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Application of radiomics-based
prediction model to predict
preoperative lymph node
metastasis in prostate cancer:
a systematic review and
meta-analysis
Yanghuang Zheng †, Yuelin Du †, Biao Zhang, Helin Zhang,
Panfeng Shang* and Zizhen Hou*

Department of Urology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
Background: This study aims to comprehensively evaluate the accuracy and

efficacy of radiomics models based on imaging equipment in predicting prostate

cancer (PCa) lymph node metastasis (LNM).

Methods: We systematically searched PubMed, Embase, Cochrane Library, Web

of Science, and Sinomed databases from their establishment until July 2024. The

Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) criteria and

the Radiomics Quality Score (RQS) tools were utilized to assess the quality of the

studies. Indicators such as the pooled area under the curve (AUC), sensitivity,

specificity, positive likelihood ratio, and negative likelihood ratio were computed

to evaluate the predictive effect of radiomics technology on LNM of PCa.

Results: A total of 1860 patients diagnosed with LNM of PCa through histological

examination were included in this meta-analysis. The radiomicsmodel for predicting

LNM in PCa showed a pooled AUC value of 0.88 (95% confidence interval (CI) [0.85 -

0.91]), with a sensitivity and specificity of 0.81 (95% CI [0.64 - 0.91]) and 0.85 (95% CI

[0.75 - 0.91]), respectively. The positive likelihood ratio was 5.43 (95% CI [3.34 -

8.84]), the negative likelihood ratio was 0.22 (95%CI [0.12 - 0.43]), and the diagnostic

odds ratio was 24.21 (95% CI [10.59 - 55.32]). The meta-analysis showed significant

heterogeneity among the included studies. No threshold effect was detected. The

subgroup analysis showed that the least absolute shrinkage and selection operator

regression algorithm had the higher diagnostic sensitivity, with a pooled sensitivity of

0.96 (95% CI [0.90 - 1.00]) (p = 0.02), while the random forest algorithm was the

opposite, with a pooled sensitivity of 0.48 (95%CI [0.16 - 0.80]) (p= 0.01). Radiomics

features without intraclass correlation coefficient preprocessing would lead to a

decrease in diagnostic specificity, 0.73 (95% CI [0.53 - 0.92]) (p = 0.04). The pooled

specificity with an RQS score≥ 17 was 0.77 (95% CI [0.65 - 0.88]) (p = 0.01), and the

higher the score, the lower the diagnostic specificity would be.
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Conclusions: The predictive model based on radiomics features has the potential

to serve as an auxiliary approach for predicting preoperative LNM of PCa.

Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier

PROSPERO CRD42024575818.
KEYWORDS

lymph node metastasis, machine learning, magnetic resonance imaging, positron
emission tomography - computed tomography, prostate cancer, radiomics
1 Introduction

Prostate cancer (PCa) is the fifth most frequently diagnosed

cancer worldwide, accounting for 17% of all cancer cases and

ranking as the second most common cancer in men (1).

Incidence rates vary significantly across regions, ranging from 6.4

to 82.8 per 100,000 individuals (1). Accurate lymph node staging is

crucial for evaluating the patient’s prognosis, risk of recurrence, and

potential for salvage therapy. Studies report that the recurrence rate

among PCa patients with lymph node involvement at initial

diagnosis ranges from 1.3% to 12%, which is closely associated

with increased mortality (2). Therefore, early determination of

lymph node status in PCa patients is critical (3).

Computed Tomography (CT) and Magnetic Resonance Imaging

(MRI) are key modalities for detecting lymph node metastasis (LNM)

in PCa, but their diagnostic accuracy remains limited (4, 5). The

introduction of Positron Emission Tomography - Computed

Tomography (PET-CT) has significantly enhanced accuracy by

approximately 27% compared to traditional imaging equipment in

detecting PCa and lymph node status. However, it also presents

challenges such as reduced diagnostic sensitivity and anomalous

uptake in nerve nodes (6, 7). Furthermore, the determination of

lymph node status is often influenced by the spatial resolution of

imaging equipment and subjective factors of the pathologist. The

primary predictive models for LNM in PCa include the Memorial

Sloan Kettering Cancer Center (MSKCC) model and the Briganti

nomograms (2012, 2017, and 2019 editions), which aid treatment

decisions, which aid treatment decisions but have limitations such as

relatively low area under the curve (AUC) values and limited

specificity (8–13). While pelvic lymph node dissection (Plnd) or

extended pelvic lymph node dissection (Eplnd) remains the gold

standard for confirming LNM, these procedures involve prolonged

operative times and risks such as lymph leakage and lymphocele

formation. Consequently, the indication for pelvic lymphadenectomy

remains contentious.

The invasiveness of tumors is related to their heterogeneity.

Radiomics technology can encode the subtle heterogeneity into

quantifiable features (14, 15). By integrating these features through

artificial intelligence algorithms and traditional modeling,

radiomics facilitates the development of predictive models for
02
disease status and prognosis (16). Unlike conventional

histopathological biopsy, this method offers a non-invasive means

of identifying the disease state and is widely utilized in medical

research. Various imaging features hold potential value for

evaluating the staging of PCa and lymph node status (17).

Moreover, quantitative radiomic features can enhance medical

decision support systems and improve clinical decision-making

(18). Several studies have applied radiomics to predict LNM in

PCa (19); however, the lack of standardized radiomics workflows

limits model robustness and reproducibility (20).

