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Objective: To investigate the value of using imaging histological models to non-

invasively assess the risk of metastasis in patients with clear cell renal cell

carcinoma (ccRCC).

Methods: This study retrospectively enrolled 273 clear cell renal cell carcinoma

(ccRCC) patients from three hospitals, with 57 cases allocated as an independent

test cohort. High-throughput imaging histomic features (n=2,264) were

extracted from triphasic CT (non-enhanced, corticomedullary, and

nephrographic phases) using Pyradiomics. Three monophasic radiomics

models were developed following dimensionality reduction, with feature

contributions quantified via Shapley Additive exPlanations (SHAP) framework to

enhance interpretability. A triphasic radiomics model was subsequently

established by ensembling phase-specific prediction probabilities. Metastasis

risk factors identified through univariate/multivariate logistic regression

informed a clinical predictor model. The final combined model integrated

triphasic radiomics signatures with clinical parameters, visualized through a

nomogram. Diagnostic performance was evaluated via ROC analysis, while

calibration curves validated prediction consistency.

Results: In this study, SHAP analysis revealed that radiomics features quantifying

intratumoral heterogeneity (e.g., necrosis patterns in medullary-phase CT)

synergized with clinical factors (tumor size >3 cm, creatinine levels) to drive

predictions. Key biological insights included threshold effects of necrosis volume

(linked to hypoxia) and tumor diameter (critical threshold: 3 cm), aligning with

known metastatic pathways. The clinical model achieved an area under the ROC

curve (AUROC) of 0.752 (95% confidence interval [CI]: 0.679-0.826) in the

training dataset and 0.681 (95% CI: 0.529-0.833) in the testing dataset. Among

the single-phase radiomics models, the CT_Medullary model demonstrated

good prediction performance, with an AUROC of 0.785 (95% CI: 0.645-0.924)

in the testing dataset. The three-phased CTmodel exhibited improved diagnostic

performance, with a testing AUROC rising to 0.812 (95% CI: 0.680-0.943).

Notably, the combined model integrating clinical and radiomics features

yielded the best prediction, achieving a further improvement in testing AUROC

to 0.824 (95% CI: 0.704-0.944).
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2025.1576956/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1576956/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1576956/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2025.1576956&domain=pdf&date_stamp=2025-06-06
mailto:529125118@qq.com
https://doi.org/10.3389/fonc.2025.1576956
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2025.1576956
https://www.frontiersin.org/journals/oncology


Wang et al. 10.3389/fonc.2025.1576956

Frontiers in Oncology
Conclusion: Radiomics technology provides a quantitative, objective method for

predicting the risk of metastasis in patients with ccRCC. Nonetheless, the clinical

indicators persist as irreplaceable.
KEYWORDS
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1 Introduction

Renal cell carcinoma (RCC) accounts for approximately 90% of

renal malignancies, with clear cell renal cell carcinoma (ccRCC)

being the most common subtype (1, 2). Surgery is the most effective

radical treatment, but studies have shown that approximately 30%

of ccRCC patients present with local recurrence or metastasis at

initial presentation (3, 4). ccRCC does not respond well to

radiotherapy and chemotherapy, and the 5-year survival rate for

patients with metastatic ccRCC is only 10% (5). Therefore, accurate

assessment of the risk of ccRCC recurrence and metastasis after

surgery is extremely important for patient prognosis. Currently, the

prognosis of patients with RCC is mainly predicted by tumor size,

TNM staging system, Fuhrman classification, WHO/ISUP

classification, and other clinicopathological features with limited

accuracy, and patients with RCC of the same stage and/or

pathological classification often have different prognoses (6).

Therefore, new markers are urgently needed to improve the

efficacy of predicting ccRCC recurrence and metastasis for

accurate and personalized clinical decision-making.

Computed tomography (CT) is a widely used non-invasive

imaging modality for tumor staging and assessment of tumor

aggressiveness in ccRCC patients (7). Radiomics, a promising and

emerging technique, enables the transformation of medical images

into vast amounts of image-related features that can be analyzed in

model-building algorithms (8–10). To date, radiomics has been

successfully applied in several areas of RCC, including prediction of

Fuhrman stages and response to therapy in ccRCC and

discrimination of RCC subtypes. However, most studies have

focused on developing models based solely on texture analysis,

neglecting the importance of clinical risk factors and radiological

features that could improve predictive performance (11–14). It is

worth noting that multimodal data fusion is expected to enhance

diagnostic performance, probably because information from

different modalities can complement each other and has already

shown excellent capabilities in the domain of treatment and

prognostic prediction for glioma, ovarian cancer, and breast

cancer, among others (15–17).

The purpose of this study was to develop and validate a

radiomics nomogram incorporating CT radiological features and

clinical factors to predict the risk of metastasis in ccRCC.
02
2 Materials and methods

2.1 Patients

The clinical and imaging data of patients diagnosed with ccRCC

between April 2013 and March 2021 at Shandong University Qilu

Hospital, Jinan Campus (Hospital A), Shandong University Qilu

Hospital, Qingdao Campus (Hospital B), and Changzhou No. 2

People’s Hospital (Hospital C) were retrospectively reviewed.

