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Background:Ovarian cancer (OC) is the most commonmalignant gynecological

tumor. Cancer cells with high stemness often exhibit resistance to anti-tumor

therapies, contributing to recurrence and poor prognosis. However, stemness-

related subtypes in OC and their therapeutic implications remain underexplored.

Methods:We identified stemness-associated genes by comparing transcriptome

profiles between adherent and sphere-forming SKOV3 cells. Unsupervised

clustering was applied to define stemness-related molecular subgroups in OC

patients. A prognostic model was constructed using WGCNA and LASSO

regression, and a nomogram was developed by integrating clinicopathological

variables. Differences in the tumor microenvironment (TME), tumor mutation

burden (TMB), immune checkpoint expression, and drug sensitivities were

evaluated between risk groups. Single-cell RNA sequencing was used to

investigate stemness-related cell types. Functional assays were conducted to

validate the role of AKAP12 in OC progression.

Results: Three distinct stemness-related subgroups were identified with

significant differences in prognosis and immunological features. Fibroblasts

were identified as major contributors to the maintenance of stemness traits in

the TME. AKAP12 was found to be positively associated with stemness

phenotypes. Knockdown of AKAP12 reduced tumor sphere formation, impaired

cell migration, and enhanced cisplatin sensitivity. Immunohistochemistry in

clinical samples and OC organoids confirmed the correlation between AKAP12

and the immune checkpoint molecule OX40L.

Conclusion: This study establishes a novel stemness-related gene signature for

prognosis prediction and therapeutic stratification in OC. AKAP12 was identified

as a potential biomarker and therapeutic target, offering new avenues for

precision treatment in stemness-driven OC.
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1 Introduction

As per epidemiological statistics, ovarian cancer (OC) is the

eighth common cancer in terms of female prevalence and remained

to be the most fatal gynecologic cancer in 2020 (1, 2). The in-depth

dissections of single-cell methodology illustrate substantial

heterogeneity of OC, underscoring the phenomena of

chemoresistance, immune-suppression, angiogenesis, and distant

migration that can be result in (3, 4). Additionally, distinct subtypes

within sophisticated and varied TME are observed in independent

OC tissues changing the notion of treating OC as a single

homogeneous entity (5). Furthermore, the number of viable

approaches will come to a failure, leading to a decline of overall

survival (OS), when drug resistance emerges, since the majority

patients encounter resistance and therapeutic failure (6–8). A meta-

analysis indicates immunotherapeutic agents are regarded as

possessing high levels of safety and efficacy (9). Drawing upon

that specific cell type expressing molecular characteristics and

potential therapeutic targets, exerts profound impact on the

therapeutic responses and OS (10, 11), it’s advisable for us to

explore and investigate novel biomarkers to guide personalized

treatment strategies.

On reviewing previous studies, we noticed that the mechanisms

leading to OC drug resistance include DNA damage repair,

alterations in transmembrane transport, and abnormal signaling

pathways. Cancer stem cells are important components that have

not yet been fully explored (12–14). Based on the postulated cancer

stem cell theory, OC stem cells maintain tumorigenesis at the

metastatic site of the tumor, and a subpopulation of cancer stem

cells possesses metastasis and drug resistance phenotypes (15). As a

rare subgroup of cancer cells with the capacity for chemotherapy

resistance, OC stem cells have evolved from tumor cells that have

the capacity to invade and resist chemotherapy (16). On the other

hand, the widespread application of conventional chemotherapy

has been linked to the upregulation of stem characteristics and

facilitation of epithelial to mesenchymal transition and

exacerbation metastasis, thereby intensifying the metastatic

potential of clinical treatment (17, 18). The intricate interference

between OC stem cells and the immune and non-immune

components lead to the dysfunction of immune surveillance and

suppression, creating a favorable environment for the transplant

and proliferation of stem cells (19, 20). Therefore, the investigation

of TME can present a promising avenue for seeking novel

therapeutic targets.

Previous studies have evaluated the potential role of immune

checkpoints in the stem cell subgroups of OC cells and found strong

bonds, which elucidated the feasibility of immune checkpoint

inhibitor therapy (21, 22). Crosstalk exists between cancer stem

cells and immune cells. Cancer stem cells can inhibit the transport,

maturation, and differentiation of antigen-presenting cells (APCs),

such as dendritic cells (DCs) and macrophages. Suppressor immune

cells can be recruited using cytokines or chemokines secreted by

stem cells (23). Therefore, they contribute to the formation of an

immunosuppressive microenvironment and facilitate the escape of

cancer stem cells from immune surveillance. Notably, inflammation
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arising from cytokines secreted by tumor-associated immune cells

can lead to the migration of cancer stem cells to maintain tumor

growth (24, 25). In addition, given that cancer stem cells interact

with immune checkpoint molecules to produce immunosuppressive

factors, exploring and targeting novel immune checkpoints may be

a potentially valuable approach for individual treatment (26, 27).

In recent years, traditional transcriptome analysis has been used

to detect the differential expression of genes in multiple samples,

ignoring the crosstalk between cellular compositions. Currently,

single-cell RNA-sequencing (scRNA-seq) analysis has made a

breakthrough in identifying unique cells with a high revolution

and revealing interactions among different subtypes (28–30).

Therefore, we first identified stem cell genes by analyzing

transcriptome sequencing data before and after OC cell

differentiation. To evaluate the performance, unsupervised

clustering was employed to identify specific clusters with high

levels of stemness. By applying a weighted gene correlation

network analysis (WGCNA), we filtered out genes that were

strongly correlated with stemness. Subsequently, risk genes were

identified to construct a prognostic model, and their coefficients

were calculated using machine learning algorithms. We explored its

correlation with immune infiltration, molecular function, and drug

resistance to identify possible therapeutic targets. Finally, by

integrating multiple single-cell datasets, signaling pathways

regulating the formation of stem cells and correlations among all

cell types in different malignant groups were discovered. Though

large amounts of studies reckoned the key role of stem cells in

relapse and resistance, the approach to eradicate the cancer stem

cells hadn’t developed yet (31).

This study contributes to the identification of therapeutic

targets for individual treatments by investigating the prognostic

value of stem cell genes. The established risk model may robustly

predict the survival rate and response to immunotherapy.
2 Materials and methods

2.1 Datasets acquisition and preprocessing

Firstly, the clinical follow-up information, expression data and

somatic mutation data of 379 OC patients in TCGA database could

be obtained from the GDC hub of UCSC Xena browser (https://

xenabrowser.net/). Due to the inconsistence of gene length, we

transformed the original expression data to the transcripts per

mill ion (TPM) values and conducted the exponential

transformation of data for superior comparability. Meanwhile,

patients’ microarray data and survival information (GSE26712)

(32), (GSE32062) (33) and gene expression data of SKOV3 cells

in different status (GSE232783) (34) could be obtained from GEO

database (https://www.ncbi.nlm.nih.gov/geo/). Under stringent

quality control, scRNA-seq data of primary OC samples covering

high- and low-grade was acquired as well (35). Furthermore, in

order to eliminate the potential cross-dataset batch effects, we

employed “sva” package during the analyses based on the

empirical Bayes framework (36).
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2.2 Function enrichment analyses of
differentially expressed genes