This study aims to systematically review and comprehensively

summarize existing research on the use of radiomics for evaluating

LNM in PCa, focusing on diagnostic performance, sensitivity, and

specificity. It seeks to provide clinicians with a potential reference

tool for assessing LNM status and improving the accuracy of

early diagnosis.
2 Methods

2.1 Study protocol and registration

This systematic review and meta-analysis was conducted in

accordance with the Preferred Reporting Items for Systematic

Reviews and Meta-Analyses (PRISMA) statement and the Quality

Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2)

guidelines (21, 22). The protocol was registered in the

International Prospective Register of Systematic Reviews

(PROSPERO) database (registered number: CRD42024575818).
2.2 Literature search

To obtain more relevant research data, we conducted a

comprehensive literature search in PubMed, Web of Science,

Embase, and the Cochrane Library database, covering the time

range from the establishment of each database to research published

up to July 20, 2024. Additionally, the SinoMed database was

searched to further ensure the inclusion of pertinent articles.

During the search process, we employed a combination of
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Medical Subject Headings (MeSH) terms and keywords to conduct

our search. The specific search terms used were as follows:

(“radiomics” OR “radiomic” OR “Artificial Intelligence”[Mesh]

OR “Artificial intelligence” OR “deep learning” OR “machine

learning” OR “convolutional neural network” OR “automatic

detection”) AND (“Magnetic Resonance Imaging”[Mesh] OR

“Tomography, X-Ray Computed”[Mesh] OR “CT” OR “MRI”)

AND (“Lymphatic Metastasis”[Mesh] OR “lymph node

metastasis” OR “Lymph node” OR “LNM”) AND (Neoplasms,

Prostatic OR Neoplasm, Prostatic OR Prostatic Neoplasm OR

Prostate Neoplasms OR Neoplasms, Prostate OR Neoplasm,

Prostate OR Prostate Neoplasm OR Prostate Cancer OR Cancer,

Prostate OR Cancers, Prostate OR Prostate Cancers OR Cancer of

Prostate OR Cancer of the Prostate OR Prostatic Cancer OR

Cancer, Prostatic OR Cancers, Prostatic OR Prostatic Cancers)

OR (“Prostatic Neoplasms”[Mesh]). The specific search strategies

implemented in each database are detailed in Supplementary S1.
2.3 Literature screening

A rigorous screening process was implemented to remove

duplicate records from the initial dataset. Subsequently, titles and

abstracts were thoroughly reviewed. To address selective reporting

bias, two authors (YH.Z. and YL.D.) independently assessed the

abstracts and titles to determine which studies met the inclusion

criteria for full-text review. Discrepancies in study selection were

resolved through consultation with a third reviewer(the

corresponding author, PF.S.). By adhering to the PICO standard

and formulating a specific literature search strategy, we ensured an

exhaustive and impartial search as follows:

P (Population): Patients who underwent radical prostatectomy

combined with pelvic lymph node dissection and were affirmed to

have PCa through histopathological examination. I (Intervention):

Prior to the diagnosis of PCa, CT and MRI imaging examinations

were undergone. C (Comparator): Histopathologic results were used

as the reference standard to compare the performance of radiomics

models. O (Outcomes): The performance of Radiomics models was

assessed through key metrics, including AUC, sensitivity, specificity,

positive and negative likelihood ratios, and diagnostic odds ratios.

The exclusion criteria are as follows (1): Irrelevant titles and

abstracts; (2) Unqualified publication types, such as case reports,

review articles, editorials, letters, errata, conference abstracts, and

animal experiments. All studies that fail to comply with these

criteria were excluded to ensure the reliability and quality of the

meta-analysis data.
2.4 Data extraction

The data extraction for the study was conducted independently

by two authors (YH.Z. and YL.D.), who utilized WPS Office

software (version 6.10.1) to record the data on an electronic

spreadsheet. Any discrepancies were resolved through

consultation with the corresponding author (PF.S.). The extracted
Frontiers in Oncology 03
data encompassed: (1) General study information (first author’s

name, publication year, country); (2) Parameters related to

radiomics techniques (imaging equipment, tumor lesion

segmentation method, region of interest (ROI) dimensions,

imaging feature extraction software, imaging feature types); (3)

Details about the development and validation of the prediction

model (clinical characteristics including the number of patients, the

number of lymph nodes, positive rate of lymph nodes, lymph node

dissection procedure, study design, number of centers; Intraclass

Correlation Coefficient (ICC) or not; standardization or not;

classifier model; and model validation method); (4) Performance

evaluation indicators for the prediction model such as AUC value,

sensitivity, specificity along with their respective 95% confidence

intervals (95% CI) as well as true positives (TP), false positives (FP),

true negatives (TN), and false negatives (FN). The AUC value is

derived from the highest validation set or test set of the predictive

model developed based on radiomics features. For single-center

studies, the AUC value stems from the validation set or the test set.

If multi-center data exist in the study, the result with the highest

AUC value from the external validation set will be incorporated.
2.5 Quality assessment

The Radiomics Quality Score (RQS) checklist and QUADAS-2

were employed to evaluate the included studies (22, 23). Two

authors (YH.Z. and YL.D) independently conducted the

assessments, with any discrepancies resolved through consultation

with the corresponding author (PF.S.). The RQS checklist, proposed

by Lambin et al. in 2017, is a specialized tool for assessing the

quality of radiomics research. It evaluates 16 components across six

key domains to measure the methodological rigor of the radiomics

workflow. Complementing the radiomics focus, the QUADAS-2

tool addresses issues related to applicability and bias risk in

diagnostic accuracy studies. The details of each study can be

found in Supplementary S2, Supplementary S3.
2.6 Statistical analysis

All statistical analysis and graphical representations were

performed using STATA (Version 18.0), R Studio (version 4.3.1),

and Origin pro (Version 2022) incorporating the R packages

“metamisc” and “metaphor”. Summary receiver operating

characteristic (SROC) curves were constructed from 2 × 2

contingency table data to evaluate diagnostic test performance.

