
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Abhijit Chakraborty,
University of Texas MD Anderson Cancer
Center, United States

REVIEWED BY

Abhinava Mishra,
University of California, Santa Barbara,
United States
Aseem Rai Bhatnagar,
Henry Ford Health - Cancer, United States

*CORRESPONDENCE

Chengqi Lyu

loner_lcq@sjtu.edu.cn

Lvfeng Yu

lfyu@sjtu.edu.cn

RECEIVED 15 February 2025

ACCEPTED 14 April 2025
PUBLISHED 09 May 2025

CITATION

Wang R, Lyu C and Yu L (2025) A
transformation uncertainty and
multi-scale contrastive learning-based
semi-supervised segmentation method
for oral cavity-derived cancer.
Front. Oncol. 15:1577198.
doi: 10.3389/fonc.2025.1577198

COPYRIGHT

© 2025 Wang, Lyu and Yu. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 09 May 2025

DOI 10.3389/fonc.2025.1577198
A transformation uncertainty
and multi-scale contrastive
learning-based semi-supervised
segmentation method for oral
cavity-derived cancer
Ran Wang, Chengqi Lyu* and Lvfeng Yu*

Department of Stomatology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong
University School of Medicine, Shanghai, China
Objectives: Oral cavity-derived cancer pathological images (OPI) are crucial for

diagnosing oral squamous cell carcinoma (OSCC), but existing deep learning

methods for OPI segmentation rely heavily on large, accurately labeled datasets,

which are labor- and resource-intensive to obtain. This paper presents a semi-

supervised segmentation method for OPI to mitigate the limitations of scarce

labeled data by leveraging both labeled and unlabeled data.

Materials and methods: We use the Hematoxylin and Eosin (H&E)-stained oral

cavity-derived cancer dataset (OCDC), which consists of 451 images with tumor

regions annotated and verified by pathologists. Our method combines

transformation uncertainty and multi-scale contrastive learning. The

transformation uncertainty estimation evaluates the model’s confidence on

data transformed via different methods, reducing discrepancies between the

teacher and student models. Multi-scale contrastive learning enhances class

similarity and separability while reducing teacher-student model similarity,

encouraging diverse feature representations. Additionally, a boundary-aware

enhanced U-Net is proposed to capture boundary information and improve

segmentation accuracy.

Results: Experimental results on the OCDC dataset demonstrate that our

method outperforms both fully supervised and existing semi-supervised

approaches, achieving superior segmentation performance.

Conclusions: Our semi-supervised method, integrating transformation

uncertainty, multi-scale contrastive learning, and a boundary-aware enhanced

U-Net, effectively addresses data scarcity and improves segmentation accuracy.

This approach reduces the dependency on large labeled datasets, promoting the

application of AI in OSCC detection and improving the efficiency and accuracy of

clinical diagnoses for OSCC.
KEYWORDS

pathological image segmentation, semi-supervised learning, oral cavity-derived cancer,
contrastive learning, uncertainty estimation
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1 Introduction

According to the World Cancer Research Fund’s International

Report, over 377,700 cases of oral cavity-derived cancer were

reported globally in 2020, ranking 16th among all cancers (1).

Oral squamous cell carcinoma (OSCC) is a common and aggressive

oral tumor, with a five-year survival rate of only around 50% (2).

Pathological images are considered the gold standard for diagnosing

and grading cancer (3), and their accurate interpretation is crucial

for OSCC treatment and control. OSCC histopathological

evaluation typically involves processes like formalin fixation,

sectioning, paraffin embedding, and hematoxylin and eosin

staining, followed by microscopic examination by trained

pathologists (4). Pathologists use standardized criteria to assess

the tumor’s presence, subtype, and other histological features.

Recent advancements in computer-aided systems, driven by

high-precision imaging and computational power, have accelerated

the development of automated methods for histopathological image

analysis. Deep learning, in particular, has shown great promise in

the automated segmentation of oral cavity-derived cancer images

(OPI) (5–8). While these methods have shown promising results,

they typically require large annotated datasets. However,

pathological images, compared to other medical imaging

modalities like MRI and CT, often have high spatial resolution,

making accurate labeling more challenging. Additionally, the

labeling process requires specialized knowledge and extensive

diagnostic experience, making it difficult to obtain sufficient

labeled data, which limits the broader application of deep

learning methods for OPI segmentation.

Semi-supervised learning (SSL) addresses the challenge of

limited labeled data by combining a small amount of labeled data

with a large volume of unlabeled data. In medical image

segmentation, consistency regularization methods are commonly

used, assuming that small perturbations should not significantly

change the model ’s outputs. These methods introduce

perturbations in data, model, and task, enforcing consistency

across them. For data perturbation, techniques like Gaussian

noise (9) and affine transformations (10) are often used. In model

perturbation, methods such as Mean Teacher (MT) (11) have been

effective, where Dropout operations in the teacher-student network

and exponential moving averages (EMA) of model weights are used

to improve model accuracy. To enhance prediction quality,

uncertainty estimation techniques, such as prediction entropy

(12), evidence theory (13), and KL divergence (14), have been

incorporated. Multi-task consistency methods, such as

reconstruction (15), boundary perception (16), and distance map

tasks (17), are also used to better utilize unlabeled data.