Building upon the result detected in prior research (34), it’s

evident that the emerge of aggresomes not only preserves the stem-

like properties, but also remarkably strengthens the aggressiveness

of OC cells. Therefore, by meticulously comparing the hub genes

altered during the transition to aggresomes, we aim to seek and

discern novel stem genes, which are anticipate in exerting fatal

impact on OC patients’ survival outcomes. In order to identify

differentially expressed genes (DEGs), we utilized “limma” R

package (37) to filter genes with significant changes before and

after OC cells differentiation. Our selection was under the threshold

of adjusted p value < 0.05 and |log2foldchange| ≥ 1. To investigate

the molecular mechanisms, biological functions and cellular

components of stem genes, we performed gene ontology (GO)

and Kyoto Encyclopedia of Gene and Genome (KEGG) enrichment

analysis via gene datasets acquired from “clusterProfiler” package

(38). Taking interaction among genes into consideration, we

mapped a line diagram to manifest the alteration of various

signaling pathways by conducting Gene Set Enrichment Analysis

(GSEA) (39). The criteria of selection were set as p < 0.05 and false

discovery rate (FDR) < 0.25.
2.3 Consensus clustering of stem genes in
OC

After conducting univariable Cox regression analysis to select

stem genes with prognostic value, we further utilized

“ConsensusClusterPlus” R program (40) to apply unsupervised

clustering of stemness characteristics for patients in TCGA

cohort. By separating all the patients into k (k=2-9) subgroups,

we determined the favorable cluster numbers and the expression

profile of stem genes was calculated to ensure the robust differences

among subgroups. Meanwhile, Kaplan-Meier (KM) curves were

represented to investigate whether OS exhibited difference in

all subgroups.
2.4 Comparing the immune infiltration
between stem subgroups

For detecting the correlation between stem genes and immune

infiltration, “estimate” R package (41) was applied to calculate the

immune score, estimate score, stromal score and tumor purity with

estimate algorithm. Subsequently, we employed single-sample gene

set enrichment (ssGSEA) algorithm (42) to explore the abundance

and distribution of 28 immune cells in stem subgroups. Through

analyzing the expression of immune checkpoints and evaluating the

immune infiltration extent, we would successfully seek for the

association between immune functions and stem genes.
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2.5 Phenotype score and WGCNA

To estimate the stem level of each sample, we conducted ssGSEA

algorithm, which could unfold the coordinated upward or downward

adjustments of imported gene sets utilizing “GSVA” R package (43).

Through calculating stem score of OC samples in TCGA cohort, we

acknowledged the enrichment degree of stem genes. What’s more,

WGCNA could divide high-throughput data into multiple co-

expression modules and illustrated the potential linkage between

modular genes and clinical phenotypes (44–46). For seeking genes

with significant biological and clinical traits, it’s advisable for us to

select related modules, whose genes could be natural candidates for

further analysis. Genes with the same pattern were separated into the

samemodule and associations betweenmodules and clinical traits were

assessed using Pearson’s correlation analysis.
2.6 Construction and validation of stem
prognostic model

In the first place, univariable Cox regression analysis was

performed to choose stem genes with prognostic value brought

from the previous step. The least absolute shrinkage and selection

operator (LASSO) Cox regression had a capacity of regularization

and reducing data to dimensionality when “glmnet” R package (47)

was invoked. When applied to the construction of the model,

LASSO Cox regression would narrow down the number of stem

genes and determine the optimal composition of risk signature with

the penalty parameter (l) identified by minimum criteria. With this

approach, we could avoid the overfitting of the model and enhance

the accuracy of prediction. Subsequently, the risk score for each OC

patient was calculated according to the following formula:

risk score =o
n

i=1
(coef i  � Expi)

(coefi: the coefficient value, Expi: the expression value of the

prognostic genes) Serving the best cut-off value of risk score as the

threshold value, patients with OC were separated into high- and low-

risk groups. “survminer” package (48) was used to display survival

curves in two risk subgroups. Taking visibility of distinctiveness into

consideration, we applied principal component analysis (PCA) (49) to

demonstrate the compositions of the data. Finally, the area under the

curve (AUC) was calculated with “survivalROC” program (50) to

validate the model’s capability of predicting the 3- and 5-year OS. Two

independent datasets, GEO cohorts (GSE26712, GSE32062) were

utilized as validation sets to verify the generalizability of the model.
2.7 Establishment of a nomogram

To assess prognostic features of all patients, a nomogram was

constructed involving risk score value and clinicopathological
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parameters using “rms” (51). By integrating prognostic factors, the

nomogram could evaluate the outcomes between high- and low-risk

patients with favorable efficacy. Subsequently, calibration curve and

Decision Curve Analysis (DCA) curve were depicted to measure the

difference between predictive and actual values and evaluate the net

clinical benefit of each independent index.
2.8 Immune infiltration and tumor
mutation burden analysis

With the application of ssGSEA as mentioned above, the

proportions of 28 immune cells and the expression of immune

checkpoints could be calculated and the different between high- and

low- risk subgroups could be distinguished by Wilcoxon rank-sum

test. Equally, the differential immune signaling pathways were

investigated by “GSVA” R package. Tumor burden (TMB), which

represents the number of mutations per megabase (Mut/Mb) of

DNA that is sequenced in malignant tumor could be a candidate

prognostic factor and was applied to clinic widely (52, 53).

Considering TMB as a candidate biomarker, we discussed its

difference in adjective risk subgroups and revealed its prognostic

value by KM analysis.
2.9 Drug sensitivity

Based on “oncopredict” R package (54), we could download

GDSC and CTRP data matrixes, which were used as training

cohorts to predict the drug response. Serving the area under the

dose-response curve values as basis, we calculated the IC50 value

(half-maximal inhibitory concentration) to detect the response of

patients with OC to common drugs. Chemotherapy or

immunotherapy drugs exhibiting with p < 0.05 in different risk

clusters were selected as candidate drugs for further analysis.
2.10 Analysis of single-cell sequencing data

To process the raw single cell data, we utilized “Seurat” R

package (55) to build a new Seurat object. An initial quality control

process was implemented to filter a series of high-quality cells,

which encompass 400–7000 RNA features and possess a

mitochondrial gene proportion of less than 5%. Simultaneously,

genes that express within less than three cells are also exclude to

ensure the concentration on biologically relevant factors. Moreover,

“LogNormalize” function is employed to normalize and adjust

features across distinct cells, thereby facilitating their

comparability. Following the identification of hypervariable genes,

Principal Component Analysis (PCA) is conducted to reduce the

dimensionality of high-throughput data and select 15 principal

components (PCs) to capture major variants, as determined by the

ElbowPlot function. Finally, the cell clusters were generated by

FindClusters algorithm with the revolution of 0.5 and were
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presented with Uniform Manifold Approximation and Projection

(UMAP), which had excellent performance and good scalability.

The cell type annotation was completed by manual operation to

ensure the accuracy of results. The “decoupleR” (56) function was

also applied to evaluate the strength of multiple signals in all

cell clusters.
2.11 Cell-cell communication analysis

We conducted the CellChat R package (57) to manifest the

number and intensity of intercellular interactions. Furthermore, to

investigate the abnormal signaling pathways and their stability, we

performed the pattern recognition function of CellChat to evaluate

the strength of incoming and outcoming signaling pathways.