The area under the curve (AUC) was used as a metric to assess

the predictive models’ accuracy. Diagnostic metrics including

sensitivity, specificity, positive likelihood ratio, negative likelihood

ratio, diagnostic odds ratio, and diagnostic score were calculated

with their corresponding 95% confidence intervals. Missing data

were estimated using either the confusion matrix calculator or R

Studio-based methods. Detailed formulas and procedures can be

found in Supplementary S4.
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The Q-test and I2 statistic were combined to assess

heterogeneity among study results, with heterogeneity classified as

very low (0–25%), low (25–50%), moderate (50–75%), and high

(>75%). Based on the degree of heterogeneity, either a fixed-effect or

random-effects meta-analysis model was employed.

In subgroup analysis, multiple covariates were evaluated to

determine the source of heterogeneity, including whether clinical

characteristics, calibration method of model, study design, imaging

equipment, tumor lesion segmentation method, ROI dimension,

imaging feature extraction software, lymph node dissection

procedure, ICC or not, standardization or not, classifier model,

and model validation method, and classification based on the

median RQS score as RQS ≥ median or not.

Continuous numerical variables were also examined in the meta-

analysis as potential sources of heterogeneity, including the number

of patients, size of validation cohorts, number of lymph node-positive

cases, and lymph node positivity rate (a total of four items).

A stepwise sensitivity analysis was conducted by sequentially

omitting one study at a time to evaluate the influence of individual

studies on the overall estimate.
Frontiers in Oncology 04
The Deek’s funnel plot was utilized to examine potential

publication bias, while the Egger’s test quantitatively evaluated the

risk of such bias. Additionally, we applied the Fagan plot to assess

clinical utility by providing pre-test probabilities for LNM when

calculating post-test probabilities. Statistical significance was

defined as P < 0.05.
3 Results

3.1 Study screening and selection

Through our systematic search strategy, we identified 431

studies from 5 databases. Following the removal of duplicate

studies, 355 records remained for subsequent screening. Upon the

review of the titles and abstracts, 291 documents were excluded due

to non-compliance with the PICO criteria. Subsequently, a detailed

screening and evaluation were conducted on 64 articles. Among

these, 53 articles were eliminated as they failed to comply with the

requirements of the literature type. Ultimately, 11 articles that
FIGURE 1

The PRISMA flowchart for the study screening process.
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TABLE 1 The table of the characteristics and data included in the study.

Number
of

patients

Number of
validation

set

Number of
lymph

nodes positive

Positive rate
of

lymph nodes

RQS
scores
≥17

280 112 19 0.17 Yes

72 14 10 0.16 Yes

401 50 6 0.12 No

42 13 7 0.54 No

474 128 17 0.13 Yes

84 208 43 0.21 Yes

71 45 14 0.31 Yes

123 51 11 0.22 No

80 62 49 0.79 Yes

60 40 19 0.48 No

244 84 31 0.37 No

eg ROI
dimension

ICC Standardization

au
3D Yes No

3D No Yes

2D Else Yes

2D Yes No

A 3D Yes Yes

A 3D Yes Yes

3D No Yes

au
3D Yes Yes

3D No No
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mentation
method

Semi-
tomatical

Manual

Manual

Manual

utomatic

utomatic

Manual

Semi-
tomatical

Manual
Author Year TP FP FN TN AUC Sensitivity Specificity LCI

Bourbonne 2021 16 5 3 88 0.89 0.65 0.91 /

Cysouw 2021 8 14 2 38 0.86 0.82 0.85 /

Hou 2021 3 6 3 38 0.78 0.86 1 0.65

Lai 2021 6 1 1 5 0.89 1 0.46 0.8

Liu 2022 14 42 3 69 0.73 0.79 0.9 0.65

Liu-2 2022 38 27 5 138 0.9 0.88 0.84 0.85

Liu-3 2022 12 0 2 31 0.96 0.857 1 0.86

Luining 2023 2 5 9 35 0.57 0.5 0.86 0.4

Peeken 2021 49 7 0 6 0.95 0.84 0.74 0.88

Zamboglou 2019 12 2 7 19 0.85 0.81 0.62 0.74

Zheng 2022 24 5 7 48 0.92 0.18 0.88 0.85

Nation
location

Clinical
characteristics

Center
Study
design

Calibration
method
of model

Imaging
equipment

Lymph node
dissection
procedure

Model
validation
method

Classifier
model

Imaging feature
extraction
software

France Yes Single Retrospective
Fold-

bootstraping
MRI Eplnd Internal DL PyRadiomics

Netherlands Yes Single Prospective
Cross-

validation
PET-CT Eplnd Internal RF RaCat

China Yes Multiple Retrospective
Cross-

validation
MRI Eplnd External RF PyRadiomics

China No Single Retrospective Unclear MRI Eplnd Internal LR Others

China No Single Retrospective
Cross-

validation
MRI Eplnd Internal SVM PyRadiomics

China No Single Retrospective
Cross-

validation
MRI Combined Internal LASSO PyRadiomics

China No Single Retrospective
Cross-

validation
MRI Eplnd Internal RF PyRadiomics

Netherlands No Multiple Retrospective
Cross-

validation
PET-CT Eplnd External RF RaCat

Germany No Multiple Retrospective
Fold-

bootstraping
PET-CT Eplnd External LASSO PyRadiomics
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conformed to the PICO criteria and whose full texts were accessible

were incorporated into the systematic review; nonetheless, 1 article

was precluded from further meta-analysis on account of data reuse

(24), thus a total of 10 articles were included in the meta-analysis

(19, 25–33). Figure 1 presents a comprehensive depiction of the

entire literature inclusion process.
3.2 Study characteristics and data

These 11 articles were published between 2019 and 2023,

involving a total of 1,931 patients (Table 1). In the included

studies, there were 5 from Europe, 5 from Asia, and 1 from

North America. It is worth noting that all the Asian literature

originated from China. All the suspected metastatic lymph nodes

were resected by Plnd and/or Eplnd method before the operation

and confirmed histopathologically as LNM of PCa. Most of the

studies were retrospective in design, with only 1 being prospective.