Patients were categorized based on the presence or absence of

metastasis at 3 years postoperatively. Ethical approval was granted

by the institutional review boards of the three hospitals to access

their clinical and imaging records for this study. Due to the

retrospective nature of the research, written informed consent

was not necessary. The inclusion criteria were: (i) pathologically

confirmed ccRCC; (ii) a thorough review of patient data, including

three-phased CT scans (i.e., non-enhanced, cortical enhanced, and

medullary enhanced phases) and laboratory results. The exclusion

criteria were: (i) inability to evaluate the patient’s imaging; (ii)

incomplete general or laboratory data; and (iii) a history of other

malignancies. Ultimately, 273 patients were included in the study,

of whom 89 developed metastases.
2.2 Image acquisition and preprocessing

All subjects underwent CT enhancement scanning. Patients at

Hospital A were examined using up to five different CT helical/

spiral scanners, including General Electric Medical Systems, Philips,

Siemens, Canon Medical Systems, and a Toshiba 512-row detector;

patients at Hospital B were examined using three different CT

helical/spiral scanners. These included a 256-slice CT (GE

Revolution CT, GE Healthcare, USA), a dual-source CT

(SOMATOM Definition, Siemens Healthineers, Germany), and a

dual-source CT (SOMATOM Force, Siemens Healthineers,

Germany). Hospital C employed Siemens Germany’s Definition

Flash CT for the initial examination. The renal examination was

conducted using a scanning scope that extended from the upper

pole to the lower pole, encompassing the entire kidney. The

scanning parameters employed in the three hospitals included in

this study are presented in Supplementary Table 1. Consequently,
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the three-phase CT scan images of the non-enhanced, cortical

enhanced, and medullary enhanced phases of one patient were

evaluated for quality by two radiologists, and any discrepancies

were resolved by a senior radiologist with over two decades of

diagnostic experience.

The image preprocessing procedures involved the following

steps: (1) pixel resampling to a resolution of 1 × 1 mm²; (2) grey-

level normalization using the ± 3 sigma method; and (3) grey-level

discretization into 64 distinct levels.
2.3 Tumor delineation

All CT images in DICOM format were imported into ITK-

SNAP v3.6.0 (www.itksnap.org) for annotation of ccRCC lesions,

maintaining their original size and resolution. The region of interest

(ROI) was delineated by two experienced radiologists (R1 and R2)

on cortical enhanced phase CT images. The radiologists jointly

reviewed the images to define the three-dimensional (3D) ROI

covering the entire lesion. Following this, the non-enhanced phase,

medullary enhanced phase, and cortical phase images were aligned

using rigid registration to correct for any motion between

acquisitions. The ROIs delineated on the cortical enhanced phase

images were then mapped to the other two phases and reviewed by a

radiologist for further radiomics analysis. The accuracy of the

registration was assessed using the Dice similarity coefficient

(DSC), which measures the similarity between the registered

mask of the moving image (transformed original mask) and the

reference segmentation on the fixed image. A DSC value of 0.80

indicated good registration performance.
2.4 Radiomics analysis

The radiomics analysis pipeline, encompassing radiomics

feature extraction, feature selection, model construction, and

performance evaluation, was conducted using the uAI Research

Portal (uRP, United Imaging Intelligence) (18). To improve model

interpretability, the Shapley additive explanations (SHAP) method

was applied by assigning each feature an importance value in the

prediction, providing insights into how the model makes decisions.

2.4.1 Feature extraction and selection
For each imaging modality (i.e., non-enhanced CT, cortical

enhanced CT, and medullary enhanced CT), each ROI extracted

2,264 radiomic features in compliance with the Image

Biomarker Standardization Initiative (IBSI) (19), encompassing

first-order statistics, shape-based features, and texture features.

Additionally, each participant owned 42 clinical characteristics,

including demographic information, biological data, and ccRCC

characteristics. To ensure model’s generalizability, feature selection

and model construction was conducted on the training dataset

and validated on an independent testing dataset. Among the

273 participants, 216 individuals from Hospital A and Hospital B
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comprised the training dataset, while the remaining 57 participants

from Hospital C formed the independent testing dataset.

To select the most valuable radiomics features for constructing

three single-phased CT models, feature standardization was initially

performed to eliminate the magnitude differences between various

features. Only features with intraclass correlation coefficient (ICC)

values greater than 0.75 in both intra-observer and inter-observer

agreement tests were retained. The feature selection strategy was

customized for each model to balance robustness and performance.

For the CT_Cortical model, an F-test (P < 0.05) was first applied to

exclude statistically non-significant features, followed by least

absolute shrinkage and selection operator (LASSO) regression (a
= 0.08) to further reduce multicollinearity. For the CT_Medullary

and CT_Non-enhanced models, minimum redundancy maximum

relevance (mRMR) was employed to directly optimize feature

relevance-redundancy trade-offs, as these phases exhibited

stronger inter-feature correlations. For the clinical model, the

univariate logistic regression (P < 0.05) identified statistically

significant predictors, and mRMR refined the subset by removing

redundant variables. These methods were applied sequentially (not

independently), with the workflow for each model optimized

through grid search and cross-validation. In accordance with

Harrell’s guideline, the number of selected features should not

exceed 10% of the size of the smallest group (the metastasis

group) in the training dataset, which is equivalent to 10 EPP

(events per candidate predictor parameter) (20). Consequently,

the final number of features in each constructed model was

limited to fewer than 7. Detailed parameters in feature selection

for models are summarized in Supplementary Table 2.