Meanwhile, the heatmap was displayed to clarify the contribution

of each cell cluster in diverse pathways.
2.12 Cell culture and tumor sphere-
formation assay

SKOV3 cells were cultured in McCoy’s 5A medium supplemented

with 10% fetal bovine serum (FBS) at 37°C in a humidified atmosphere

with 5% CO2. Tumor sphere-formation assay was performed to

evaluate the stemness characteristics of SKOV3 cells. Single-cell

suspensions were prepared and seeded into ultra-low attachment 96-

well plates (Corning) at a density of 1000 cells per well. After seeding,

the plates were centrifuged at 1500 rpm for 10 minutes to facilitate cell

aggregation at the bottom of each well. Cells were cultured in serum-

free DMEM/F12 medium (Gibco) supplemented with 1× B27

supplement (Gibco), epidermal growth factor (EGF, 20 ng/mL,

MCE), and basic fibroblast growth factor (bFGF, 20 ng/mL, MCE).

Cultures were maintained at 37°C in a humidified incubator with 5%

CO2. After 3 days of culture, tumor sphere-formation was assessed.

Tumor spheres were defined as single, compact, and round

spheroids with a diameter ≥ 50 mm. Loose aggregates or irregularly

shaped cell clusters were excluded from the sphere count. Sphere

formation efficiency was calculated as the percentage of wells

forming qualified tumor spheres relative to the total number of

seeded wells.
2.13 Quantitative reverse transcription PCR
analysis

Total RNA was extracted using TRIzol reagent (Invitrogen),

and reverse transcription was performed with the PrimeScript RT

reagent kit (Takara) according to the manufacturer’s instructions.

qRT-PCR was conducted using SYBR Green Master Mix (Applied

Biosystems) on a QuantStudio 6 Flex system (Thermo Fisher).

Relative gene expression was calculated by the 2^-DDCt method,

with GAPDH as the internal control. Primers for OCT4, SOX2,

CD133, AKAP12, and GAPDH were synthesized by Sangon Biotech.
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2.14 Small interfering RNAs transfection

SiRNAs targeting AKAP12 and corresponding negative control

(scramble siRNA) were purchased from GeneAdv. SKOV3 cells

were transfected using CALNP RNAi in vitro reagent (D-nano

Therapeutics) according to the manufacturer ’s protocol.

Knockdown efficiency was confirmed by qRT-PCR 24 hours

post-transfection.
2.15 Cell viability assay and IC50
determination

After transfection, SKOV3 cells were seeded into 96-well plates

and treated with various concentrations of cisplatin (Sigma-

Aldrich) for 48 hours. Cell viability was assessed using the CCK-8

assay (Beyotime). Absorbance at 450 nm was measured using a

microplate reader (Bio-Rad). Dose–response curves were generated,

and IC50 values were calculated using nonlinear regression analysis

in GraphPad Prism 9.0.
2.16 Transwell migration assay

Cell migration was evaluated using 24-well Transwell chambers

with 8-mm pore size membranes (Corning). After transfection, 5 ×

104 SKOV3 cells were suspended in serum-free medium and seeded

into the upper chamber, while the lower chamber contained

medium supplemented with 10% FBS. After 24 hours of

incubation, cells on the upper surface were removed, and

migrated cells on the lower surface were fixed with 4%

paraformaldehyde, stained with 0.1% crystal violet, and counted

in five randomly selected fields under the microscope.
2.17 OC organoids

OC organoids were derived from OC tumors via a previously

described method (58). Briefly, tumor pieces were minced and

enzymatically digested using 1mg/mL collagenase (Solarbio,

Beijing, China) and 10 mM Y-27632 (MedChemExpress, NJ,

USA) for 45 minutes at 37°C. Established organoid cell lines were

expanded by plating organoids with Matrigel Matrix (ECM;

Corning, NY 14831, USA) cultured in OC Organoid Kit

(Biogenous, Jiangsu, China) at 5% CO2, 37°C. Media was replaced

every 2–3 days.
2.18 Immunohistochemical staining

For immunohistochemical analysis, surgical specimens were

processed following standard protocols. Briefly, tissue samples

were fixed in 10% formalin, embedded in paraffin, and sectioned

at a thickness of 4 micrometers using a microtome. The sections

were then mounted on glass slides and dewaxed in xylene followed
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by graded ethanol washes. Antigen retrieval was performed using a

citrate buffer (pH 6.0) in a microwave oven. After blocking

endogenous peroxidase activity with 3% hydrogen peroxide and

non-specific binding sites with 10% normal serum, the slides were

incubated overnight at 4°C with primary antibodies specific to the

AKAP12 or OX40L (1:200 dilution). Subsequently, the slides were

washed and incubated with appropriate secondary antibodies

conjugated to horseradish peroxidase for 1 hour at room

temperature. The immune reaction was visualized using 3,3’-

diaminobenzidine tetrahydrochloride (DAB) as the chromogen,

and the sections were counterstained with hematoxylin. Finally,

the slides were dehydrated through graded ethanols, cleared in

xylene, and mounted with a permanent mounting medium.
2.19 Statistical analysis

Statistical analyses in our study were performed by R studio

(version 4.3.1). Analyses of variance for two-sample continuous

variables were calculated using t-tests. Nevertheless, for multiple

samples and non-normally distributed variables, Wilcox test and

Anova analysis could determine whether the difference between

groups had statistical significance. All statistical analyses of trials

were performed using GraphPad Prism 9.0. Quantitative data are

presented as the mean ± standard error of the mean (SEM) from at

least three independent experiments. Comparisons between two

groups were performed using an unpaired two-tailed Student’s t-

test. For drug sensitivity assays (IC50 calculation), nonlinear

regression analysis with a log(inhibitor) vs. normalized response

curve was applied. Alternatively, p < 0.05 was considered to be

statistically significant (ns, not significant, *p < 0.05, **p < 0.01, ***p

< 0.001, ****p < 0.0001).
3 Results

3.1 Identification of stemness genes and
tumor classification

Figure 1 depicts the workflow of this study. To select a novel

stemness gene set, we extracted the transcriptome sequencing data

of SKOV3 cells from the GEO database (GSE232783) and explored

related biomarkers that could maintain the dedifferentiation of OC

cells by comparing the gene expression profiles of adherent and

stem SKOV3 cells. By setting the threshold of logFC > 1 and

adjusting p < 0.05, we obtained 3066 differentially expressed

genes (DEGs) that were highly upgraded in SKOV3 cell stemness.

To explore the potential functions of the stemness genes, we

conducted Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analyses and Gene Set

Enrichment Analysis (GSEA). GO enrichment analysis indicated

that stemness genes play a key role in the regulation of autophagy,

positive regulation of cellular catabolic processes, responses to

oxidative stress, protein targeting, and macroautophagy

(Supplementary Figure S1A). They also serve as regulators of the
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cell-substrate junction, focal adhesion, and nuclear speck in terms

of cellular components. The result of molecular function depicted

they were correlated with molecular adaptor activity, cadherin

binding, protein-macromolecule adaptor activity and ubiquitin

−like protein ligase binding. The results of KEGG enrichment

analysis illustrated that stemness genes mainly enriched in

amyotrophic lateral sclerosis, human papillomavirus infection,

non−alcoholic fatty liver disease, mRNA surveillance pathway,

and biosynthesis of amino acids (Supplementary Figure S1B).