Only 2 studies had multi-center data sources, while 9 were from a

single center. In the radiomics workflow, 7 studies used imaging

equipment MRI to obtain the original images, while the rest used

PET-CT. In tumor lesion segmentation, manual segmentation is

commonly employed to define the tumor dimension in three-

dimensional space. 7 studies utilized the open-source software

PyRadiomics for feature extraction, with all studies extracting

representative texture features. Furthermore, Bourbonne et al. and

Lai et al. conducted ICC evaluations of radiomics features to ensure

imaging feature accuracy (19, 28). 6 studies standardized the

extracted imaging feature values during data processing. For

model building and validation, machine learning algorithms were

used in 6 studies, traditional linear algorithms in 4 studies, and deep

learning (DL) algorithms in only 1. To enhance model robustness, 7

studies employed cross-validation while 2 used bootstrapping

methods; however, 2 did not specify the validation method.

Internal validation was predominantly utilized, although Hou

et al., Luining et al., and Peeken et al. incorporated external

validation methods to bolster model reliability (26, 27, 31).
3.3 Data quality assessment

Upon utilizing the QUADAS-2 tool, it was discerned that none of

the studies exhibited a low risk of bias and practical relevance. 8 studies

exhibited a high risk of bias in the domain of test selection, while 11

studies showed a low risk of bias in both patient selection and reference

standard domains. The risk of bias in the flow and time domains

remained uncertain in 11 studies, primarily due to inadequate

reporting of the interval between the index test and reference

standard test. In terms of applicability concerns, all studies were

deemed to pose low risk. The specific details are depicted in Figure 2.

Among the 11 studies included in the systematic review, the

range of RQS scores was 13 to 21 (Table 2); and among the 10

studies included in the meta-analysis, the range of RQS scores was

also 13 to 21, with an average ± standard deviation of 16.4 ± 2.94

and a median of 16.5 (Figure 3).
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FIGURE 2

The summary of the quality assessment of the included study following QUADAS-2.
TABLE 2 The table of RQS scores for each study.

Author/Year

Domain (Score)
Total
scoresDomain 1 Domain 2 Domain 3 Domain 4

Domain
5

Domain 6

Bourbonne et al. (19) 2021 1 5 5 5 1 2 19

Cysouw et al. (25) 2021 2 5 3 2 7 2 21

Hou et al. (27) 2021 2 7 3 2 0 1 15

Lai et al. (28) 2021 2 5 2 2 0 2 13

Liu et al. (30) 2022 3 5 4 3 1 2 18

Liu-2 et al. (29) 2022 1 7 4 5 1 1 19

Liu-3 et al. (24) 2022 3 5 5 4 1 1 19

Luining et al. (26) 2023 1 7 3 2 0 1 14

Peeken et al. (31) 2021 2 5 5 4 1 2 19

Zamboglou et al. (32) 2019 2 5 3 2 0 1 13

Zheng et al. (33) 2022 2 5 3 2 0 1 13
F
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3.4 Data analysis

Through analyzing and combining the results of diagnostic

indicators, it was shown that the prediction model developed based

on radiomics technology had good diagnostic performance in

predicting LNM in PCa patients preoperatively. AUC was 0.88

(95% CI [0.85 - 0.91]), sensitivity was 0.81 (95% CI [0.62 - 0.91]),

specificity was 0.83 (95% CI [0.73 - 0.90]), positive likelihood ratio

(PLR) was 4.69 (95% CI [3.11 - 7.10]), negative likelihood ratio

(NLR) was 0.23(95% CI [0.11-0.48]), diagnostic odds ratio (DOR)

was 20(95% CI [9 - 45]), diagnostic Score was 3 (95% CI [2.19

- 3.81]).

The forest plot illustrating the combined sensitivity and

specificity is depicted in Figure 4, while the SROC curve is

presented in Figure 5. Detailed information on diagnostic

likelihood ratios, diagnostic scores, and diagnostic odds ratios can

be found in Supplementary S5, Supplementary S6.
3.5 Heterogeneity test

The results of Cochran’s Q and Higgins I2 tests indicate a high

level of heterogeneity in pooled sensitivity and specificity, with Q
Frontiers in Oncology 08
values of 52.31 (p < 0.01) and I2 values of 82.79 for sensitivity, as

well as Q values of 48.14 (p < 0.01) and I2 values of 81.30% for

specificity. The Spearman correlation coefficient of 0.45 (p > 0.05)

suggests the absence of a threshold effect.
3.6 Subgroup analysis

The subgroup analysis revealed that the Least Absolute

Shrinkage and Selection Operator regression (LASSO) algorithm

significantly enhanced diagnostic sensitivity, yielding a combined

sensitivity of 0.96 [0.90 - 1.00] (p=0.02), whereas the random forest

(RF) algorithm had an adverse effect, resulting in a combined

sensitivity of 0.48 [0.16 - 0.80] (p=0.01). Imaging features not

selected by the ICC led to a reduction in diagnostic specificity,

resulting in a combined specificity of 0.73 (0.53 - 0.92) (p=0.04).

