AUTHOR=Wang Xueyi , Yang Youchang , Wu Jiaojiao , Tang Xiaoqiang , Wang Yao TITLE=Prediction of metastatic risk of renal clear cell carcinoma based on CT radiomics analysis JOURNAL=Frontiers in Oncology VOLUME=Volume 15 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2025.1576956 DOI=10.3389/fonc.2025.1576956 ISSN=2234-943X ABSTRACT=ObjectiveTo investigate the value of using imaging histological models to non-invasively assess the risk of metastasis in patients with clear cell renal cell carcinoma (ccRCC).MethodsThis study retrospectively enrolled 273 clear cell renal cell carcinoma (ccRCC) patients from three hospitals, with 57 cases allocated as an independent test cohort. High-throughput imaging histomic features (n=2,264) were extracted from triphasic CT (non-enhanced, corticomedullary, and nephrographic phases) using Pyradiomics. Three monophasic radiomics models were developed following dimensionality reduction, with feature contributions quantified via Shapley Additive exPlanations (SHAP) framework to enhance interpretability. A triphasic radiomics model was subsequently established by ensembling phase-specific prediction probabilities. Metastasis risk factors identified through univariate/multivariate logistic regression informed a clinical predictor model. The final combined model integrated triphasic radiomics signatures with clinical parameters, visualized through a nomogram. Diagnostic performance was evaluated via ROC analysis, while calibration curves validated prediction consistency.ResultsIn this study, SHAP analysis revealed that radiomics features quantifying intratumoral heterogeneity (e.g., necrosis patterns in medullary-phase CT) synergized with clinical factors (tumor size >3 cm, creatinine levels) to drive predictions. Key biological insights included threshold effects of necrosis volume (linked to hypoxia) and tumor diameter (critical threshold: 3 cm), aligning with known metastatic pathways. The clinical model achieved an area under the ROC curve (AUROC) of 0.752 (95% confidence interval [CI]: 0.679-0.826) in the training dataset and 0.681 (95% CI: 0.529-0.833) in the testing dataset. Among the single-phase radiomics models, the CT_Medullary model demonstrated good prediction performance, with an AUROC of 0.785 (95% CI: 0.645-0.924) in the testing dataset. The three-phased CT model exhibited improved diagnostic performance, with a testing AUROC rising to 0.812 (95% CI: 0.680-0.943). Notably, the combined model integrating clinical and radiomics features yielded the best prediction, achieving a further improvement in testing AUROC to 0.824 (95% CI: 0.704-0.944).ConclusionRadiomics technology provides a quantitative, objective method for predicting the risk of metastasis in patients with ccRCC. Nonetheless, the clinical indicators persist as irreplaceable.