GSEA showed that the expression of stemness genes could lead to

the downregulation of the BDP1_TARGET_GENES and

ZNF8_TARGET_GENES pathways (Supplementary Figure S1C).
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To select favorable stemness genes and assign prognostic

significance, we collected 88 normal and 379 OC samples from

GTEx and TCGA databases, respectively. After identifying the

DEGs between the normal and OC samples, we intersected the

results of the two-variance analysis. Subsequently, we conducted a

univariate Cox regression analysis and determined 15 prognostic

stemness genes (AKAP12, ANKRD33B, CCDC167, EFNA5,

EPB41L2, FOXO1, IRS1, LAMP3, NCS1, RARG, SDF2L1,

SLC7A11, TAF13, TIMM23, and TPMT) that were differentially

expressed in OC tissues. Consensus clustering analysis was

performed to determine whether the stemness phenotype was

crucial in tumorigenesis based on 15 prognostic stemness genes.
FIGURE 1

A schematic flow of the whole study.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1577283
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zeng et al. 10.3389/fonc.2025.1577283
We stratified all patients into k (k = 2-9) different subtypes to

determine the overall prognostic value of the genes and the stability

of the models under different circumstances. Based on the

cumulative distribution function (CDF) curves and the relative

change in area under the CDF curves (Supplementary Figures

S2A, B), we divided all samples into three subtypes, which

achieved the best distinctiveness among the subtypes and the

heatmap depicts the expression profile of the stemness genes

(Figure 2A, B). We found that the C2 cluster had the highest

stemness phenotype. Moreover, the result of KM analysis also

illustrated that cluster 2 had the worst prognosis (p <

0.01) (Figure 2C).
3.2 Exploration of TME and prognostic
characteristics in different tumor subtypes

To investigate the influence of stemness genes on tumor

samples, we calculated and quantified the abundance of 28

immune cells and the expression of multiple immune checkpoints

among the three subtypes. Subsequently, we conducted a Wilcoxon

test to further compare the immunological landscapes between the

two risk categories. The results indicated that, compared to others,

C2 cluster had the highest abundance of central memory CD4+ T

cells, central memory CD8+ T cells, effector memory CD8 + T cells,

eosinophils, immature B cells, memory B cells, natural killer cells,

neutrophils, plasmacytoid dendritic cells, regulatory T cells, T

follicular helper cells, and type 1 T helper cells, whereas CD56

bright natural killer cells were downregulated in this cluster (all p <

0.05) (Figure 2D). Most immune checkpoints such as CD40, CD44,

and CD86 were overexpressed in Cluster 2 (all p < 0.05), illustrating

the promising effectiveness of immune-targeted therapies for this

subtype (Figure 2E). Furthermore, we evaluated the TME-related

indicators encompassing ESTIMATEScore (Figure 2F),

ImmuneScore (Figure 2G), StromalScore (Figure 2H), and

TumorPurity (Figure 2I) in different subtypes and found that

cluster 2 had a high degree of immune infiltration compared to

other groups (all p < 0.05), which corresponded with the analysis of

immune cells, judging from the results of Wilcoxon test. In

conclusion, we filtered out a stemness cluster with the worst

prognosis. The highest immune infiltration and stemness genes

played a key role in the tumorigenesis and advancement of OC.
3.3 Screening of hub genes via ssGSEA and
WGCNA

To determine the degree of stemness in each sample, we

calculated the stemness phenotype score for each individual using

the ssGSEA algorithm. Subsequently, we conducted WGCNA to

identify gene modules related to stemness. When the optimal soft

threshold was set to 12, the co-expression network was close to a

scale-free network (no scale R^2 = 0.9), and the mean connectivity

was stable (Supplementary Figure S3A). Finally, genes sharing

similar patterns were clustered into the same modules, and genes
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in TCGA-OV cohort were clustered into nine modules, as indicated

by the clustering dendrogram (Supplementary Figure S3B) and we

extracted 230 genes in the black and gray modules that were

strongly correlated with stemness (p < 0.001) for further analysis

(Figure 3A). The network heatmap plot shows the correlations

between each module.
3.4 Construction and validation of
prognostic model based on the hub genes

To explore the adverse effects of stemness genes on patient

prognosis, we performed univariate Cox regression analysis to filter

out prognostic genes (p < 0.05). The forest plot depicted the

distribution of the six significant prognostic genes (Figure 3B). To

prevent overfitting of the model, we conducted LASSO regression

analysis to found the optimal l and encompassed six genes to

construct the prognostic model: AKAP12, EFNA5, LAMP3,

SDF2L1, SLC7A11, and TAF13 (Figure 3C). We then computed

the risk score for each sample using the coefficients and expression

data of prognostic genes using the following formula: risk score =

(AKAP12 × 0.12620) + (EFNA5 × 0.19042) - (LAMP3 × 0.06674) -

(SDF2L1 × 0.05986) - (SLC7A11 × 0.15868) - (TAF13 × 0.11205).

With the optimal cutoff value serving as the dividing line, we

successfully separated all patients into high- and low-risk groups.

The KM curve indicated that patients in the high-risk group had a

poorer prognosis than those in the other groups (p < 0.0001)

(Figure 3D). ROC curve analysis was performed to evaluate the

specificity and accuracy of our model and the 3-year and 5-year

AUCs were 0.65 and 0.69, respectively (Figure 3G). The three-

dimensional PCA plot revealed the distribution of tumor samples

and indicated good discrimination between the different risk

subgroups (Figure 3H).

Subsequently, we acquired the clinical information and

transcriptomic sequencing data from 185 patients with OC from

the GEO database (GSE26712) to validate the accuracy of the

prognostic model. After calculating the risk score, the patients

were divided into high- and low-risk groups based on the optimal

cut-off value. KM analysis indicated significant survival differences

between the two risk subgroups (Figure 3E), and AUCs at 3 and 5

years were 0.67 and 0.67, respectively, which confirmed the

accuracy of the model (Figure 3I). Principal component analysis

(PCA) demonstrated that the two groups showed favorable

differentiation (Figure 3J). Moreover, a satisfying discrepancy in

the OS between two risk-groups was also observed in an additional

dataset (GSE32062) comprising 260 patients (Figures 3F, L),

reinforcing the robustness of our findings. 3-year and 5-year

AUCs were 0.60 and 0.65, respectively (Figure 3K).
3.5 Establishment and evaluation of a
nomogram

To identify independent prognostic factors, we employed

univariate and multivariate Cox regression analyses and found
frontiersin.org

https://doi.org/10.3389/fonc.2025.1577283
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zeng et al. 10.3389/fonc.2025.1577283
that age (HR = 1.021, p < 0.001), race (HR = 0.648, p < 0.05), and

risk score (HR = 2.215, p < 0.001) all had prognostic significance

(Figures 4A, B). Based on three independent indicators, a

nomogram was generated to predict the 3-year and 5-year
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survival probabilities of patients in the TCGA cohort (Figure 4C).