The combined specificity of RQS score ≥ 17 was 0.77 (0.65 - 0.88)

(p=0.01), and higher RQS scores were associated with lower

diagnostic specificity. In addition, the combination of radiomics

technology with clinical characteristics, calibration method of

model, study design, imaging feature extraction software, imaging

equipment, lymph node dissection procedure, model validation

method, segmentat ion method, ROI dimension , and
FIGURE 3

The figure of the RQS scores of the studies included in the meta-analysis. The diverse color scales on the right side of the figure denote distinct
scores. The scores ascend from top to bottom. The project score of 0 is not presented in the figure.
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Standardization did not exhibit statistically significant effects on

sensitivity and specificity. Prospective and retrospective designs

demonstrated similar discriminatory ability in prediction models.

Moreover, differences between PyRadiomics software and other

feature extraction software in prediction models were found to

be nonsignificant.
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Incorporating clinical characteristics, Fold-bootstraping,

LASSO classifier; uncalculated ICC values; combined Plnd with

Eplnd; internal validation method; 3D tumor lesions; RQS score ≥

17; manual segmentation; data Standardization; and Fold-bootstrap

method all contributed to improved pooled AUC value of

prediction models. However, there was no statistically significant

difference in the above results. For further details please refer to

Table 3 and Supplementary S7, Supplementary S8.
3.7 Sensitivity analysis

The sensitivity analysis revealed no significant changes upon

systematically removing one study at a time as shown in Figure 6.
3.8 Meta-regression

The statistical results show that there is no significant difference

in AUC value between the number of patients, the number of

validation set, the number of lymph nodes positive, and the positive

rate of lymph nodes (p=0.56; p=0.78; p=0.43; p=0.57) (Figure 7).
3.9 Publication bias

The Deek’s funnel plot asymmetry test did not reveal a

statistically significant bias (p=0.23). Similarly, the results of

Egger’s test indicated no substantial publication bias in the

included studies (p=0.613), as illustrated in Figure 8.
FIGURE 4

Forest plot of sensitivity and specificity.
FIGURE 5

The SROC curve for the prediction of lymph node metastasis of
prostate cancer based on radiomics technology.
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TABLE 3 The table of subgroup analysis results in the included study.

Characteristic Category
Number
of studies

Sensitivity
(95% CI)

p1
Specificity
(95% CI)

p2
AUC

(95% CI)
p3

Clinical characteristics
Yes 4 0.78 [0.53 - 1.00] 0.73 0.88 [0.80 - 0.96] 0.75 0.88 [0.79 - 0.93] 0.00

No 6 0.83 [0.65 - 1.00] / 0.88 [0.80 - 0.96] / 0.81 [0.62 - 0.92] 0.00

Calibration method
of model

Fold-
bootstraping

2 0.97 [0.91 - 1.00] 0.01* 0.81 [0.62 - 1.00] 0.47 0.89 [0.78-0.95] 0.00

Cross
validation

6 0.72 [0.49 - 0.96] 0.19 0.82 [0.72 - 0.93] 0.20 0.83 [0.70-0.91] 0.00

unclear 2 0.76 [0.38 - 1.00] 0.94 0.89 [0.72 - 1.00] 0.68 0.87 [0.37-0.99] 0.13

Classifier model

DL 1 0.70 [0.48 - 0.93] 0.09 0.85 [0.76 - 0.94] 0.6 0.89 [0.78 - 0.95] 0.00

LASSO 2 0.96 [0.90 - 1.00] 0.02* 0.70 [0.46 - 0.94] 0.07 0.91 [0.63 - 0.99] 0.01

LR 2 0.76 [0.38 - 1.00] 0.94 0.89 [0.72 - 1.00] 0.68 0.87 [0.37 - 0.99] 0.13

RF 3 0.48 [0.16 - 0.80] 0.01* 0.84 [0.70 - 0.99] 0.48 0.83 [0.66 - 0.93] 0.00

SVM 2 0.82 [0.53 - 1.00] 0.75 0.78 [0.58 - 0.98] 0.23 0.77 [0.45 - 0.94] 0.10

Study design
Prospective 1 0.82 [0.36 - 1.00] 0.52 0.73 [0.41 - 1.00] 0.41 0.86 [0.68 - 0.95] 0.00

Retrospective 9 0.80 [0.65 - 0.96] / 0.84 [0.76 - 0.92] / 0.86 [0.77 - 0.92] 0.00

ICC

Yes 6 0.78 [0.57 - 0.98] 0.61 0.86 [0.77 - 0.94] 0.75 0.86 [0.76 - 0.92] 0.00

No 3 0.90 [0.75 - 1.00] 0.25 0.73 [0.53 - 0.92] 0.04* 0.87 [0.70 - 0.95] 0.00

Others 1 0.50 [-0.24 - 1.00] 0.33 0.87 [0.67 - 1.00] 0.76 0.78 [0.20 - 0.98] 0.35

Imaging feature
extraction software

PyRadiomics 6 0.88 [0.77 - 0.98] 0.2 0.82 [0.71 - 0.92] 0.26 0.87 [0.78 - 0.93] 0.00