The lack of large sample labels is the starting point for semi-

supervised learning. In classical MT networks, the teacher model’s

predictions are often used as pseudo-labels to guide the

optimization of the student model. However, the substantial

semantic gap between the pseudo-labels generated by the teacher

model and the true labels can seriously impact the student model’s
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performance. Considering that pathologists typically rotate, flip,

and otherwise transform pathological images in clinical practice to

make a comprehensive evaluation, and that we desire deep

networks to exhibit invariance (such as the ability to recognize

objects under translation, rotation, scaling, or varying lighting

conditions), we design a transformation-based uncertainty

estimation (TB-UE) method. Building on UA-MT (12), we

combine multiple data transformation methods to estimate

uncertainty by measuring the model’s predictions for the same

data point under different transformations. This method

incorporates both data uncertainty and per-pixel entropy

information, mitigating the detrimental effects of noisy pseudo-

labels on the student model. However, this approach may lead to

high similarity between the teacher and student models. To address

this, we propose a multi-scale contrastive learning (MS-CL)

method, which computes the average feature vectors of different

categories from both the teacher and student models, using

contrastive loss to pull together feature vectors of the same class

and push apart those of different classes. This method not only

alleviates the over-similarity problem between teacher and student

models but also improves intra-class similarity and inter-class

separability, resulting in more diverse feature representations.

Additionally, we propose a boundary-aware enhanced U-Net

(BAE-U-Net), which adds a boundary perception enhancement

branch to the original U-Net (18), enabling the capture of

boundary information in OSCC pathological images. In our

BAE-U-Net, we design a channel-attention-based boundary-

spatial feature fusion module (BSFM) that combines the

boundary information extracted by the enhancement branch with

the spatial information from U-Net, facilitating more

comprehensive feature representation.

In summary, the contributions of this paper are as follows:
1. A semi-supervised segmentation method for Oral Cavity-

derived Cancer pathological images is proposed, based on

transformation uncertainty and multi-scale contrastive

learning, and is designed to alleviate the limitations

imposed by the scarcity of labeled data.

2. A transformation-based uncertainty estimation method is

introduced, in which pixel uncertainty is estimated by

evaluating the model’s predictions on data transformed

using different methods.

3. A multi-scale contrastive learning method is presented,

which improves intra-class similarity and inter-class

separability while mitigating the over-similarity problem

between the teacher and student models.

4. A boundary-aware enhanced U-Net is proposed, which

integrates boundary information with spatial information

to facilitate more comprehensive feature learning.

5. Extensive experiments on the dataset demonstrate the

superiority of the proposed method compared to other

approaches, highlighting its potential in addressing the

issue of labeled data scarcity.
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2 Related work

2.1 Semi-supervised segmentation of
medical images

The main goal of semi-supervised learning is to utilize a large

amount of unlabeled data to improve supervised learning

performance. In medical image segmentation, consistency

regularization and pseudo-labeling are two major paradigms for

semi-supervised learning.

Pseudo-labeling methods typically involve training a model on a

labeled dataset, then using this trained model to assign pseudo-

labels with confidence scores to unlabeled data. High-confidence

pseudo-labels are added to the labeled set to enhance model

performance. Self-training and co-training are two common

approaches in pseudo-labeling. Self-training focuses on refining

pseudo-labels using various strategies to make them closer to true

labels. For instance, Bai et al. (19) optimized pseudo-labels with

conditional random fields, while Zeng et al. (20) selected high-

confidence samples by combining class information and prediction

entropy. However, single-branch self-training methods can be

unstable due to variations in pseudo-label quality. Co-training,

derived from multi-view learning, uses multiple complementary

views of the data for multi-branch training. High-confidence

predictions are added to other branches’ data or consistency

methods are applied to guide interaction between branches.

Examples of multi-view approaches include adversarial learning

to generate multiple views (21), multi-modality data for multi-view

samples (22), and multi-branch Transformer-CNN structures for

feature extraction (23). In particular, CNN-based branches are

widely used due to their powerful local feature extraction

capability, which complements global dependencies captured by

Transformer modules, and improves the model’s robustness to

variations in tissue structures and staining.

Consistency regularization methods are based on the

smoothness assumption, adding perturbations to data points in

terms of data, model, and task, and enforcing consistency.

Significant progress has been made in data perturbation

consistency, with methods like patch-shuffling (24), cut-paste

augmentation (25), and Copy-Paste (26). For model perturbation

consistency, besides the Mean Teacher (MT) network, multi-

decoder structures (27–29) are also effective. These structures use

a shared encoder and multiple decoders, which either learn from

each other or minimize statistical differences between decoders to

reduce model uncertainty. Other model perturbation methods

include multi-scale consistency (30), complementary consistency

(31), and the use of anatomical prior knowledge (32).
2.2 Pathological image segmentation

The goal of pathological image segmentation is to divide the

image into different components, such as cell nuclei, glands, or

tissue regions, which is essential for clinical diagnosis. By linking

morphological features to clinical outcomes, segmentation provides
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an objective and quantitative analysis that helps guide treatment

decisions. Deep learning-based methods have shown great promise

in the segmentation of pathological images, but they typically rely

on pixel-level labels, which are time-consuming and expensive

to obtain.

In breast cancer pathological image analysis, Li et al. (33)

proposed DeepTree, a deep learning architecture based on a tree-

structured diagnostic strategy. This method represents relationships

between different pathological categories and establishes a new

framework for segmentation in pathological regions of interest

(ROI). In lung cancer diagnosis, Chen et al. (34) introduced a

weakly supervised learning method using a deep generative model

to convert fluorescent tissue images into virtual H&E stained

images, followed by a multi-instance learning model for

segmentation. This approach leverages weak supervision to

mitigate the need for large labeled datasets. For bladder cancer

analysis, He et al. (35) developed MultiTrans, a framework that

enhances segmentation accuracy through multi-scale feature fusion,

aiding in the segmentation of head-and-neck at-risk organs.