2.4.2 Model construction and validation
Based on the selected features, various data preprocessing

techniques were employed for feature standardization, such as Z-

score scaler, max_abs scaler, L2 normalization, and quantile

transformer. To ensure algorithmic diversity and robustness, six

machine learning classifiers – random forest (RF), logistic

regression (LR), decision tree (DT), Bagging DT, support vector

machine (SVM), and partial least squares-discriminant analysis

(PLS-DA) – were evaluated. These classifiers were selected to

represent distinct computational paradigms, such as tree-based,

linear, ensemble methods. Multiple candidate models were

generated by combining feature subsets, preprocessing methods,

and classifiers. For each classifier, hyperparameters were optimized

via grid search on the training dataset using 5-fold cross-validation,

with the area under the receiver operating characteristic curve

(AUROC) as the optimization metric. The final model for each

modality was selected based on the highest cross-validated AUROC

in the training dataset and subsequently applied to the testing

dataset, ensuring strict separation between model development and

validation phases to prevent data leakage.

Finally, four single-modality models were constructed based on

selected features from their respective modalities: the CT_Corticle

model, CT_Medullary model, CT_Non-enhanced model, and

clinical model. For instance, RF outperformed other classifiers for
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CT_Cortical and CT_Medullary models, likely due to its inherent

noise robustness and suitability for high-dimensional radiomics

data. To investigate whether combining information from three-

phase CT images could improve predictions, a multi-phased CT

model was created by integrating predicted probabilities from the

three single-modality CT models and passing these to another

classifier. Additionally, the potential of combining radiomics with

clinical information was explored by developing a combined model,

which integrated the predicted probabilities from both the multi-

phased CT model and the clinical model. Each of the six final

models was identified as the optimal configuration for its respective

input features, balancing performance and generalizability through

iterative parameter tuning (Supplementary Table 3).

After selecting the optimized model with superior performance

and robustness, the model was applied to the testing dataset to

validate its generalizability. The receiver operating characteristic

(ROC) curve was first plotted, allowing for the quantitative

calculation of the AUROC. Similarly, the precision-recall (PR)

curves suitable for unbalanced sample cases, were plotted to

visualize the discrimination efficiency, with the calculation of the

area under the PR curve (AUPR). To quantitatively assess the

consistency between the actual labels and predicted categories, an

additional five metrics were calculated from confusion matrices:

accuracy, sensitivity, specificity, precision, and F1 score.

Additionally, calibration curves were employed to compare the

predictive outputs with the actual outcomes. Decision curves were

utilized to demonstrate the clinical net benefit of multi-

modality models.

2.4.3 Model interpretability with SHAP and
nomogram

SHAP (Shapley Additive exPlanations) is a Python library

designed to interpret the prediction outcomes of sophisticated

machine learning models based on game theory (21). The

foundation of SHAP lies in the concept of Shapley values. These

values assign an importance score to each feature for a specific

prediction, providing a measure of how much each feature

contributes to the model’s output, thereby enabling researchers to

peek into the “black box” of complex models. The positive or

negative SHAP value is a clear indicator of the nature of a feature’s

influence on model prediction, where a positive SHAP value

represents that the influence of this characteristic on model

prediction is promotional, while a negative SHAP value implies

that the feature suppresses the prediction. In our study, we

harnessed the capabilities of the SHAP library to comprehensively

analyze the impact of each factor on the model’s prediction and

explore how these features interact.

Alongside SHAP, we applied nomogram to visually display how

factors interact and contribute to the model’s prediction, making it

easier to understand the model’s decision-making process. The

nomogram combines different predictors into a single diagram, in

which each variable’s contribution to the prediction is represented

by a scale, and by aligning values on these scales, users can estimate

the outcome.
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2.6 Statistical analysis

The Shapiro-Wilk tests were conducted to assess the normal

distribution of continuous variables. Continuous variables were

expressed as mean ± standard deviation if approximately

normally distributed or as median (25th, 75th percentiles) for

asymmetric distributions. Categorical variables were presented as

counts (proportions). For comparisons between two groups (i.e.,

metastatic vs. non-metastatic groups), normally distributed

continuous variables were analyzed using t-tests and non-

normally distributed variables with Mann-Whitney U tests,

whereas categorical variables were compared via chi-square tests

or Fisher’s exact tests. For comparisons across three cohorts

(training, internal validation, and external validation cohorts),

one-way ANOVA or Kruskal-Wallis H tests were applied to

continuous variables depending on their distribution, and chi-

square tests or Fisher’s exact tests were used for categorical

variables as appropriate. The classification performance of

different models was quantitatively compared using seven metrics:

AUROC, AUPR, accuracy, sensitivity, specificity, precision, and F1

score. When comparing the AUROC of multiple-modality models

with single-modality models, AUROC for each model was

computed at 1000 bootstrap intervals using R (fbroc package) and

statistical analyses were performed using Kruskal-Wallis H tests

followed by Dunnett’s multiple comparisons tests. To qualitatively

compare the classification performance and clinical benefit of

different models, four visualization figures—ROC curve, PR curve,

calibration curve, and decision curve—were generated. All

statistical analyses were conducted using SPSS (version 26.0,

https://www.ibm.com/spss) and R (version 4.2.2, https://www.R-

project.org). A two-tailed p < 0.05 was considered statistically

significant. All figures were created using GraphPad Prism 9

(https://www.graphpad.com/), OriginPro 2021 (https://

www.originlab.com/), R (version 4.2.2), and Adobe Illustrator

2023 (https://www.adobe.com/products/illustrator.html).
3 Results

3.1 Clinical characteristics of the patients

The patients’ demographic baseline characteristics were

summarized in Table 1. There were 273 ccRCC patients (197 men

and 76 women), 216 patients in the training and internal validation

cohort and 57 patients in the external validation cohort. The

incidence of ccRCC metastasis was 33.33% (72 out of 216) and

29.82% (17 out of 57) in the training and testing cohorts,

respectively. Detailed clinical variable comparisons across the

training, internal validation, and external validation cohorts were

provided in Supplementary Table 4. Significant differences were

observed in variables such as necrosis, capsule presence, smoking,

and drinking habits (all p < 0.05), suggesting potential heterogeneity

among cohorts. These differences were accounted for during model

development through standardized feature normalization.
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TABLE 1 Patient clinical characteristics.

Variables
Overall
(n = 273)

Non-metastasis group
(n = 184)

Metastasis group
(n = 89)

p value

Age (years) 61.00 (53.00, 68.00) 60.00 (52.00, 68.00) 62.00 (54.00, 68.00) 0.124

Sex (n, %) 0.277

• Female 76 (27.84%) 55 (29.89%) 21 (23.60%)

• Male 197 (72.16%) 129 (70.11%) 68 (76.40%)

Location (n, %) 0.542

• Left 133 (48.72%) 92 (50.00%) 41 (46.07%)

• Right 140 (51.28%) 92 (50.00%) 48 (53.93%)

Maximum diameter (mm) 4.00 (2.50, 6.00) 3.50 (2.10, 5.03) 5.50 (4.00, 8.50) 0.001

Arteriovenous thrombosis (n, %) 31 (11.36%) 11 (5.98%) 20 (22.47%) 0.001

Necrosis (n, %) 72 (26.37%) 41 (22.28%) 31 (34.83%) 0.027

Lobulation (n, %) 23 (8.42%) 17 (9.24%) 6 (6.74%) 0.486

Lymphadenopathy (n, %) 37 (13.55%) 18 (9.78%) 19 (21.35%) 0.009

Capsule (n, %) 49 (17.95%) 34 (18.48%) 15 (16.85%) 0.743

Calcification (n, %) 23 (8.42%) 15 (8.15%) 8 (8.99%) 0.816

Hypertension (n, %) 126 (46.15%) 82 (44.57%) 44 (49.44%) 0.449

Diabetes (n, %) 47 (17.22%) 33 (17.94%) 14 (15.73%) 0.651

Smoking (n, %) 83 (30.40%) 54 (29.35%) 29 (32.58%) 0.586

Drinking (n, %) 84 (30.77%) 49 (26.63%) 35 (39.33%) 0.033

Pain (n, %) 48 (17.58%) 30 (16.30%) 18 (20.22%) 0.425

Urination habits (n, %) 35 (12.82%) 20 (10.87%) 15 (16.85%) 0.166

Hematuria (n, %) 42 (15.38%) 23 (12.50%) 19 (21.35%) 0.058

Height (cm) 170.00 (162.00, 172.00) 169.50 (161.75, 172.00) 170.00 (163.00, 173.00) 0.574

Weight (kg) 70.00 (62.00, 80.00) 70.00 (63.00, 78.00) 69.00 (61.00, 80.00) 0.719

Immunoglobulin 26.20 (23.90, 29.20) 25.95 (23.90, 28.52) 26.60 (23.10, 30.60) 0.244

Blood glucose 5.28 (4.83, 6.30) 5.29 (4.82, 6.36) 5.23 (4.92, 6.09) 0.623

Uric acid 314.00 (269.00, 378.00) 304.50 (268.75, 365.75) 314.00 (274.00, 385.00) 0.417

Creatinine 78.00 (64.00, 92.00) 73.00 (63.00, 86.25) 85.00 (72.00, 105.00) 0.001

White blood cells 6.44 (5.27, 8.10) 6.36 (5.23, 7.97) 6.52 (5.40, 8.25) 0.273

Neutrophils 4.08 (3.22, 5.78) 4.03 (3.11, 5.40) 4.47 (3.37, 7.01) 0.016

Lymphocytes 1.51 (1.10, 1.92) 1.60 (1.17, 2.00) 1.34 (0.97, 1.76) 0.004

Basophils 0.03 (0.02, 0.04) 0.03 (0.02, 0.04) 0.02 (0.01, 0.03) 0.009

Eosinophils 0.09 (0.04, 0.14) 0.09 (0.04, 0.16) 0.08 (0.03, 0.12) 0.086

Monocytes 0.48 (0.39, 0.63) 0.48 (0.37, 0.64) 0.48 (0.40, 0.62) 0.278

Red blood cells 4.52 (3.99, 4.90) 4.51 (4.04, 4.92) 4.52 (3.94, 4.78) 0.320

Hemoglobin 136.00 (119.00,149.00) 137.00 (121.00, 150.00) 133.00 (115.00, 146.00) 0.216