RaCat 2 0.48 [0.06 - 0.91] 0.06 0.82 [0.64 - 1.00] 0.52 0.84 [0.65 - 0.93] 0.00

Others 2 0.76 [0.38 - 1.00] 0.94 0.89 [0.72 - 1.00] 0.68 0.87 [0.37 - 0.99] 0.13

Imaging equipment
PET-CT 4 0.77 [0.53 - 1.00] 0.68 0.77 [0.62 - 0.93] 0.08 0.84 [0.68 - 0.93] 0.00

MRI 6 0.82 [0.66 - 0.99] / 0.85 [0.76 - 0.94] / 0.87 [0.77 - 0.93] 0.00

Lymph node
dissection procedure

Plnd 1 0.64 [0.02 - 1.00] 0.63 0.91 [0.74 - 1.00] 0.31 0.85 [0.16 - 0.99] 0.32

Eplnd 7 0.81 [0.63 - 0.99] 0.92 0.79 [0.69 - 0.90] 0.04 0.85 [0.77 - 0.91] 0.00

Combined 2 0.84 [0.60 - 1.00] 0.63 0.87 [0.75 - 1.00] 0.86 0.91 [0.63 - 0.98] 0.01

Model validation method
External 3 0.72 [0.39 - 1.00] 0.54 0.78 [0.59 - 0.97] 0.19 0.76 [0.35 - 0.95] 0.21

Internal 7 0.83 [0.68 - 0.98] / 0.84 [0.75 - 0.94] / 0.87 [0.79 - 0.92] 0.00

ROI dimension
3D 8 0.82 [0.67 - 0.97] 0.43 0.82 [0.73 - 0.91] 0.56 0.87 [0.78 - 0.92] 0.00

2D 2 0.72 [0.27 - 1.00] / 0.85 [0.66 - 1.00] / 0.83 [0.37 - 0.98] 0.15

RQS score
≥17 5 0.91 [0.83 - 0.99] 0.1 0.77 [0.65 - 0.88] 0.01* 0.87 [0.78 - 0.91] 0.00

<17 5 0.61 [0.40 - 0.83] / 0.89 [0.81 - 0.97] / 0.80 [0.50 - 0.94] 0.05

Segmentation method

Manual 6 0.84 [0.68 - 1.00] 0.58 0.81 [0.69 - 0.93] 0.14 0.86 [0.73 - 0.94] 0.00

Semi-
automatical

2 0.55 [0.10 - 1.00] 0.14 0.93 [0.85 - 1.00] 0.68 0.85 [0.56 - 0.96] 0.02

Automatic 2 0.88 [0.66 - 1.00] 0.42 0.74 [0.54 - 0.95] 0.09 0.81 [0.56 - 0.94] 0.02

Standardization
Yes 6 0.72 [0.49 - 0.96] 0.19 0.82 [0.72 - 0.93] 0.2 0.83 [0.70 - 0.91] 0.00

No 4 0.91 [0.78 - 1.00] / 0.86 [0.73 - 0.98] / 0.89 [0.79 - 0.95] 0.00
F
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2D, two-dimensional; 3D, three-dimensional; AUC, Area Under the Curve; CI, Confidence Interval; CT, Computed Tomography; DL, Deep Learning; Eplnd, Extended pelvic lymph node
dissection; ICC, Intraclass Correlation Coefficient; LASSO, Least Absolute Shrinkage and Selection Operator; LR, Logistic Regression; MRI, magnetic resonance imaging; PET-CT, Positron
Emission Tomography-Computed Tomography; Plnd, pelvic lymph node dissection; ROI, region of interest; RF, Random Forest; SVM, Support Vector Machine; p1/p2, Cochran’s Q-test was
used to compare sensitivity/specificity between subgroups; p3: Wald test from meta-regression was used to compare AUC between subgroups.*, statistically significant difference.
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3.10 Clinical utility

The combined findings indicate that the pre-test probability is

26%. Furthermore, the positive predictive value of the LNM test-

based radiomics model prediction is 62%, while the negative

predictive value is 8%, as illustrated in Figure 9.
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4 Discussion

This study presents a systematic review and meta-analysis of ten

studies that developed radiomics-based predictive models for LNM

in prostate in PCa. To our knowledge, this is the first

comprehensive evaluation of radiomics technology in predicting
FIGURE 6

The figure for sensitivity analysis was calculated using the stepwise rejection method. CI, Confidence Interval.
FIGURE 7

The figure of meta-regression between AUC value and numerical variables. The number of patients (a), the number of validation set (b), the number
of lymph nodes positive (c), and the positive rate of lymph nodes (d) (p = 0.56, p = 0.78, p = 0.43, p = 0.57, respectively).
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LNM in PCa. The pooled results indicate that the models

demonstrated a good performance in predicting LNM (0.88 [95%

CI: 0.85 - 0.91]) with high sensitivity (0.81 [95% CI: 0.62 - 0.91])

and specificity (0.83 [95% CI: 0.73 - 0.90]). Using radiomics - based

predictive models to predict LNM of PCa before surgery may

provide certain reference value for clinical decision-making.