These studies showcase the application of CNNs, graph

convolutions, and Transformers in pathological image segmentation,

as well as the growing use of weakly supervised and unsupervised

methods to reduce the reliance on large annotated datasets.
3 Methods

3.1 Overview

The OPI semi-supervised segmentation task aims to jointly

train a model using a large amount of unlabeled data and a small

amount of labeled data to improve model performance. We use a

dataset D consisting of M labeled samples and NN unlabeled

samples, where M ≪ N . The labeled dataset is defined as DL =

Xi,Yi
� �M

i=1, and the unlabeled dataset is defined asD
U = Xi

� �M+N
i=M+1,

where Xi ∈ RH�W�C represents a pathological image of height H,

width W, and C channels, and Yi ∈ RH�W represents the

corresponding label map for Xi. The goal of the semi-supervised

segmentation task is to learn a student model fs(qs) parameterized

by qs from the dataset D, such that each pixel in the input image is

mapped to its correct class.

Figure 1 illustrates the OPI semi-supervised segmentation

method based on transformation uncertainty and multi-scale

contrastive learning, which is proposed in this paper. This

method aims to jointly train on a small amount of labeled data

and a large amount of unlabeled data to mitigate the limitation

caused by the shortage of labeled data in OPI segmentation models.

The method follows the approach of MT (10). Specifically, the

network is divided into a teacher model and a student model, both

of which share the same network architecture. The parameters qs of
the student network are updated using the gradient

backpropagation algorithm. For the teacher model, the

parameters qT are updated using the EMA method, formulated as:

qt
T = aq t� 1

T + (1 − a)q t
s (1)
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where q t
T denotes the parameters of the teacher model after the

t-th iteration, qt
s denotes the parameters of the student model after

the t-th iteration, and a is the EMA decay coefficient controlling the

rate at which the teacher model parameters are updated. To better

utilize the multi-scale information of pathological images, we design

a contrastive learning method by optimizing the multi-scale

contrastive loss function LMS−CL to distinguish the multi-scale

class features of OPI. Additionally, we incorporate an uncertainty

estimation method that combines data transformation and entropy,

building on MT, to reduce the gap between teacher model

predictions and true labels. Based on this, the consistency loss Lcsy
is optimized to enhance the prediction accuracy of the student

model. Below, we provide a detailed explanation of the proposed

BAE-U-Net, the TB-UE method, and the MS-CL method.
3.2 BAE-U-Net

To extract boundary information for OPI and combine it with

the spatial information extracted by the U-Net, we propose the

BAE-U-Net. This network consists of the classical U-Net, a

boundary-enhancement branch, and a BSFM. In this paper, the

final convolutional layer of the U-Net is referred to as the “seg-

head,” while the remaining parts are referred to as the “seg-net.”

The input data pass through the seg-net to obtain the spatial

features FS ∈ RH�W�CS . The structure of the boundary-aware

enhancement branch is shown in Figure 1. After passing through
Frontiers in Oncology 04
this branch, the enhanced boundary features FBE ∈ RH�W�CB are

obtained. This structure consists of boundary-aware and boundary-

enhancement components, aiming to capture a more

comprehensive boundary feature representation of the

pathological image.
1. Boundary-Aware Module: This module consists of two

Sobel operators, as illustrated in Figure 2. These operators

are used to extract the horizontal and vertical boundary

information of the image. The parameter a is a

learnable parameter.

2. Boundary-Enhancement Module: This module consists of

five feature extraction layers, each of which is formed by

sequentially connecting a convolutional layer, a batch
FIGURE 2

Sobel operator used in the boundary-aware module.
FIGURE 1

Overall framework of the proposed method for OPI semi-supervised segmentation based on transformation uncertainty and multi-scale
contrastive learning.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1577198
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2025.1577198

Fron
normalization layer, and a ReLU activation layer. The

kernel sizes of the convolutional layers are 5, 5, 3, 3, and

1. This module retains a significant amount of boundary

detail and further reduces the impact of noise and artifacts

in the image, achieving the goal of refining and enhancing

the image boundary features.
To better fuse boundary features with spatial features and avoid

information loss caused by traditional addition or multiplication

methods, we propose a BSFM, the structure of which is shown in

Figure 3. Considering the semantic gap between boundary

information and global spatial information, we implement cross-

modal fusion of spatial and boundary information in the form of

channel attention. The fused features can be formulated as

(Equation 2):

FBSF = FS ⊕ (a � ((FS ⊗WS) + (FBE ⊗WBE))) (2)

where FBSF denotes the boundary-spatial joint features, and a is

a parameter that adjusts the importance of boundary information

and spatial information. WS and WBE represent the weights of

spatial and boundary information, which are obtained through the

cross-modal attention mechanism. As shown in Figure 3, the cross-

modal attention mechanism structure includes an activation

function (s ), max-pooling (MP), average-pooling (AP), shared

convolution (CC), and multi-layer perceptron (MLP). The

process of obtaining the boundary-spatial joint weights WBES can

be represented as (Equation 3):

WBES¼ MLP Concat
CC(AP(s (FS))),CC(MP(s (FS))),

CC(AP(s (FBE))),CC(MP(s (FBE)))

 ! !