Mean corpuscular volume 90.00 (86.50, 93.00) 90.20 (86.70, 93.05) 89.50 (85.60, 93.00) 0.433

Platelets 223.00 (180.00,268.00) 224.00 (177.00, 274.50) 220.00 (182.00, 262.00) 0.867

Urinary white blood cells 3.30 (1.40, 13.30) 3.15 (1.30, 13.05) 3.30 (1.90, 15.20) 0.344

(Continued)
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3.2 Classification performance of single-
modality radiomics models

Four single-modality models were constructed using

selected features from their respective modalities: the CT_Cortical

model, CT_Medullary model, CT_Non-enhanced model, and

clinical model. As presented in Supplementary Table 2 and

Supplementary Figure 1, the number of selected features for these

four models was 6, 4, 7, and 4, respectively. Notably, four clinical

features - maximum diameter, creatinine, necrosis, and vascular

invasion - were identified as independent risk factors for metastasis

in the ccRCC, and were incorporated into the development of the

clinical model. The distribution of the maximum diameter of

lesions in the training and testing datasets was illustrated in

Supplementary Figure 2.

The classification performance of these single-modality models

was illustrated in Figure 1. In the training dataset, the AUROC

values for the single-modality radiomics models based on cortical

enhanced, medullary enhanced, and non-enhanced phase images

were 0.782 (95% confidence interval [CI]: 0.717-0.847), 0.834 (95%

CI: 0.779-0.889) and 0.785 (95% CI: 0.723-0.848), respectively.

Correspondingly, in the independent testing dataset, the AUROC

values were 0.751 (95% CI: 0.620-0.883), 0.785 (95% CI: 0.645-

0.924), and 0.724 (95% CI: 0.583-0.866). Notably, the

CT_Medullary model demonstrated relatively superior prediction

performance. Decision curve analysis further revealed that both the

CT_Cortical and CT_Medullary models provided clinical net

benefits across threshold probabilities in both training and testing

datasets (Supplementary Figure 3). Moreover, the clinical model

had an AUROC of 0.752 (95% CI: 0.679-0.826) in the training

dataset and 0.681 (95% CI: 0.529-0.833) in the testing dataset.

Similar trends were also observed in the PR curves and

corresponding AUPR values, with the CT_Medullary model

achieving the highest AUPR value. Additionally, calibration

curves were employed to assess how well a classification model’s

predicted probabilities corresponded to actual outcomes, with a

lower Brier score indicating a more accurate model. Furthermore,

five other metrics were calculated from the confusion matrices

(Table 2). Evidently, the CT_Medullary model had the best

predictive performance among the four single-modality models,

with an accuracy of 0.702 and a sensitivity of 0.765 in the

testing dataset.
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3.3 Model interpretability with SHAP

To improve the model interpretability, the SHAP method

was used to calculate the Shapley values of each selected

feature for the prediction of every observation in single-modality

models (Figure 2). Positive SHAP values indicated an increased

risk of developing metastasis in ccRCC patients. As shown

in Figures 2a-c three single-modality radiomics models

involved 6, 4, and 7 essential features in the global interpretation.

The most contributing feature in classifying metastasis and non-

metastasis was “recursivegaussian_glszm_ZoneEntropy” in

the CT_Cortical model, “log_glszm_log-sigma-0-5-mm-3D-

SmallAreaHighGrayLevelEmphasis” in CT_Medullary model,

and “log_glszm_log-sigma-4-0-mm-3D-LargeAreaHighGray

LevelEmphasis” in CT_Non-enhanced model. In the clinical

model, “maximum diameter” exhibited the largest mean of

absolute SHAP value (Figure 2d). This demonstrated the

similarity between radiomics and clinical information, both

of which emphasized the importance of tumor size. In the

individual interpretation, one patient was chosen from the

independent testing dataset to demonstrate how the SHAP

method could be applied to explain individual model predictions.

The SHAP force plot showed each feature’s positive and negative

effects on the predictive outcomes in a single case. A predictor’s

importance was demonstrated by the size of its arrow, where a

larger arrow indicated a more important predictor. The base value

represented the primary diagnosis and prediction probability, while

f(x) represented its final diagnosis and prediction probability.
3.4 Construction and evaluation of multi-
modality models

Considering the unique information provided by different

imaging modalities, multimodal data can harness complementary

information to enhance predictive performance. Inspired by this

concept, multi-modality fusion models were constructed by

integrating the predictive probabilities derived from multiple

single-modality models to boost performance. Initially, the Multi-

phased CT model was developed by integrating the predicted

probabilities from three radiomics models. The model achieved

an AUROC of 0.837 (95% CI: 0.782-0.892) in the training dataset
TABLE 1 Continued

Variables
Overall
(n = 273)

Non-metastasis group
(n = 184)

Metastasis group
(n = 89)

p value

Urinary red blood cells 5.90 (1.90, 17.20) 6.00 (1.75, 17.90) 5.80 (2.10, 15.00) 0.938