Currently, imaging equipment such as CT and MRI primarily

identify abnormal lymph nodes by visually assessing their size,

shape, and contrast-enhanced regions. PET-CT can identify LNM

(e.g., short axis diameter of lymph node > 10 mm on CT, maximum

standardized uptake value ≥ 2.5 on PET/CT) through the uptake of

abnormal radioactive elements. However, the involvement of too

many subjective factors in evaluation can easily lead to a bias in the

diagnostic results (34, 35). Although widely validated, existing

mainstream nomogram models have yet to demonstrate

significant predictive performance. Bandini et al., Hueting et al.,

Oderda et al., and Gandaglia et al. each validated different

nomogram models using large datasets, revealing variable

predictive accuracy (8–10, 12). The variances might arise from

the discrepant composition of patients in the validation datasets and

the circumstance that they originate from different regions. Di et al.

reported that among high-risk prostate PCa patients, all four

evaluated models systematically overestimated the risk of LNM to

varying degrees (36). Specifically, the MSKCC, Briganti 2012,

Briganti 2017, and Briganti 2019 nomograms exhibited similar

predictive performance for LNM, with respective AUC values of

0.526, 0.548, 0.555, and 0.573. Moreover, these nomograms

displayed relatively high sensitivity (0.973, 0.991, 0.973, and

0.959, respectively) yet exhibited extremely low specificity (0.078,

0.093, 0.140, and 0.183, respectively). These results suggest that
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there is scope for improvement in the existing models in terms of

accurately predicting LNM.

Image-based radiomics techniques partially address this

limitation by enabling quantitative feature analysis for assessing

disease progression. A bibliometric analysis of recent publications

on PCa and radiomics technology within the Web of Science

database over the last five years reveals a close association

between PCa and radiomics as well as key concepts such as AUC,

deep learning, and biomarkers (Figure 10). Numerous studies have

now successfully constructed predictive models for predicting LNM

in PCa based on extracted imaging features from CT scans, MRIs,

or PET-CT scans (37). However, there is currently a lack of robust

evidence supporting the ability of radiomics technology to diagnose

diseases, and there are fewer systematic reviews and meta-analyses

on the application of radiomics in PCa LNM.

In this study, radiomics technology demonstrates well

sensitivity and specificity in predicting LNM. Our findings align

with those of Abbaspour et al., who conducted a meta-analysis of

36 studies on the diagnostic performance of radiomics technology

for predicting LNM of colorectal cancer, yielding a combined

AUC, sensitivity, and specificity of 0.814 ([95% CI: 0.78 - 0.85]),

0.77 ([95% CI: 0.69 - 0.84]), and 0.73 ([95% CI: 0.67 - 0.78]),

respectively (38). Li et al. included 12 studies in their analysis to

evaluate the diagnostic ability of radiomics in predicting cervical

cancer LNM, with a combined AUC, sensitivity, and specificity of

0.83 ([95% CI: 0.76 - 0.89]), 0.80 ([95% CI: 0.72 - 0.87]), and 0.76

([95% CI: 0.72 - 0.80]), respectively (39). While our findings

demonstrate superior diagnostic performance compared to the

two previous studies, it does not imply that radiomics technology

is more effective in predicting LNM of PCa than in predicting
FIGURE 8

The figure of publication bias using Deek’s test and Egger’s test. (a) The funnel plot for publication bias was assessed by applying Deek’s asymmetry
test. (b) This funnel plot presented all the studies encompassed in the meta-analysis, and each point represented an independent study.
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metastasis of other tumors. Such differences may reflect

heterogeneity among pathological tumor types, variability in

imaging equipment and features, and challenges in reproducing

modeling methodologies (23).

In terms of clinical practicality, Fagan nomogram analysis

shows that the model based on radiomics features can increase

the post-test probability of positive results to 62% and reduce the

post-test probability of negative results to 8%. Compared with the

widely used MSKCC nomogram and Briganti nomogram (2012,

2017, 2019 editions), the radiomics model demonstrates higher

diagnostic efficacy (with a better AUC value), and due to its non-

invasive advantage, it may reduce patients’ reliance on prostate
Frontiers in Oncology 13
biopsy and thereby avoid related complications. However, the

current negative posterior probability (8%) of the radiomics

model is still higher than that of MSKCC (5%) and Briganti

nomogram (minimum 2%), its false negative risk limits the

reliability of its sole clinical application. Therefore, at this stage,

the radiomics model cannot completely replace the MSKCC or

Briganti nomogram, but can serve as one of the supplementary tools

for clinical decision-making.

During the process of constructing predictive models, owing to the

high dimensionality of radiomics features, the RF algorithm exhibits

superiority in handling complex nonlinear relationships, whereas

LASSO algorithm is more proficient in fitting linear relationships
FIGURE 9

The Fagan nomogram of the radiomics model in the detection of lymph node metastasis of prostate cancer. The Fagan nomogram demonstrated
the performance of the radiomics model in the detection of lymph node metastasis in prostate cancer. The pre-test probability of having lymph
node metastasis was 26%, yielding a post-test probability of 62% with a positive test and 8% with a negative test.
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(23). Nevertheless, in this study, the combined sensitivity of LASSO

algorithm was 0.96 ([95% CI: 0.90 - 1.00]) (p = 0.02), while that of RF

was 0.48 ([95% CI: 0.16 - 0.80]) (p = 0.01). Despite the statistical

significance of this difference, substantial variations in training and

validation set sizes, data distributions, and hyperparameter

optimization strategies across studies may have influenced model

generalizability. For example, in the studies by Cysouw et.al, Hou

et.al, and Luning et.al, the sample sizes of the validation sets of the RF

models (14, 50, and 51, respectively) were markedly smaller than those

of the LASSO models in the studies by Liu et al. and Peeken et al. (208

and 102, respectively). Furthermore, in small-sample studies, the RF

algorithm is more susceptible to overfitting, resulting in the

degradation of the performance of the validation set, while the

regularization property of LASSO enables it to perform more stably

under small-sample conditions (40). During the hyperparameter

optimization process, RF algorithm is more sensitive to

hyperparameters (such as tree depth and node size, etc.). If the

tuning is inadequate or the data is limited, its performance may be

underestimated. Although the current results indicate that LASSO

algorithm may be more robust, the evidential strength of this

conclusion is limited due to the heterogeneity of the datasets and

methodological differences. Currently, there is no optimal modeling

approach in model construction, and distinct modeling methods

possess obvious inherent limitations, such as the assumption of
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feature independence in Logit models, the requirement for feature

discretization in Bayesian networks, and the dependence on network

configuration in DL. In the future, while pursuing the predictive ability

of the models, it is of greater significance to ensure that the developed

models are fully reproducible (23, 41).