(3)

For both boundary features and spatial features, we first apply

the sigmoid activation function, followed by MP and AP for

channel attention, and use shared convolutions for processing.

For the convolutional features, we initially fuse the two feature

types using the concatenation operation (Concat). To capture the

complex relationships between channels and the interactions of

features, we apply MLP to the fused features, resulting in the

boundary-spatial joint weights. Since CS = CB in this paper, the

effectively compressed and fused feature weights are split into

equal-sized WS and WBE to distinguish the importance of spatial

and boundary information.
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3.3 TB-UE

To further mitigate the issue of incorrect predictions in the student

model due to noisy labels, we propose an uncertainty estimation

method based on data transformations, building upon the UA-MT

method. This method effectively combines pixel entropy information

with data transformation invariance, specifically divided into pixel

entropy estimation and transformation invariance estimation.
1. Pixel Entropy Estimation: We adopt the method from UA-

MT to calculate the entropy of each pixel in the pseudo-

labels. First, we perform T forward passes of the data

through the teacher model to simulate Monte Carlo

sampling. Let pct represent the predicted probability for

class c at pixel i during the t-th forward pass. Then, the sum

of probabilities over all classes is:on
c=1p

c
t = 1, where n is the

total number of classes. The average predicted probability

for class cc across the T forward passes is: uc = (oT
t=1p

c
t )=T

The entropy at pixel ii is then calculated as: Qe(i) =

−on
c=1ucloguc. Next, we filter the high-confidence pixels

based on the entropy values. We define a Boolean function

conditionf g1, which outputs 1 when the condition is true,

otherwise 0. The high-confidence entropy mask MaskE is

defined as: MaskE = Qe(i) < xEf g1, where xE is the

uncertainty threshold for pixel entropy, which varies

over iterations.

2. Transformation Uncertainty Estimation: To better estimate

transformation uncertainty, we design M = 7 data

transformation methods, which include rotation (90°,

180°, and 270°), flipping (horizontal and vertical),

patching (36), and color channel transformations.

Figure 4 il lustrates the results of the different

transformation methods. The transformed data can be

represented as: Tj = Transj(X), j ∈ ½1, 7�, where Transj
denotes the j-th data transformation method. After

applying these transformations to the data, we pass them

through the teacher model and reverse the transformations

to obtain the transformed predictions, represented as: YT
j =

ITransj(fT (Tj)), where ITransj represents the inverse

transformation corresponding to Transj, and YT
j denotes

the predicted labels after the inverse transformation. We

then compute the transformation confidence map for each

pixel, defined as: Qc
T(i) = MC=M, where MC represents the

number of times that pixel i is predicted as class cc across

the transformations. The high-confidence transformation

mask MaskT is defined as (Equation 4):
MaskT = (Q1
T (i) ∨ QT

T (i)) · · · ∨QT
T (i) > xT

� �
1 (4)

where ∨ denotes the pixel-wise OR operation, and xT is the

uncertainty threshold for transformation invariance.

We calculate the consistency loss Lcsy between the teacher and

student models using the obtained masks MaskE and MaskT
(Equation 5):
FIGURE 3

BSFM.
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Lcsy =
oiMask(i) Ps

seg − PT
seg

�� ��2
oiMask(i)

(5)

where Ps
seg and PT

seg represent the predictions from the student

and teacher models, respectively. The mask Mask is the pixel-wise

product of MaskE and MaskT , which integrates both pixel entropy

and transformation invariance information. This combined mask

effectively constrains the pseudo-labels, alleviating the performance

degradation caused by semantic gaps between pseudo-labels and

true labels.
3.4 MS-CL

The consistency loss method proposed in Section 3.3 works well

for constraining the similarity between the predictions of the

student and teacher models, but it lacks a mechanism to enforce

intra-class compactness and inter-class separability, which can lead

to over-mixing of the features between the student and teacher

models. Therefore, in this section, we propose a MS-CL method to

enhance the intra-class similarity and inter-class separability of

features, while also de-mixing the student and teacher models.

The flow of the MS-CL method is shown in Figure 1. We

calculate the multi-scale class contrastive learning loss LMS−CL based

on the outputs from the last D = 3 layers of the seg-net. For the

output features at scale d, Fd
S ∈ RCd�Hd�Wd , we first apply a

convolution operation with a kernel size of 1 to transform them

into features Fd0
S ∈ RCout�Hd�Wd is the output channel size. For the

teacher model, we compute the average feature vector for each class

(Equation 6):

Qd
c =

oHd�Wd
n=1 Fd0

S
~Pd
c,n

oHd�Wd
n=1

~Pd
c,n

(6)
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where Qd
c represents the average feature vector for class cc at

scale d, and ~Pd
c,n is the probability that pixel n at scale dd belongs to

class c, which is obtained by applying the softmax function to Fd
S ∈

RCd�Hd�Wd . Similarly, for the student model, we compute the

average feature vector Vd
c . Since our dataset contains only

background and target (oral tumor region) classes, the average

feature vectors at scale dd for both the teacher and student models

are denoted as Qd
bg , Q

d
ca, V

d
bg and Vd

ca. As shown in Figure 1, to

calculate the multi-scale contrastive loss, we first compute the

contrastive loss LdCL at each scale.