Furthermore, we utilized a calibration curve to evaluate the

accuracy of prediction. The predictive and actual curves almost

coincided, indicating the high efficacy of the nomogram
FIGURE 2

Distinguishing distinct stem subgroups and delineating correlated characteristics in The Cancer Genome Atlas Program (TCGA) cohort. (A) The
expression profiles of different stem genes in three stem sub clusters. (B) The consensus matrix for ovarian cancer (OC) samples when k = 3.
(C) Kaplan-Meier (KM) curves manifest the survival discrepancy among three groups. (D, E) The distribution of diverse immune cells and the
expression of immune checkpoints among different groups. (F–I) Box plots display the distribution of estimate scores, immune scores, stromal
scores and tumor purity among three clusters. ns, not significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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(Figures 4D, E). In addition, the highest C-index demonstrated the

robust predictive power of the nomogram compared with other

clinicopathological parameters (Figure 4F). DCA revealed that the

nomogram and risk score had the best net benefit compared with

other clinicopathological parameters, and the nomogram

encompassing prognostic indicators achieved the best

effectiveness according to the curve (Figure 4G).
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3.6 Investigation of TME, TMB and drug
sensitivity

To ascertain the statistical significance of discrepancies between

the two risk sub-groups regarding the aspects of TME, TMB and

drug susceptibility, a t-test analysis was conducted. We firstly

calculated the abundance of 28 immune cells using the ssGSEA
FIGURE 3

Construction and validation of a stem gene signature. (A) A heatmap depicts the correlation and the confidence coefficients between each indicator
and nine generated modules utilizing weighted correlation network analysis (WGCNA). (B) A forest plot depicts the prognostic value of all stem
genes calculated by univariate Cox analysis. (C) Selection for six desirable prognostic genes to construct prognostic model based on the optimal
parameter l utilizing Least absolute shrinkage and selection operator (Lasso) Cox regression. (D–F) KM analyses are performed in three datasets
(TCGA-OV, GSE26712, GSE32062). (G, I, K) ROC curves illustrated the sensitivity and specificity of the models. (H, J, L) Three-dimensional Principal
Component Analysis (PCA) diagrams displaying the distribution of samples.
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algorithm, as mentioned above, and discovered that there was no

difference between the high- and low-risk groups in terms of

immune infiltration (all p > 0.05) (Supplementary Figure S4A).

Additionally, we compared the expression of immune checkpoints

between the two risk subgroups and found that CD80, IDO1, LAG3,

and LGALS9 were significantly downregulated in the high-risk

group (all p < 0.05) (Figure 5A). Notably, while the expression of

TNFSF4, also known as OX40L, was upregulated in the high-risk

population, whereas the expression of its receptor, TNFRSF4

(OX40), did not concurrently show an increase. To reveal the
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potential immune function, we conducted an analysis of immune

pathways, and the results demonstrated the activation of Type I IFN

Response, MHC class I, and para-inflammatory pathways (all p <

0.01) (Figure 5B). Waterfall plots show the landscape of the

mutation rates of the top ten genes’ mutation rate between the

high- and low-risk groups (Figures 5C, D). These results reveal that

risk genes can increase the mortality rate by activating these

potential pathways. The box plot results indicated that the low-

risk group had higher TMB, which corresponded to the waterfall

plot (Figure 5E). After evaluating the TMB in patients with OC, we
FIGURE 4

Establishing a nomogram based on risk score and clinical variables for predicting the 3-year and 5-year survival probability in TCGA cohort.
(A, B) Univariable and multiple Cox regression for identifying independent predictive factors. (C) A nomogram for predicting overall survival (OS).
(D, E) Calibration plots for predicting 3-year and 5-year OS. (F) Comparing the concordance indexes (C-indexes) of nomogram, risk score, race and
age. (G) Distribution Curve Analysis (DCA) analysis of diverse indicators.
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separated all patients into high or low TMB groups with the

threshold of the median TMB, and KM analysis showed that

lower TMB was linked to worse prognosis (p < 0.001)

(Figure 5F). Therefore, we hypothesized that poor outcomes may

be related to drug tolerance. Finally, we meticulously performed a
Frontiers in Oncology 11
sensitivity evaluation of some immune checkpoint inhibitors and

chemotherapeutic drugs and found higher IC50 values for Acetalax,

Erlotinib, Rapamycin, and Savolitinib in the high-risk group,

revealing an increase in drug resistance (all p < 0.05)

(Supplementary Figure S4B).
FIGURE 5

Investigating the difference in terms of tumor microenvironment (TME) between high- and low-groups. (A, B) The difference of the expression of
immune checkpoints and immune functions between two groups. (C, D) Waterfall diagrams reveal the landscape of TMB in high-risk (N = 189) and
low-risk (N = 83) groups. (E) A box plot suggests high-risk group had lower mutations. (F) KM analysis demonstrates the different OS between two
risk groups. ns, not significant, *p < 0.05, **p < 0.01, ***p < 0.001.
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3.7 Establishment of a single-cell
landscape for OC

To characterize the distribution of prognostic genes at the single-

cell level, we extracted scRNA-seq data from five primary OC tissues

encompassing two high-grade OC samples and three low-grade OC

samples from the GEO database (GSE235931). Under stringent quality

control, the employment of UMAP culminated in the categorization of

4773 cells and 27753 features into 11 discrete clusters. According to the

cell markers described in previous articles, we separated all cells into

eight clusters: epithelial cells, T cells, fibroblasts, macrophages,

mesenchymal stem cells (MSCs), B cells, Embryonic Stem Cells

(ESCs), and endothelial cells (Figure 6A). The UMAP map revealed

the abundance of distinct cells derived from multiple samples

(Supplementary Figure S5A). The heatmap shows the expression of

marker genes and top ten expressed genes that represent each cell

population (Supplementary Figures S5B, C). Meanwhile, to determine

the stem content of the TME for OC, we uncovered the significant

upregulation of gene signature in fibroblasts by conducting Anova

analysis (p < 0.001) (Figure 6B) and investigated the distribution of

three model genes with the largest coefficients (AKAP12, EFNA5, and

SLC7A11) in diverse cell clusters depicted by UMAP maps

(Figures 6C–E). Furthermore, the signal enrichment analyses

illustrated the remarkable expression of stem signals, consisting of

TGF-b, p53, Wnt signals (Figure 6F), demonstrating that fibroblasts

should account for the origin of stemness.
3.8 Identification of potential signaling
pathways via cell-cell communication
analysis

CellChat networks can vividly delineate the weights and

numbers of interactions to reveal potential correlations among all

cell types. Based on these results, we discovered a strong correlation

between fibroblasts and other cell populations (Figure 6G). A

heatmap was utilized to reflect the strength of the top 46 intricate

cell-cell signaling pathways, and the COLLAGEN, LAMININ, APP,

FN1, and VISFATIN signaling pathways were found to be crucial for

tumorigenesis (Supplementary Figure S5D). By calculating the

centrality scores of the COLLAGEN signaling pathway, we

identified that fibroblasts mainly function as senders, whereas

endothelial cells serve as receivers and influencers. Alternatively,

MSCs may play a significant role in the regulation of all intercellular

signaling pathways (Figures 6H, I). Overall, these prognostic genes

may induce OC development by regulating the proliferation of

endothelial cells, MSCs, and fibroblasts.
3.9 AKAP12 promotes stemness
phenotypes and is associated with immune
checkpoint OX40L expression in OC

Considering both the model coefficients and the affinity of the

antibodies, we meticulously appraised the actual expression of
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AKAP12, which obtained the highest coefficient and robustly

represented the extent of stemness in multiple OC samples. To

further elucidate the role of AKAP12 in OC, a series of functional

and expression analyses were performed. Firstly, qRT-PCR analysis

demonstrated that the expression levels of classical stemness

markers [OCT4 (59), SOX2 (60), and CD133 (61)] were

significantly elevated in SKOV3 cells cultured under tumor

sphere-forming conditions compared with adherent cultures.