The validation methods for the model include internal

validation and external validation. At present, for the developed

radiomics model, most are evaluated by internal validation to assess

the predictive performance of the model. According to the

literature, external validation is recommended for datasets with

more than 50 samples, while resampling methods are preferable for

smaller datasets (42). Among various resampling methods, cross-

validation and bootstrap methods are the most widely used. Cross-

validation mainly focuses on evaluating the predictive performance

of the model (calculating some statistical data on the missing

samples and evaluating the model’s predictability) (43). Bootstrap

method primarily focuses on the statistical evaluation of the model,

rather than assessing the predictive validity of the samples missed in

each iteration (44–46). Our findings show that bootstrap method

can improve model sensitivity (0.97 vs. 0.72) compared to cross-

validation. However, it does not imply that the bootstrap method is

the best way to validate models. Model performance on new data

largely depends on the quality of the training data. Furthermore, the

best model is not the one that is best suited for calibrating the data
FIGURE 10

A bibliometric network map of the application of radiomics technology in prostate cancer. This figure depicts the findings of a recent 5-year study
on prostate cancer utilizing radiomics technology. The bar graph in the lower right corner illustrates the transition from white to purple, symbolizing
the historical progression to the present. Each circle represents a specific theme or keyword, with its size corresponding to publication frequency.
The figure was created using VOS viewer (version 1.6.20, www.vosviewer.com) based on scientific articles in the Web of Science database.
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or providing the best results in validation, but rather the one that

can predict new samples with high reliability and stable results (47).

ICC is a statistical method based on analysis of variance,

commonly used to analyze continuous numerical data with a

range of ratio indicators between 0 and 1 (48).

In radiomics model construction, ICC assesses the

reproducibility and robustness of imaging features extracted from

tumor lesions across different individuals, segmentation methods,

and time points. This assessment encompasses inter-observer or

intra-observer heterogeneity. Previous reviews have indicated that

most imaging features demonstrate high robustness to inter-

observer or intra-observer heterogeneity, regardless of the ICC

threshold set and the type of tumor (49). In line with the findings

of the appeal, our study suggests that unprocessed imaging features

may result in a reduction in diagnostic specificity, yielding a

combined specificity of 0.73 ([95% CI: 0.53 - 0.92]) (p=0.04).

Nevertheless, the threshold setting for ICC value has not been

standardized yet, and there exist numerous sources of heterogeneity

including imaging scanner parameters, imaging resolution, tumor

segmentation methods, feature extraction software, etc., thus far

precluding any quantitative evaluation of ICC (50).

Among the 10 studies included in this analysis, the RQS was

16.5, which is below both the 50% threshold (18/36) and the 60%

threshold (21.6/36) of the maximum score. Nevertheless, it is

noteworthy that the average RQS score surpassed those reported

in other studies (38, 51). Subgroup analysis revealed that the

diagnostic specificity for RQS score ≥17 was 0.77 ([95% CI: 0.65 -

0.88]) (p=0.01), with a decrease in specificity as the score increased,

possibly attributed to inter-rater variability in the RQS scoring

process and challenges associated with replicating the RQS score

(52). Furthermore, it is important to note that currently, the

applicability of the RQS tool is limited to traditional radiomics

workflows, lacking corresponding evaluation criteria for DL

research. Studies on identifying the status of LNM using DL

algorithms are constantly increasing (53–55). However, this

approach to data processing differs from the classic feature

processing, selection, and model tuning procedures in radiomics.

For instance, traditional radiomics features are based on manual

segmentation, while DL algorithms extract features directly from

images and have a black-box nature, making them not directly

applicable to the “feature reproducibility” and “feature

interpretability” scoring items in RQS tool. Additionally, DL

algorithms mainly enhance data reliability through methods such

as image rotation and flipping, but there are no corresponding

evaluation criteria for these methods in the RQS tool. Therefore, the

RQS tool still needs further improvement to adapt to the progress

of algorithms.

This study has several limitations. First, the number of articles

meeting the inclusion criteria is limited, and some data are derived

through calculations. Second, most included studies were

retrospective, with relatively few prospective studies, potentially

weakening the strength of evidence, potentially leading to a decline

in the strength of evidence. Third, while the number of studies on
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predictive models based on radiomics features has increased

annually, there are very few multi-center or cross-regional external

validation studies on the developed models, which may undermine

the reproducibility and credibility of these models. Fourth, imaging

features may be influenced by factors such as imaging equipment

instrument protocols, contrast agent types, tumor segmentation

methods, feature extraction software, and modeling methods.

Such variability may contribute to differences in diagnostic

performance and underscores the need for authoritative,

standardized operational guidelines. Finally, there is currently no

fully unified expert consensus on quality assessment procedures for

imaging genomics operations despite widespread use of RQS as a

quality assessment tool; further improvements are necessary.
5 Conclusions

The promising diagnostic capability of radiomics technology in

preoperatively predicting LNM in PCa holds potential clinical

relevance for guiding treatment decisions. Nevertheless, the

current limitations associated with this technology may restrict its

immediate clinical applicability. Further comprehensive research is

warranted to validate the findings of this study and facilitate the

integration of this technology into clinical practice.
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