Since our goal is to bring the feature vectors of the same class

closer and push the feature vectors of different classes apart, we use

the InfoNCE loss function. The contrastive loss at scale d isdefined

in Equation 10. where t is the temperature parameter, and sim(a, b)

represents the similarity between vectors a and b. The multi-scale

contrastive loss is defined as (Equation 7):

LMS−CL =oD
d=1b

d · LdCL (7)
3.5 In this paper, bd represents the weight
of the loss function at different scales, with
the constraint: oD

d=1b
d = 1 In our method,

we set b1 = 0:6, b2 = 0:3, b3 = 0:1Loss
function

The loss function in this paper is composed of two parts: the

supervised loss LS and the unsupervised loss LU . The supervised loss

is calculated by averaging the cross-entropy loss and Dice loss

between the student model’s predictions and the true labels over the

labeled datasetDL. The unsupervised loss consists of the consistency

loss Lcsy and the multi-scale contrastive loss LMS−CL. The
FIGURE 4

Illustration of different types of data transformations applied to the original data.
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unsupervised loss LU can be expressed as (Equation 8):

LU = w · (Lcsy + LMS−CL) (8)

where w is a Gaussian weighting function defined as: w =

0:001 · exp ( − 5 · (1 − t=tmax)
2). Here, t denotes the current iteration,

and tmax represents the maximum number of iterations. Finally, the

total loss function for our method can be written as (Equation 9):

L = Ls + lLu (9)

where l is a pre-defined weight that balances the supervised loss

and the consistency loss.

LeCL = − log
exp (sim(Qd

bg ,V
d
bg)=t) + exp (sim(Qd

ca,V
d
ca)=t )

exp (sim(Qd
bg ,V

d
bg )=t) + exp (sim(Qd

bg ,Q
d
ca)=t) + exp (sim(Qd

bg ,V
d
ca)=t) + exp (sim(Vd

bg ,Q
d
ca)=t) + exp (sim(Vd

bg ,V
d
ca)=t)

(10)
4 Experiments

4.1 Dataset

In this study, we use the Hematoxylin and Eosin (H&E) stained

oral cavity-derived cancer dataset (OCDC) collected in (5). The

tumor regions in this dataset have been manually annotated by

experts and verified by pathologists. The OCDC dataset consists of

1,020 histological images with a size of 640×640 pixels, which

include fully annotated tumor regions for segmentation purposes.

All histological images were digitized at a 20× magnification. Since

our experiment focuses on segmenting tumor regions, we excluded

569 images that contained no tumor areas, as confirmed by

pathologists’ gold-standard annotations. The remaining 451

images were used for the experiments.
4.2 Evaluation metrics

To ensure a fair comparison of the proposed method with other

methods, we used five common evaluation metrics to assess the

performance of the proposed model and other approaches on the

same test set: Overall Accuracy (OA), Average Accuracy (AA), Dice

Similarity Coefficient (DSC), and Jaccard Index. The results for each

method were summarized, and the average and standard deviation for

each metric were reported in the table. OAmeasures the proportion of

correctly predicted samples out of the total samples. AA is the average

accuracy across all classes, emphasizing class balance. DSC and

Jaccard evaluate the similarity between the segmentation results and

the ground truth. The formulas for the four metrics are as follows

(Equations 11–14):

OA =
TP + TN

TP + TN + FP + FN
(11)

AA =
1
2

TP
TP + FN

+
TN

FP + TN

� �
(12)
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DSC =
2� jA ∩ B j
jA j+ jB j (13)

Jaccard =
jA ∩ B j
jA ∪ B j (14)

where TP represents the number of samples correctly predicted

as positive, TN represents the number of samples correctly

predicted as negative, FP refers to the number of negative

samples incorrectly predicted as positive (false positives), and FN

refers to the number of positive samples incorrectly predicted as

negative (false negatives). A is the foreground pixel set in the

ground truth, and B is the foreground pixel set in the predicted

result. jA ∩ B j represents the number of pixels in the intersection

of the ground truth and predicted results, while jA ∪ B j represents
the number of pixels in their union. Aj j and Bj j denote the number

of foreground pixels in the ground truth and prediction,

respectively. In addition, we also used 95% Hausdorff distance

(HD95) to quantitatively evaluate the segmentation of

the boundaries.
4.3 Implementation details

In this study, the proposed network was implemented using the

PyTorch framework and trained on an NVIDIA GeForce RTX 3090

GPU. We used the SGD optimizer with a learning rate of 0.01 and a

momentum coefficient of 0.9. 10% of the data was used as the test

set, and 5-fold cross-validation was performed on the remaining

90%. The model was trained for 100 epochs. The model with the

highest DSC on the validation set was selected as the final model for

testing. During training, the batch size for both labeled and

unlabeled data was set to 1, with equal proportions of labeled and

unlabeled data. Based on the findings in MT (10), we set the EMA

coefficient ain Equation 1 to 0.99.
4.4 Comparison experiments

4.4.1 Comparison with fully supervised methods
To verify that our method can leverage unlabeled data to

improve model segmentation performance, we trained the model

using 10%, 20%, and 30% labeled data along with the corresponding

proportion of unlabeled data, and compared the results with fully

supervised methods. The quantitative experimental results are

reported in Table 1. The data in Table 1 shows that the proposed

method outperforms the fully supervised methods in all five average

metrics when using the corresponding proportions of labeled data.

Specifically, the DSC improved by 2.39%, 3.74%, and 2.75%,

respectively. Notably, when using 30% labeled data, the proposed

method performed better than using 100% labeled data, indicating

that the method significantly reduces the need for labeled data.