Importantly, AKAP12 expression was simultaneously upregulated

alongside these stemness-associated genes, suggesting a close

association between AKAP12 expression and the stemness

phenotype in OC cells (Figure 7A). Furthermore, siRNA-

mediated knockdown of AKAP12 in SKOV3 cells effectively

reduced its mRNA expression, confirming the knockdown

efficiency (Figure 7B). CCK-8 assays revealed that AKAP12

knockdown enhanced the sensitivity of SKOV3 cells to cisplatin,

as evidenced by a decreased IC50 value compared with scramble

controls (Figure 7C). Functionally, AKAP12 knockdown markedly

impaired tumor sphere-formation. Representative images showed

that siAKAP12-transfected SKOV3 cells failed to form compact,

round spheroids compared with the scramble group (Figure 7D),

and quantitative analysis demonstrated a significant reduction in

sphere formation efficiency (Figure 7E). Moreover, Transwell

migration assays indicated that the migratory ability of SKOV3

cells was significantly suppressed following AKAP12 knockdown,

with fewer migrated cells observed both qualitatively (Figure 7F)

and quantitatively (Figure 7G).

Although previous studies have seldom explored the

relationship between AKAP12 expression and clinicopathological

paramete r s , our s tudy addres sed th i s gap th rough

immunohistochemical analysis of OC tissues and organoid

models. Representative images of AKAP12 and OX40L expression

in clinical samples and cultured organoids are shown in Figure 7H.

Based on the calculated mean staining density, samples were

stratified into high- and low-density groups. A positive

correlation between AKAP12 and OX40L expression was observed

using t-test analysis (Figure 7I), and this association was further

confirmed in OC organoids (Figure 7J).

These findings suggest that AKAP12 serves as a key regulator of

stemness and malignant phenotypes in OC and may represent a

promising prognostic indicator. Targeting AKAP12 could

potentially reduce stemness and drug resistance, while enhancing

the therapeutic efficacy of OX40 agonists in patients with high

AKAP12 expression.
4 Discussion

OC is a type of cancer with high heterogeneity and is

traditionally stratified according to its degree of differentiation.

Clinicians tend to neglect the histological differentiation of OC

and fail to select appropriate treatment targets (62). Previous studies

have suggested that OC stemness characteristics are strongly related

to metastasis and chemotherapy resistance (15). Under these

circumstances, establishing novel stemness gene sets to evaluate
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FIGURE 6

Single-cell analysis reveals the potential mechanisms of stem genes in remodeling TME. (A) The overall single-cell landscape of ovarian samples
depicted by the uniform manifold approximation and projection (UMAP). (B) Distributions of stemness signature score in all cell types depicting by
violin plot. (C–E) The enrichment extent of AKAP12, EFNA5 and SLC7A11 in all cell types. (F) The strength and activation of stem signals among
different cell clusters. (G) Cell-cell communication analysis illustrating the interactions and weights of inter-cellular signals. (H) A heatmap showing
the potential roles of all cell types in COLLAGEN signaling pathway. (I) The strength of outgoing and incoming signaling patterns among all cell types
manifested by a heatmap. ns, not significant, **p < 0.01, ****p < 0.0001.
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FIGURE 7

Effects of AKAP12 knockdown on stemness, migration, and chemosensitivity in ovarian cancer cells, and expression analysis in clinical samples and organoids.
(A) Relative expression levels of classical stemness markers (OCT4, SOX2, CD133) and AKAP12 in SKOV3 cells cultured under adherent versus tumor sphere-
forming conditions, assessed by qRT-PCR. (n = 3). (B) Verification of AKAP12 knockdown efficiency in SKOV3 cells by qRT-PCR. (n = 3). (C) Cell viability
curves and IC50 values for cisplatin in scramble- and siAKAP12-transfected SKOV3 cells, assessed by CCK-8 assay. (n = 3). (D) Representative tumor sphere
images showing the morphological differences between scramble and siAKAP12-transfected SKOV3 cells after 3 days of culture. (E) Quantitative analysis of
sphere formation efficiency in scramble and siAKAP12 groups. (n = 3). (F) Representative Transwell images showing the migrated SKOV3 cells after AKAP12
knockdown compared to scramble controls. (n = 3). (G) Quantification of migrated cell numbers per field in scramble and siAKAP12-transfected SKOV3
cells. (n = 3). (H) Representative immunohistochemical images showing differential expression of AKAP12 and OX40L in four ovarian cancer tissue
samples. (I) Quantitative comparison of staining intensity between high- and low-expression subgroups. (J) Expression levels of AKAP12 and OX40L in
ovarian cancer organoids. Data are presented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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the degree of stemness of tissues from patients with OC and

exploring individualized immunotherapy treatments is advised.

A previous study confirmed the significant role of aggresomes

in the contribution and maintenance of OC stemness and identified

DEGs by comparing the gene expression of OC cells before and

after differentiation (34). Further functional enrichment analysis of

DEGs revealed that stemness genes mainly activate autophagy,

adhesion, and protein adaptor activity signaling pathways to

maintain OC dedifferentiation. Studies have reported that

Enhanced autophagic flux is observed in OC stem cells, and

autophagy can induce the progression of OC through FOXA2

(63). Furthermore, researchers have identified a significant

function for cell adhesion molecules, which mediate intracellular

adhesion and induce the dispersion of OC cell spheroids to

contribute to metastasis (64). The discovery of this study

corresponded with the functional enrichment analysis. GSEA

demonstrated that the BDP1 and ZNF8 signaling pathways were

downregulated throughout progression. Accumulating evidence

indicates that both BDP1 and ZNF8 can serve as biomarkers for

the diagnosis of OC (65, 66).

Among the three stemness clusters subgrouped by the

consensus clustering approach based on 15 prognostic stemness

genes, C2 cluster had a highly enriched degree with the worst

prognosis. Having calculated the immune infiltration of the three

subtypes, we discovered that C2 subtype had a favorable degree of

immune infiltration, whereas it had the lowest tumor purity

compared to the others. Additionally, high stromal scores are

correlated with high-risk and unfavorable prognosis (46, 67, 68).

After identifying C2 as the distinguishing subtype, we explored the

distribution of immune cells. The results indicated that the

abundance of most memory cells, regulatory cells, and helper cells

significantly increased in the C2 subtype, and the proportion of

CD56dim nature killer cells was lower than that in the other

subtypes. Evidence has demonstrated that the activation of

regulatory and memory cells could suppress the immune response

in anti-tumor processes, and they accumulate in the malignant

ascites fluid together with epithelial cells, which could contribute to

poor prognosis (69). Nevertheless, CD56dim nature killer cells are

enriched in OC-related ascites and elicit anti-tumor cytotoxicity

(70). Moreover, immune checkpoint expression demonstrated that

C2 subtype is suitable for immunotherapy.

To further elucidate the effect of stemness characteristics on

prognosis, we employed WGCNA and selected genes in the black

and grey modules, which were highly related to stemness, for

survival analysis. Using univariate Cox regression analysis and

LASSO Cox regression, we successfully constructed a prognostic

model comprising six stemness-related genes (AKAP12, EFNA5,

LAMP3, SDF2L1, SLC7A11, and TAF13), two of which (AKAP12

and EFNA5) showed great relevance to stemness and poor

prognosis with the largest coefficients. The expression profile of

AKAP12 elevated in paclitaxel- and platinum-resistant serous OC

cells and correlates with poor OS and progression-free survival

(PFS) (71). High-grade serous carcinoma tends to overexpress

EFNA5, especially at aggressive stages. EFNA5 inhibits tumor-

suppressive signaling pathways, leading to tumorigenesis and
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drug resistance (72). Through delineating distinct stem cell

characteristics, a previous study (73) also defined a prognostic

signature comprising nine stem genes (SFRP2, MFAP4, CCDC80,

COL16A1, DUSP1, VSTM2L, TGFBI, PXDN, and GAS1) that are

upregulated in high-risk group and elucidated potential

mechanisms, through which these risk factors may promote the

proliferation and metastasis of OC cells.