Number of epithelial cells 1.80 (0.80, 5.00) 1.85 (0.60, 5.18) 1.60 (1.00, 4.90) 0.898
A series of clinical features were compared between the metastatic and non-metastatic groups using Mann-Whitney U tests or chi-square tests. A two-tailed p value < 0.05 was considered
significant difference (highlighted in bold).
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and 0.812 (95% CI: 0.680-0.943) in the testing dataset. As illustrated

in Figure 3, it demonstrated superior performance compared to any

individual single-phase model. The enhanced classification

performance may be attributed to the fact that three-phase CT

images provide a comprehensive view of the lesion information,

enabling a more robust prediction of metastasis. Additionally, to

better understanding the decision-making process of the model, a

nomogram was constructed based on the three probabilities
Frontiers in Oncology 07
(Figure 3i). For a given patient, every variable corresponded to a

point, and the total point corresponded to the probability of

the metastasis.

To further investigate the complementary ability of radiomics

with clinical information, a combined model was constructed by

integrating predicted probabilities of the multi-phased CT model

with the clinical model. This model achieved an AUROC of 0.969

(95% CI: 0.950-0.988) in the training dataset and 0.824 (95% CI:
FIGURE 1

Classification performance of four single-modality models. (a) CT_Cortical model, (b) CT_Medullary model, (c) CT_Non-enhanced model, and (d)
clinical model. Column 1: Receiver operating characteristic (ROC) curves displayed true positive rate (Y-axis) versus false positive rate (X-axis), with a
dashed diagonal representing random classification performance. Column 2: Precision-recall (PR) curves illustrated precision (positive predictive
value, Y-axis) against recall (sensitivity, X-axis). Column 3: Calibration curves compared binned predicted probabilities (X-axis) against observed event
frequencies (Y-axis), aligned to a perfect-calibration dashed diagonal. Column 4: Confusion matrices used color gradients to show classification
outcomes, with larger numbers being darker.
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0.704-0.944) in the testing dataset Figure 4). Pairwise DeLong’s tests

were performed to statistically validate its superiority over other

models. In the training dataset, the combined model showed

significantly higher AUROC values compared to all single-

modality models and the multi-phase CT model (all p < 0.001).

In the testing dataset, while its performance differences against

single-modality models were less pronounced, it still demonstrated

statistical superiority over the clinical model (p < 0.05). These

results, visualized as a comparison heatmap in Supplementary

Figure 4 indicated that the three-phase CT radiomics model and

the clinical model provide complementary insights into lesion

information from various perspectives, thereby enhancing

diagnostic performance. Additionally, a nomogram was created

that integrated predicted probabilities from four single-modality

models, which can help to clarify the decision-making process of the

model (Figure 4i).
4 Discussion

The findings of this study suggest that the unimodal radiomics

model, which relies solely on CT image features, and the clinical

prediction model, which is based on clinical-radiological features,

exhibit limited efficacy in predicting the metastatic risk in patients

with ccRCC. However, the integration of radiomics features with

clinical data has been demonstrated to significantly enhance the
Frontiers in Oncology 08
predictive performance. This improvement is mechanistically

supported by SHAP (SHapley Additive exPlanations) analysis,

which revealed that radiomics features related to intratumoral

heterogeneity synergized with clinical factors like tumor size and

creatinine levels to drive model predictions. The dominance of

radiomics features in SHAP global interpretations underscores their

ability to quantify subtle tumor microenvironment characteristics,

such as necrosis and hypoxia, which are not fully captured by

clinical variables alone. This finding offers valuable insights for the

development of personalized treatment strategies for ccRCC

patients in clinical practice. Compared to prior studies focusing

on single-phase CT or clinical models alone (11–13, 22), our

multimodal fusion approach achieved superior performance

(testing AUROC: 0.824 vs. 0.68–0.816 in existing literature (22–

24)), demonstrating the unique advantage of leveraging

complementary information from multiphase CT and clinical-

pathological factors.

The observed variation in AUC values across imaging

modalities likely reflects distinct pathophysiological insights

captured during different contrast phases. For instance, the

CT_Medullary model outperformed cortical and non-enhanced

models (testing AUROC: 0.785 vs. 0.751/0.724), potentially

attributable to its enhanced sensitivity to vascular invasion

patterns and hypoxia-induced necrosis during the medullary

phase—a period when contrast washout highlights tumor

microvascular heterogeneity. This aligns with our SHAP
TABLE 2 Classification performance of six models in the training and testing datasets.