Figure 5 shows the visualization of OA and DSC. From the figure, it

is clear that as the proportion of labeled data increases from 10% to
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30%, the evaluation metrics show significant improvement in the

fully supervised method. However, from 30% to 100%, the

improvement in the metrics is not as pronounced, highlighting

that simply increasing the amount of labeled data does not

significantly improve model performance, further emphasizing

the importance of semi-supervised learning on the OCDC dataset.

To visually demonstrate the improvement of our method over the

fully supervised approach, we show the visual output results in

Figure 6. It can be seen that when only 10% labeled data is used, the

fully supervised method fails to recognize a significant portion of

the tumor region, while our method successfully identifies more

tumor areas. Furthermore, the segmentation results from our

method more accurately capture the tumor boundaries compared

to the fully supervised method, demonstrating theaccuracy of the

proposed boundary-aware enhancement module. This also explains

why our method consistently outperforms the corresponding fully

supervised methods in terms of HD95.

4.4.2 Comparison with other semi-supervised
methods

To prove the effectiveness of the proposed method in semi-

supervised scenarios, we conducted comparison experiments on the
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GIN and CCA datasets using 10% and 20% labeled data. We

compared our method with six state-of-the-art semi-supervised

methods: MT (10), UA-MT (11), CCT (37), CPS (38), DMMT

(31), and SPCL (39). The quantitative experimental results are

reported in Table 2.

The table shows that when using 10% labeled data for training,

the six semi-supervised methods do not achieve significant

improvements compared to the fully supervised method,

especially the teacher-student network-based models (MT, UA-

MT, etc.), whose segmentation results are worse than the fully

supervised approach. Our method outperforms the second-best

method across all five evaluation metrics by 2.03%, 7.64%, 2.12%,

3.37% and 0.2, respectively. In this setup, the SPCL method, which

utilizes contrastive learning, achieves relatively good results among

the other semi-supervised methods. However, when the labeled data

increases to 20%, this advantage does not persist. In contrast, our

method achieves the best results in both settings. Figures 7, 8 show

the visual segmentation results for 10% and 20% labeled data. From

the figures, it is evident that our method’s segmentation results are

much closer to the ground truth, especially in terms of accurately

delineating boundaries. Compared to the UA-MT method, which

only uses entropy for uncertainty estimation, our method
TABLE 1 Quantitative results of supervised and proposed methods using various proportions of labeled data on the OCDC dataset.

Method
Samples used Metrics

M N OA(%) ↑ AA(%) ↑ DSC(%) ↑ Jaccard(%)↑ HD95 ↓

SL

324 0 90.12 84.59 83.61 73.94 11.48

96 0 88.35 84.06 81.56 71.00 12.55

65 0 85.96 81.56 78.49 67.78 13.60

32 0 83.03 78.99 75.39 63.79 14.69

Ours

96 228 90.27 88.84 84.31 74.52 11.82

65 259 88.72 88.26 82.23 75.82 12.10

32 292 85.12 86.61 77.78 66.27 13.93
The results report the average from five-fold cross-validation experiments.
FIGURE 5

Visualization of OA and DSC using different proportions of labeled data on the OCDC dataset.
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TABLE 2 Quantitative results of different methods using various proportions of labeled data on the OCDC dataset.

Method
Samples used Metrics

M N OA(%) ↑ AA(%) ↑ DSC(%) ↑ Jaccard(%)↑ HD95 ↓

SL

324 0 90.12 84.59 83.61 73.94 11.48

65 0 85.96 81.56 78.49 67.78 13.60

32 0 83.03 78.99 75.39 63.79 14.69

MT 32 292 82.67 78.66 74.04 62.07 14.36

UA-MT 32 292 82.00 77.88 73.56 61.39 14.49

CPS 32 292 82.57 78.97 74.80 62.90 14.16

CCT 32 292 80.90 76.72 72.77 60.12 14.50

DMMT 32 292 81.43 77.92 72.51 60.00 14.03

SPCL 32 292 83.09 78.81 75.66 63.76 14.55

Ours 32 292 85.12 86.61 77.78 66.27 13.93

MT 65 259 87.03 82.66 80.14 69.15 13.18

UA-MT 65 259 85.51 80.89 77.43 66.38 13.58

CPS 65 259 87.10 82.76 79.69 68.87 13.26

CCT 65 259 83.82 80.12 76.44 65.25 12.87

DMMT 65 259 86.41 82.55 79.75 68.62 13.08

SPCL 65 259 86.15 80.64 76.88 66.06 13.30

Ours 65 259 88.72 88.26 82.23 75.82 12.10
F
rontiers in Oncolog
y
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The results report the average from five-fold cross-validation experiments, with the optimal results bolded and the suboptimal results underlined.
FIGURE 6

Visualization comparison of supervised and proposed methods using various proportions of labeled data on the OCDC dataset. Yellow regions
represent tumor areas, and the rest are background.
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FIGURE 8

Visualization comparison of the proposed method with other semi-supervised methods using 20% labeled data on the OCDC dataset. Yellow
regions represent tumor areas, and the rest are background.
FIGURE 7

Visualization comparison of the proposed method with other semi-supervised methods using 10% labeled data on the OCDC dataset. Yellow
regions represent tumor areas, and the rest are background.
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significantly reduces false positive samples, demonstrating that the

proposed uncertainty estimation based on data transformation

effectively reduces the teacher model’s prediction errors.

To further validate the effectiveness of the proposed method

under limited annotation conditions, we conducted paired t-tests

between our method and several baseline approaches (including

fully supervised and representative semi-supervised methods)

under two training scenarios using 10% and 20% labeled data.