To further highlight the differences between the models

constructed in our and those in other studies, we conducted an

additional assessment of their predictive performance using

bioinformatics analysis. Specifically, we calculated the risk score

of all patients based on the expression and coefficients of prognostic

genes, and the risk score also reacted to stem abundance. KM

analysis substantiated the distinguishing function of the model in

the training and validation cohorts. Meanwhile, the ROC curves

confirmed the robustness of predicting 3- and 5-year OS. In

comparison with the aforementioned model, our model exhibited

superior predictive capacity, as evidenced by 3-year and 5-year ROC

values of 0.65 and 0.69 in the TCGA cohort, and exhibiting 0.67 and

0.67 in the GSE26712 cohort, 0.60 and 0.65 in the GSE32062 cohort,

respectively. Conversely, the ROC values reported in the other study

were 0.626 and 0.671 in one cohort, and 0.622 and 0.583 in the other

cohort for the same time frames.

After confirming that the risk score was an independent factor

by performing univariate and multivariate Cox regression analyses,

we established a nomogram encompassing all risk factors to predict

3-year and 5-year survival rates. In alignment with the

methodologies employed in the previous study, we also utilized

calibration curves to demonstrate the predictive efficacy of our

nomogram. Moreover, the calculation of C-index, collaborating

with the development of DCA curves underscored the model’s

effectiveness and its substantial net clinical benefit.

To clarify the comprehensive landscape of TME, the abundance

of distinct immune cell populations and the activity of multiple

immune pathways between two risk subgroups were investigated.

Intriguingly, through no substantial differences regarding the

distribution of immune cells was observed, the notable

upregulation of regulatory T cells (Tregs) captured our attention.

Tregs, comprising a minor subset of CD4+ T cells, play a pivotal role

in sustaining self-tolerance of the immune system via modulating

the proliferation and differentiation of effector cells, not only in the

context of cancer (74), but also in inflammatory diseases (75, 76).

Additionally, prior research (77) has established that the expression

of Foxp3, a marker specifically associated with Tregs, is regulated by

p53. Drawing upon the conclusion from other literatures (78–80),

which suggested that p53 enhances the chemotherapy toleration

and promotes the generation of cancer stem cells by modulating

cancer cell quiescence or activating multiple signaling pathways, it’s

reasonable for us to hypothesize that cancer cells exhibiting a high

level of stemness may demonstrate pronounced expression of p53

and in turn can facilitate the proliferation of Tregs. Conversely, the

highly immunosuppressive TME, influenced by Tregs, may also

contribute to the emergence and growth of cancer stem cells.

On the other aspect, the collaborative upregulation of the content

of type 1 helper cells (Th1 cells) and IFN-g was observed across
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groups ranging from low to high stemness. IFN-g, predominately

secreted by Th1 cells, induces inflammatory response and stimulates

antitumor immune processes by triggering diverse downstream

signaling pathways (81). cGAS/STING, as the major downstream

pathway, upregulate a variety of immune checkpoints, implying the

potential efficacy of applying immune checkpoint inhibitors in

populations with high stem extent (82, 83).

Based on the results of immune checkpoint expression, we

hypothesized that an imbalance between OX40 and OX40L

expression could hinder the activation of NK and cytotoxic T

cells (84, 85). Utilizing anti-OX40 immunostimulants may further

enhance therapeutic efficacy for patients with high levels of

stemness and reduce the incidence of resistance to platinum (86,

87). TMB analysis demonstrated that low TMB may be related to

poor clinical outcomes. This phenomenon is caused by decreased

sensitivity to immunotherapy in a population with a high TMB

(88). Finally, a drug sensitivity analysis indicated that the

application of an OX40 immunity activator could provide new

insights into the treatment of OC. The results of IHC staining also

revealed the viability of the application of OX40 agonists in OC

sections with high levels of stemness, which has not yet been

recognized by clinicians, and could provide novel insights for the

therapy of patients with recurrent refractory OC. Tumor organoids,

a novel in vitro model, are derived from tumor tissues and can

simulate tumor proliferation in the host and respond to external

chemotherapy or immune drugs (89–91). By employing this

simulation methodology, we reinforced the healing efficacy of

OX40 agonists in drug-resistant and highly stemmed populations.

Referring to a previous study (92), the combined application of

OX40 and IFN-g with STING agonists may achieve satisfactory

anti-tumor efficacy.

Single-cell transcriptomics can improve the ability to describe

cellular states (93). By integrating multiple single-cell datasets, we

successfully revealed the distribution of various cells in the TME

encompassing OC samples at the high and low stages. Moreover,

the main stemness genes (AKAP12, EFNA5, and SLC7A11) were

enriched in fibroblasts, ESCs, and MSCs, implying that these cell

types drive stem cell production. Previous studies have shown that

cancer-associated fibroblasts and MSCs promote the invasiveness,

stemness, and metastasis of OC (94, 95). Cell-cell interactions and

signaling pathway analyses have attached great importance to the

role of fibroblasts, MSCs, and endothelial cells in the COLLAGEN

signaling pathway. PLOD enzymes, which have implications for

cancer aggressiveness, can promote collagen cross-linking and

increase the firmness of the tumor matrix (96). In addition,

cancer-related fibroblasts maintain OC stem cell growth by

activating the Wnt5a signaling pathway (97). Under these

circumstances, fibroblasts, serving as senders, could induce the

proliferation of MSCs and endothelial cells and contribute to the

formation of OC stem cells. Ultimately, the inducing role of

AKAP12 in stem phenotype of OC was verified in vitro

experiments and clinical samples.

Our study had some limitations. First, single-cell and

transcriptome data were acquired from public databases, and

increase in the sample size is required to improve the scientific
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validity of the findings. Although we confirmed a positive

relationship between the expression of OX40 and immune

checkpoints in clinical samples, cytological experiments should be

considered to validate the relevant biological functions. Overall, the

model that we established could evaluate the actual stem extent for

patients with OC and guide efficient therapeutic strategies to

improve their prognosis.
5 Conclusion

In summary, we identified a novel stemness gene set by

inves t iga t ing di ff e rent ia l change in pre- and pos t -

dedifferentiation OC cells. Utilizing an unsupervised clustering

algorithm, we successfully validated the favorable performance of

the gene set in distinguishing stemness clusters, and discerned a

malignant cluster with a high degree of stemness and poor

prognosis. Owning to the potential prognostic value of stemness

genes, we established a risk model to enhance prognostic prediction

and guide personalized treatment. Having discussed the correlation

between the risk score, TME and drug resistance, we performed a

creatively discovery, that advised clinicians to activate OX40/OX40L

checkpoints to reduce the occurrence of drug resistance and

improve patients’ prognosis. Single-cell analysis revealed the

potential mechanism driving stem cell production.
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SUPPLEMENTARY FIGURE 1

The functional enrichment analysis of differentially expressed genes (DEGs).

The plots depict the enrichment results of Gene Ontology (GO) (A), Kyoto
Encyclopedia of Gene and Genome (KEGG) (B) enrichment analysis and Gene

Set Enrichment Analysis (GSEA) (C) of DEGs. BP, Biological process; MF,
Molecular function; CC, Cellular components.