Model AUROC (95% CI) AUPR ACC F1 score SEN SPE PRE

Training dataset

Single-modality models

• CT_Cortical 0.782 (0.717 – 0.847) 0.680 0.625 0.589 0.806 0.535 0.464

• CT_Medullary 0.834 (0.779 – 0.889) 0.748 0.792 0.694 0.708 0.833 0.680

• CT_Non-enhanced 0.785 (0.723 – 0.848) 0.707 0.759 0.500 0.361 0.958 0.812

• Clinical 0.752 (0.679 – 0.826) 0.664 0.769 0.590 0.500 0.903 0.720

Multi-modality models

• Multi-phased CT 0.837 (0.782 – 0.892) 0.757 0.769 0.662 0.681 0.812 0.645

• Combined 0.969 (0.950 – 0.988) 0.951 0.889 0.844 0.903 0.882 0.793

Testing dataset

Single-modality models

• CT_Cortical 0.751 (0.620 – 0.883) 0.509 0.684 0.571 0.706 0.675 0.480

• CT_Medullary 0.785 (0.645 – 0.924) 0.702 0.702 0.605 0.765 0.675 0.500

• CT_Non-enhanced 0.724 (0.583 – 0.866) 0.570 0.702 0.564 0.647 0.725 0.500

• Clinical 0.681 (0.529 – 0.833) 0.495 0.667 0.457 0.471 0.750 0.444

Multi-modality models

• Multi-phased CT 0.812 (0.680 – 0.943) 0.701 0.789 0.684 0.765 0.800 0.619

• Combined 0.824 (0.704 – 0.944) 0.702 0.772 0.649 0.706 0.800 0.600
Seven quantitative metrics were calculated, i.e., the area under the receiver operating characteristic curve (AUROC) with 95% confidence interval (CI), area under the precision-recall curve
(AUPR), accuracy (ACC), F1 score, sensitivity (SEN), specificity (SPE), and precision (PRE).
frontiersin.org

https://doi.org/10.3389/fonc.2025.1576956
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2025.1576956
FIGURE 2

SHapley Additive exPlanations (SHAP) analysis of four single-modality models for clear cell renal cell carcinoma (ccRCC) metastasis prediction: (a)
CT_Cortical model, (b) CT_Medullary model, (c) CT_Non-enhanced model, and (d) clinical model. Left panel: Summary plots demonstrating
directional feature impacts, where horizontal axis SHAP values quantified metastasis risk contribution (rightward = risk-increasing, leftward = risk-
reducing), with vertical ordering reflected global feature importance. Color gradients (purple-to-orange) represented feature values (purple = low,
orange = high; e.g., elevated “recursivegaussian_glszm_ZoneEntropy” correlated with increased SHAP impact in CT_Cortical model). The bar charts
on the right side of the figure ranked features by mean absolute SHAP values (|SHAP|), where bar length corresponded to cumulative impact
magnitude across samples. Right panel: Force plots for a representative metastatic ccRCC testing patient, showing consistent baseline risk (base
value) versus model-specific decision trajectories (arrows), with final prediction probabilities (f(x)) differing across models due to modality-specific
feature contributions (positive/negative impacts shown in orange/purple).
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analysis identifying medullary-phase features as key contributors,

which may quantify focal necrosis clusters associated with

aggressive phenotypes.

Ficarra et al. (25) demonstrated that tumor necrosis, as assessed

by the Mayo Clinic Staging, Size, Grade, and Necrosis (SSIGN)

scoring system, serves as a significant prognostic factor in the

clinical management of ccRCC patients. This finding aligns with

our study. SHAP dependence plots further elucidated that

radiomics signatures linked to necrosis (e.g., high gray-level

emphasis features in medullary-phase CT) exhibited threshold

effects, mirroring the biological transition to aggressive

phenotypes when necrosis exceeds critical levels. Previous
Frontiers in Oncology 10
research has established that necrosis occurs when tumor cells

exhibit higher metabolic activity relative to angiogenesis levels,

resulting in inadequate oxygen and nutrient supply (26). Our

investigation revealed that tumor size significantly influences the

risk of developing distant metastasis in RCC patients, with larger

tumors being more likely to develop such metastasis. SHAP analysis

quantified this relationship, showing a sharp increase in metastatic

risk contribution for tumors exceeding 3 cm—a threshold

consistent with Zastrow et al.’s observations (27). These results

are consistent with Hutterer et al.’s (28) study, which developed a

nomogram to predict RCC distant metastasis and identified tumor

size as a critical risk factor.
FIGURE 3

Classification performance and clinical interpretability of the multi-phased CT model. (a) Receiver operating characteristic (ROC) curves
demonstrated diagnostic accuracy in training (grey line) and testing (pink line) datasets, with Y-axis representing true positive rate and X-axis
representing false positive rate. (b, c) Area under the ROC curve (AUROC) comparison analyses among four models (CT_Cortical, CT_Medullary,
CT_Non-enhanced, multi-phased CT) in training (b) and testing (c) datasets, where asterisks (***) indicated statistical significance (p < 0.001). (d)
Precision-recall (PR) curves quantified positive predictive value (precision, Y-axis) versus sensitivity (recall, X-axis). (e) Calibration curves assessed
agreement between predicted probabilities (X-axis) and observed metastasis frequencies (Y-axis), with dashed diagonal denoting perfect calibration.
(f) Decision curve analysis evaluated clinical net benefit (Y-axis) across threshold probabilities (X-axis) in the testing dataset. (g) Confusion matrix
used to visualize true vs. predicted classifications in the testing dataset. (h) Radar plot showed quantitative metrics in the testing dataset including
AUROC, area under the PR curve (AUPR), sensitivity (SEN), specificity (SPE), accuracy (ACC), precision (PRE), and F1 score. (i) Nomogram integrated
predicted probabilities from three single-phase CT models, where vertical red lines marked sample-specific scores for a representative patient, and
total points translated to metastasis probability (bottom axis).
frontiersin.org

https://doi.org/10.3389/fonc.2025.1576956
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2025.1576956
The association between intravascular tumor thrombus

formation and metastatic risk corroborates previous findings.