The significance testing results are summarized in Table 3. As

observed, all p-values are less than 0.05, indicating that the

performance improvements of our method over the baselines are

statistically significant. These results demonstrate the robustness

and superiority of the proposed method in low-label regimes.

In addition, we evaluated the model complexity and inference

time of all compared methods, and the results are reported in

Table 4. Since the SL, MT, UA-MT, CPS, and SPCL methods all use

a standard 2D U-Net as their feature extractor, they have similar

numbers of parameters and inference times. In contrast, our

method introduces the BAEM module, which slightly increases

the model size and inference time.
4.5 Ablation study

In this section, we design experiments to validate the proposed

methods, including the TB-UE approach, the MS-CL method, and

the MAEM. The quantitative results of the experiments are reported

in Table 5. Firstly, we constructed a baseline model, named “Basic”,

which is based on the MT network, by removing the aforementioned

three methods. As the uncertainty estimation methods, we removed

consists of two parts: entropy- based uncertainty estimation (EU) and

data transformation-baseduncertainty estimation (TU), we

respectively added EU and TU to the Basic model. Notably, when

the EU module is added, the network turns into the UA-MT model.

The results in Table 5 show a noticeable reduction in evaluation

metrics when the EU module is added compared to the MT model.
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This suggests that relying solely on pixel entropy for uncertainty

estimation is insufficient for the complex scenarios encountered in

oral pathology image (OPI) segmentation. However, when the TU

module is added on its own or in combination with the EU module,

the evaluation metrics show significant improvement. This

demonstrates that the TU module enhances the accuracy of

pseudo-labels generated by the teacher model, and it confirms the

complementarity between TU and EU modules.

Subsequently, we added the BAEM and MS-CL modules,

leading to improvements in all five evaluation metrics, proving

the effectiveness of these two methods. Notably, after incorporating

the BAEM module, the HD95 decreased from 12.98 to 12.33,

indicating its effectiveness in improving boundary segmentation

accuracy. Finally, the best performance was achieved when all three

modules were integrated into the basic model. To further illustrate

the contribution of the proposed MS-CL module to class-specific

feature discrimination, we visualized the feature representations

obtained before the final output layer using UMAP, as shown in

Figure 9. The visualizations correspond to Model 6 and Model 7. It

can be observed that Model 7, which includes the MS-CL module,

exhibits more compact intra-class clustering and clearer inter-class

boundaries. These results suggest that MS-CL effectively enhances

intra-class consistency and inter-class separability in the

learned representations.

It is worth noting that the increase in the Jaccard index is more

significant than that of the DSC, which can be attributed to the fact

that the values reported in the table are the average results from

five-fold cross-validation, rather than a single trial. From the

formulas for DSC and Jaccard, we can derive the conversion

formula between DSC and Jaccard for a single trial (Equation 15):

DSC =
2 · Jaccard
1 + Jaccard

(15)

Thus, the relationship can be expressed as the following

function: f (x) = x=(1 + x). If we have n points x1, x2,…, xn the

function value at the mean of these points is: f ((x1 + x2 +… +
TABLE 3 P-values of paired t-tests between the proposed method and other methods.

Samples
used

Metrics SL MT UA-MT CPS CCT DMMT SPCL

10%
OA 0.013 0.027 0.025 0.019 0.023 0.036 0.042

DSC 0.020 0.031 0.029 0.022 0.022 0.041 0.038

20%
OA 0.010 0.029 0.037 0.039 0.038 0.046 0.029

DSC 0.018 0.035 0.044 0.040 0.032 0.042 0.033
TABLE 4 Parameter count and inference time on the entire dataset for the proposed method and comparative methods.

Ours SL MT UA-MT CPS CCT DMMT SPCL

Params(M) 1.83 1.81 1.81 1.81 1.81 1.82 1.71 1.81

Times(s) 92.23 67.85 69.02 67.94 68.43 73.21 73.32 69.21
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xn)=n), and the mean of the function values can be expressed as:

(f (x1) + f (x2) +… + f (xn))=n. Thus, the difference D is defined as

(Equation 16):

D =
f (x1) + f (x2) +… + f (xn)

n
− f

x1 + x2 +… + xn
n

� �
(16)

The function f (x) = x=(1 + x) is an increasing convex function,

and therefore satisfies Jensen’s inequality (Equation 17):

f
x1 + x2 +… + xn

n

� �
≤

f (x1) + f (x2) +… + f (xn)
n

(17)

Thus, the difference D is non-negative. Next, we perform a first

and second-order Taylor expansion for each xi (Equation 18):

f (xi) ≈ f (m) + f 0(m)(xi − m) +
1
2
f 00(m)(xi − m)2 (18)

wh e r e m = ((x1 + x2 +… + xn=n)). S u b s t i t u t i n g t h e s e

expansions into the difference calculation (Equation 19):

D =
1
no

n

i=1
f (m) + f 0(m)(xi − m) +

1
2
f 00(m)(xi − m)2

	 

− f (m) (19)
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Since on
i=1(xi − m) = 0, we obtain (Equation 20):

D = 1
no

n

i=1

1
2
f 00(m)(xi − m)2

  = 1
2 f

00(m) · 1no
n

i=1
(xi − m)2

(20)

Recognizing that o
n

i=1
(xi − m)2 is the sum of the squared

deviations of the samples, which is related to the standard

deviation s as follows (Equation 21):

s 2 =
1
no

n

i=1
(xi − m)2 (21)

Thus, the difference D can be expressed as (Equation 22):

D =
1
2
f 00(m) · n · s 2 (22)

This implies that the difference D is directly proportional to the

square of the standard deviation (i.e., variance), and also

proportional to the sample size n. In the quantitative results

presented in this paper, we report the average results from five-
TABLE 5 Quantitative results of ablation experiments using 20% labeled data on the OCDC dataset.

