expression of MYC, pre-MYC,
mTOR and pre-mTOR in HCC cells after transfection with control or PUS1 siRNA. (C, D) WB testing of PUS1, MYC, mTOR, p-mTOR and P-S6
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progression of HCC. The onset and progression of HCC is a

multistep process (26), and liver cirrhosis often occurs before live

cancer formation (27), no matter whether it is caused by alcoholic

hepatitis cirrhosis (28) or by viral hepatitis cirrhosis (29). Based on

this result, in clinical practice, PUS1 detection is recommended for

patients with chronic liver disease to be a biomarker or a

supplementary detection for APF biomarker in early and definite

diagnosis for the HCC patients who cannot be clearly identified by

imaging examination. However, single biomarker has suboptimal

performance for early HCC detection, likely related to tumor

heterogeneity. We speculate that the detection of combined AFP

with PUS1 possible produce an algorithm with better sensitivity for

HCC patients with cirrhosis. Furthermore, the function of PUS1 to

the malignant behavior of HCC cells was explored to verify the

relevant results. It can be observed in in vitro experiments that

PUS1 silencing inhibited HCC cell proliferation and colony

formation, and promoted cell apoptosis. In summary, our study

revealed that PUS1 is a potential novel tumor biomarker and

effective therapeutic target for improving clinical diagnosis,

progression surveillance, and prognosis assessment of HCC.

In this study, we demonstrated that PUS1 may regulate the

occurrence and development of HCC via mTOR and MYC

pathways. The potential mechanisms of PUS1 in HCC were

explored by GSEA analysis, given that gene expression of MYC
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pathways, DNA repair, and mTORC1 pathways were significantly

changed. PUS1 may promote HCC by regulating MYC and mTOR;

after knocking down PUS1 in SNU449 cell, the protein expression of

c-MYC and mTOR were significantly down-regulated, with the

changing of downstream gene mRNA expression associated with

the two pathways. Previous studies have shown that Y modification

in RNA can affect the mRNA stability, protein translation, and pre-

RNA splicing process in cancer (30). The expression of other PUSs,

such as DKC1 and PUS7, were closely related to the expression of

MYC, but the detailed mechanism is unclear (31). We found that

knockdown of PUS1 reduced the expression of MYC and mTOR.

The potential mechanism between PUS1 and MYC, and mTOR may

regulate through mRNA stability, protein translation, and pre-RNA

splicing process. In addition, there are Y sites on the CDS region of

MYC mRNA in human or mouse, but there are no Y sites on the

CDS region of mTOR (32). The abundance of Y was second only to

m6A (Y/U 0.2-0.4%) in mRNA (33). HCC is a phenotypically and

genetically heterogeneous tumor and its tumorigenesis is driven by a

variety of molecular mechanisms. Among them, the mTOR

pathways, as a central regulator of cell growth and metabolism in

response to growth factors and cellular stress, play a key role in

regulating HCC development and progression (34). Equally

important, post-translational modifications (PTMs) are essential

biochemical reactions that covalently regulate the conformation,

activity, and stability of proteins, and play a critical role in a broad

spectrum of biological processes (35). As an important PTM, protein

phosphorylation is involved in the regulation of almost all biological

processes in eukaryotes (36). Our study showed that the protein

expression of p-mTOR had a positive correlation with PUS1

expression, which indicated that PUS1 promoted tumorigenesis

and progression of HCC by regulating mTOR PTMs. It was

recently reported that the kinase activity of MTOR modified nearly

half of the phosphorylation sites of human ULK1, which was the

mostly hyperphosphorylated protein among all ATGs (37).

Moreover, the transcription factor and oncoprotein MYC are

potent drivers of many human cancers and can regulate numerous

biological activities that contribute to tumorigenesis, and they also

play an important role in the development of HCC (38). Interestingly,

recent study showed that MYC and mTOR are synchronously

involved in the regulation of HCC occurrence and progression

(39). Our results revealed that PUS1 promotes tumorigenesis and

progression of HCC, which is dependent on mTOR and

MYC pathways.
5 Conclusion

PUS1 could be a novel effective therapeutic target for improving

clinical diagnosis, progression surveillance, and prognosis assessment

of HCC. PUS1 promotes tumorigenesis, and progression of HCC is

dependent on the mTOR and MYC pathways.
FIGURE 8

A schematic view of PUS1 promoted tumorigenesis and progression
of HCC dependent on the mTOR and MYC pathways.PUS1
expression was increased in HCC. However, knocking down PUS1 in
HCC cells, the expression of MYC, p-mTOR and mTOR pathway‐
related protein P-S6 were decreased. These results suggested that
the role of PUS1 promoted tumorigenesis and progression of HCC is
dependent on the mTOR and MYC pathways.
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