SUPPLEMENTARY FIGURE 2

The correlated performance of different clustering results. (A) Cumulative

distribution function (CDF) curves revealing the probability distribution of
different subtype numbers (k =2-9). (B) The relative change of area under

Delta CDF curve.

SUPPLEMENTARY FIGURE 3

The generation process of correlated modules via WGCNA. (A) The diagrams

manifest the scale independence and the mean connectivity of multiple soft-

thresholding power values. (B) A cluster dendrogram constructed by the
weighted correlation coefficients. Genes with similar expression pattern were

clustering into the same module. Each color represents a module and each
branch represents a gene.

SUPPLEMENTARY FIGURE 4

The landscape of TME and drug susceptibility in two risk subgroups. (A) The
distribution content of 28 immune cells. (B) The IC50 values of common
chemotherapy agents are calculated in the high- and low-risk groups. ns, not

significant, *p < 0.05, **p < 0.01.

SUPPLEMENTARY FIGURE 5

The single-cell atlas of TME consisting of high- and low-grade OC samples.

(A) The comparation of cells distribution in primary OC samples depicted by

UMAP plots. Heatmaps manifesting the expression of annotation genes (B)
and the top ten genes (C). (D) A heatmap revealing the strength of outgoing

and incoming signaling patterns among all cell types.
References
1. Webb PM, Jordan SJ. Global epidemiology of epithelial ovarian cancer. Nat Rev
Clin Oncol. (2024) 21:389–400. doi: 10.1038/s41571-024-00881-3

2. Stewart C, Ralyea C, Lockwood S. Ovarian cancer: an integrated review. Semin
Oncol nursing. (2019) 35:151–6. doi: 10.1016/j.soncn.2019.02.001

3. Hao Q, Li J, Zhang Q, Xu F, Xie B, Lu H, et al. Single-cell transcriptomes reveal
heterogeneity of high-grade serous ovarian carcinoma. Clin Trans Med. (2021) 11:e500.
doi: 10.1002/ctm2.v11.8

4. Xu J, Fang Y, Chen K, Li S, Tang S, Ren Y, et al. Single-cell RNA sequencing reveals the
tissue architecture in human high-grade serous ovarian cancer. Clin Cancer research: an Off J
Am Assoc Cancer Res. (2022) 28:3590–602. doi: 10.1158/1078-0432.CCR-22-0296

5. Veneziani AC, Gonzalez-Ochoa E, Alqaisi H, Madariaga A, Bhat G, Rouzbahman
M, et al. Heterogeneity and treatment landscape of ovarian carcinoma. Nat Rev Clin
Oncol. (2023) 20:820–42. doi: 10.1038/s41571-023-00819-1

6. Konstantinopoulos PA, Matulonis UA. Clinical and translational advances in
ovarian cancer therapy. Nat cancer. (2023) 4:1239–57. doi: 10.1038/s43018-023-
00617-9
7. Eisenhauer EA. Real-world evidence in the treatment of ovarian cancer. Ann
oncology: Off J Eur Soc Med Oncol. (2017) 28:viii61–viii5. doi: 10.1093/annonc/mdx443

8. O'Malley DM. New therapies for ovarian cancer. J Natl Compr Cancer Network:
JNCCN. (2019) 17:619–21. doi: 10.6004/jnccn.2019.5018

9. Li J, Zou G, Wang W, Yin C, Yan H, Liu S. Treatment options for recurrent
platinum-resistant ovarian cancer: A systematic review and Bayesian network meta-
analysis based on RCTs. Front Oncol. (2023) 13:1114484. doi: 10.3389/
fonc.2023.1114484

10. Gong TT, Guo S, Liu FH, Huo YL, Zhang M, Yan S, et al. Proteomic
characterization of epithelial ovarian cancer delineates molecular signatures and
therapeutic targets in distinct histological subtypes. Nat Commun. (2023) 14:7802.
doi: 10.1038/s41467-023-43282-3

11. Olbrecht S, Busschaert P, Qian J, Vanderstichele A, Loverix L, Van Gorp T, et al.
High-grade serous tubo-ovarian cancer refined with single-cell RNA sequencing:
specific cell subtypes influence survival and determine molecular subtype
classification. Genome Med. (2021) 13:111. doi: 10.1186/s13073-021-00922-x
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2025.1577283/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2025.1577283/full#supplementary-material
https://doi.org/10.1038/s41571-024-00881-3
https://doi.org/10.1016/j.soncn.2019.02.001
https://doi.org/10.1002/ctm2.v11.8
https://doi.org/10.1158/1078-0432.CCR-22-0296
https://doi.org/10.1038/s41571-023-00819-1
https://doi.org/10.1038/s43018-023-00617-9
https://doi.org/10.1038/s43018-023-00617-9
https://doi.org/10.1093/annonc/mdx443
https://doi.org/10.6004/jnccn.2019.5018
https://doi.org/10.3389/fonc.2023.1114484
https://doi.org/10.3389/fonc.2023.1114484
https://doi.org/10.1038/s41467-023-43282-3
https://doi.org/10.1186/s13073-021-00922-x
https://doi.org/10.3389/fonc.2025.1577283
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zeng et al. 10.3389/fonc.2025.1577283
12. Yang L, Xie HJ, Li YY, Wang X, Liu XX, Mai J. Molecular mechanisms of
platinum−based chemotherapy resistance in ovarian cancer (Review). Oncol Rep.
(2022) 47(4):82. doi: 10.3892/or.2022.8293

13. Wang L, Wang X, Zhu X, Zhong L, Jiang Q, Wang Y, et al. Drug resistance in
ovarian cancer: from mechanism to clinical trial. Mol cancer. (2024) 23:66.
doi: 10.1186/s12943-024-01967-3

14. Hugendieck G, Lettau M, Andreas S, Neumann S, Reinhardt N, Arnold P, et al.
Chemotherapy-induced release of ADAM17 bearing EV as a potential resistance
mechanism in ovarian cancer. J extracellular vesicles. (2023) 12:e12338. doi: 10.1002/
jev2.12338

15. Motohara T, Katabuchi H. Ovarian cancer stemness: biological and clinical
implications for metastasis and chemotherapy resistance. Cancers. (2019) 11(7):907.
doi: 10.3390/cancers11070907

16. Lin K, Chowdhury S, Zeineddine MA, Zeineddine FA, Hornstein NJ, Villarreal
OE, et al. Identification of colorectal cancer cell stemness from single-cell RNA
sequencing. Mol Cancer research: MCR. (2024) 22:337–46. doi: 10.1158/1541-
7786.MCR-23-0468

17. Zhao Y, He M, Cui L, Gao M, Zhang M, Yue F, et al. Chemotherapy exacerbates
ovarian cancer cell migration and cancer stem cell-like characteristics through GLI1. Br
J cancer. (2020) 122:1638–48. doi: 10.1038/s41416-020-0825-7

18. Zhao Y, Yang X, Zhao J, Gao M, Zhang M, Shi T, et al. Berberine inhibits
chemotherapy-exacerbated ovarian cancer stem cell-like characteristics and metastasis
through GLI1. Eur J Pharmacol. (2021) 895:173887. doi: 10.1016/j.ejphar.2021.173887

19. Jain S, Annett SL, Morgan MP, Robson T. The cancer stem cell niche in ovarian
cancer and its impact on immune surveillance. Int J Mol Sci. (2021) 22(8):4091.
doi: 10.3390/ijms22084091
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