Basic EU TU BAEM MS-CL OA(%)↑ AA(%)↑ DSC(%)↑ Jaccard(%)↑ HD95 ↓

Model1 √ 87.03 82.66 80.14 69.15 13.18

Model2 √ √ 85.51 80.89 77.43 66.38 13.58

Model3 √ √ 87.16 82.59 80.70 70.17 13.05

Model4 √ √ √ 87.84 84.27 81.55 70.94 12.98

Model5 √ √ √ √ 88.05 83.48 82.32 71.53 12.33

Model6 √ √ √ √ 88.62 83.62 82.13 71.66 12.71

Model7 √ √ √ √ √ 88.72 88.26 82.23 75.82 12.10
fron
The results report the average from five-fold cross-validation experiments.
FIGURE 9

Feature visualization diagrams of model6 and model7.
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fold cross-validation. Therefore, the smaller the difference in DSC

and Jaccard, the lower the variance of the method. Based on the

above analysis, we conclude that the incorporation of the three

methods proposed in this paper significantly improves the model’s

generalization performance.
4.6 Hyperparameter Study

To explore the effect of different scales and scale weights on

segmentation performance in MS-CL, we conducted experiments

with D values ranging from 1 to 5. Considering that smaller scales

have higher resolution, the scale weights b i, i ∈ (1; 5), should be

negatively correlated with ii. The quantitative results for different

hyperparameter settings are summarized in Table 6. The

performance was better when D = 2, 3 compared to single-scale

models, indicating that multi-scale information can help the model

capture more diverse features. However, when D > 3, the

performance dropped below that of single-scale models,

suggesting that the bottleneck layer and high-scale information

were not fully leveraged in the contrastive learning setup.
5 Conclusions

This paper proposes a semi-supervised segmentation method

for OPI based on transformation uncertainty and multi-scale

contrastive learning. The method leverages a small amount of

labeled data and a large amount of unlabeled data to jointly train

the model, addressing the limitation of label scarcity and improving

segmentation performance for OPI. In our method, we design a TB-

UE approach that evaluates the model’s confidence on predictions

for data transformed using different methods. This approach

effectively mitigates the impact of semantic discrepancies between

teacher model predictions and ground truth labels. Furthermore, we

introduce a MS-CL approach, which enhances intra-class similarity

and inter-class separability, while reducing the similarity between

the teacher and student models, fostering more diverse feature
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representations. Additionally, we propose a boundary-aware U-Net

model to capture the boundary information of OPI and integrate it

with spatial features to improve segmentation accuracy. Extensive

experiments on the OCDC dataset demonstrate the superiority of

our method over fully supervised and other semi-supervised

methods, providing new insights for alleviating data scarcity in

pathology image segmentation.

Although the focus of this work is on methodological

innovation, it is worth noting the potential clinical implications of

the proposed model. Accurate and automated segmentation of

pathological structures can provide critical support for

pathologists by highlighting tumor boundaries and reducing

diagnostic subjectivity. Furthermore, the proposed method is

compatible with visual explanation tools such as class activation

maps (CAMs), attention heatmaps, or uncertainty visualizations,

which may enhance interpretability and foster trust in clinical

practice. Integrating such models into digital pathology workflows

could assist in pre-screening, prioritization, and quality assurance

tasks. Future work may explore user studies or expert feedback to

further validate the model’s utility in real-world diagnostic settings.

We also acknowledge several limitations of the current study.

First, while our method achieves higher segmentation accuracy, it

introduces additional computational cost due to the inclusion of the

TB-UE and MS-CL modules. This results in increased model

parameters and inference time. Future work will explore

lightweight architectures or model compression strategies to reduce

computational overhead while maintaining performance. Second,

although the proposed approach is designed for oral squamous cell

carcinoma, we have not yet verified its generalizability to other cancer

sites. Evaluating the model’s transferability to other histopathological

datasets—such as those related to lung, breast, or prostate cancer—

will be a key direction in our future research. Lastly, while this paper

emphasizes pixel-level annotation efficiency through semi-supervised

learning, we recognize that obtaining fine-grained pathology

annotations remains labor-intensive. To further reduce annotation

costs, we plan to investigate weaker forms of supervision, such as

image-level labels, scribbles, or pathologist sketches, potentially

combined with active learning techniques.
TABLE 6 Quantitative results of hyperparameter experiments using 20% labeled data on the OCDC dataset.

D b1 b2 b3 b6 b5 OA(%)↑ AA(%)↑ DSC(%)↑ Jaccard(%)↑ HD95 ↓

1 1 88.42 84.42 81.64 70.59 12.39

2 0.7 0.3 88.25 87.56 81.34 70.82 12.22

3 0.7 0.2 0.1 88.26 87.92 81.69 71.20 12.29

3 0.6 0.3 0.1 88.72 88.26 82.23 75.82 12.10

4 0.4 0.3 0.2 0.1 88.17 82.43 81.10 70.00 12.44

5 0.4 0.2 0.2 0.1 0.1 87.44 83.44 82.36 71.72 12.03
fr
The results report the average from five-fold cross-validation experiments.
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