SHAP local explanations highlighted cases where thrombus-

related radiomics features overrode contradictory clinical

variables, emphasizing the model’s ability to prioritize imaging

biomarkers in context-specific scenarios. Additionally, our study

indicated that elevated creatinine levels serve as an independent risk

factor associated with metastasis. The near-linear positive

correlation between creatinine SHAP values and metastatic risk

aligns with its role as a marker of renal dysfunction, which may
Frontiers in Oncology 11
promote systemic metabolic dysregulation conducive to tumor

dissemination (26). The clinical prediction model was developed

using the three identified independent risk factors. In both the

training and validation datasets, the AUC values were 0.752 (95%

CI: 0.679 to 0.826) and 0.681 (95% CI: 0.529 to 0.833), respectively.

Capitanio et al. (23) constructed a predictive model for LNM in

kidney cancer, achieving an accuracy of 86.9%. Marconi et al. (24)

created prognostic models for survival rates in patients with distant

metastases, reporting AUROC values of 0.68 (95% CI: 0.62-0.74) for

the preoperative assessment and 0.73 (95% CI: 0.68-0.78) for the
FIGURE 4

Classification performance and clinical interpretability of the combined model (multi-phased CT + clinical). (a) Receiver operating characteristic
(ROC) curves demonstrated diagnostic accuracy in training (grey line) and testing (purple line) datasets, with Y-axis representing true positive rate
and X-axis representing false positive rate. (b, c) Area under the ROC curve (AUROC) comparison analyses among three models (clinical, multi-
phased CT, and combined) in training (b) and testing (c) datasets, where asterisks indicated statistical significance (*p < 0.05, ***p < 0.001). (d)
Precision-recall (PR) curves quantified positive predictive value (precision, Y-axis) versus sensitivity (recall, X-axis). (e) Calibration curves assessed
agreement between predicted probabilities (X-axis) and observed metastasis frequencies (Y-axis), with dashed diagonal denoting perfect calibration.
(f) Decision curve analysis evaluated clinical net benefit (Y-axis) across threshold probabilities (X-axis) in the testing dataset. (g) Confusion matrix
used to visualize true vs. predicted classifications in the testing dataset. (h) Radar plot showed quantitative metrics in the testing dataset including
AUROC, area under the PR curve (AUPR), sensitivity (SEN), specificity (SPE), accuracy (ACC), precision (PRE), and F1 score. (i) Nomogram integrated
predicted probabilities from four single-modality models, where vertical red lines marked sample-specific scores for a representative patient, and
total points translated to metastasis probability (bottom axis).
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postoperative assessment. Bai et al. (22) used MRI images to

develop a radiomics nomogram for predicting outcomes in

patients with distant metastasis, achieving an AUROC value of

0.816 in the external validation cohort. The AUROC of the

multimodal fusion model was 0.969 (95% confidence interval

[CI]: 0.950 to 0.988) and 0.824 (95% CI: 0.704 to 0.944) for the

training and test sets, respectively. Our multimodal fusion model

outperformed these benchmarks (AUROC: 0.969 in training, 0.824

in testing), with SHAP analysis providing critical transparency: it

demonstrated how clinical factors (e.g., tumor size) contextualize

radiomics patterns (e.g., texture entropy), resolving discrepancies

seen in single-modality models. This finding suggests that the

integration of multiple sources of information enhances the

predictive capability of the model.

Notably, while Bai et al. (22) achieved comparable performance

using MRI-based radiomics (external AUROC: 0.816), our CT-

based multimodal model offers distinct practical advantages. Firstly,

CT remains the first-line imaging modality for ccRCC staging

globally, ensuring broader clinical applicability. Secondly, The

integration of multiphase CT captures dynamic contrast kinetics,

providing insights into tumor angiogenesis and interstitial pressure

gradients that MRI cannot replicate. Lastly, Our SHAP-driven

nomogram enhances interpretability compared to “black-box”

models in prior studies, enabling clinicians to weigh imaging vs.

clinical factors case-specifically.

Although the results of this study are encouraging, it is crucial

to acknowledge its limitations. Firstly, the retrospective nature of

the study may introduce selection bias, potentially compromising

the accuracy of the prediction model. Therefore, prospective trials

are necessary to validate these findings. Secondly, while all patients

underwent CT imaging using contrast agents, it remains unclear

whether radiomics features extracted from CT images vary based on

different contrast agents and if such variations affect the

performance of the final model. Thirdly, although SHAP

provided interpretability, causality between specific radiomics

features and metastatic pathways remains hypothetical; future

studies integrating molecular profiling with SHAP-driven

hypotheses are needed. Lastly, despite enrolling patients from

three hospitals, the sample size is relatively small. Further studies

with larger sample sizes are essential to confirm the accuracy and

reliability of the model.

In conclusion, the present study introduced a multimodal fusion

model that demonstrated robust performance in predicting the risk of

metastasis in ccRCC patients. The SHAP framework not only

validated the biological plausibility of feature contributions but also

bridged the gap between model complexity and clinical

interpretability. The utilization of this model by clinicians has the

potential to facilitate more informed and precise treatment decisions.
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