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HER2 expression and sentinel
lymph node status in breast
cancer using a mammography
radiomics model
Ziqian Zhao1, Hongyi Yuan1, Xinyu Song2, Wen Liu3,
Yanyan Chen1, Xiaoli Wang1, Chao Dong1* and Binlin Ma1*

1The Clinical Medical Research Center of Breast and Thyroid Tumor in Xinjiang, Tumor Hospital
Affiliated to Xinjiang Medical University, Urumqi, China, 2Department of Breast Surgery, First People’s
Affiliated Hospital of Xinxiang Medical University, Xinxiang, China, 3Department of Artificial Intelligence
and Smart Mining Engineering Technology Center, Xinjiang Institute of Engineering, Urumqi, China
Background: This study aimed to develop and validate radiomic features derived

from mammography (MG) to differentiate between various HER2 expression

types (HER2-positive, HER2-low, and HER2-zero) and to preoperatively assess

sentinel lymph node (SLN) status in breast cancer.

Methods: A retrospective analysis was conducted using clinicopathological and

imaging data from 838 female breast cancer patients diagnosed at the Affiliated

Tumor Hospital of Xinjiang Medical University between January 2016 and

September 2024. The patients were randomly divided into a training set

(n=586) and a test set (n=252) in a 7:3 ratio. Multivariate logistic regression

analysis identified independent clinical predictors. Tumor segmentation and

radiomic feature extraction were performed on mammography images. The

least absolute shrinkage and selection operator (LASSO) method was applied for

feature selection, and the radiomics model was developed. Model performance

was assessed using the area under the receiver operating characteristic curve

(AUC), calibration curve, and decision curve analysis.

Results: There were no significant differences in clinicopathological factors and

mammographic features between the training and test sets (P>0.05). Multivariate

analysis identified ethnicity, lesion size, vascular tumor thrombus, clinical stage,

tumor margin, and HER2 expression as independent predictors for SLN

metastasis. Lesion size, PR expression, menopausal status, SLN metastasis,

Ki67, CK5/6 expression, and calcification were independent predictors for

HER2 expression. The SLN metastasis prediction model achieved AUCs of 0.84

in the training set and 0.83 in the test set. The HER2 expression model showed

AUCs of 0.87 (positive), 0.82 (low), and 0.85 (zero) in the training set, and 0.84

(positive), 0.78 (low), and 0.84 (zero) in the test set.
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Conclusion: Radiomic features based on mammography can effectively

preoperatively predict SLN status and HER2 expression types in breast cancer,

offering valuable insights for individualized treatment strategies.
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1 Introduction

According to the 2024 Global Cancer Statistics, breast cancer

remains the most commonly diagnosed malignancy among women,

with an estimated 2.41 million new cases and 670,000 deaths

worldwide. In China, approximately 420,000 new cases were

reported, accounting for 18.2% of all female cancers, and the 5-

year survival rate varies from 82% in early-stage to 28% in

metastatic disease (1). Modern oncology integrates surgery,

radiotherapy, and systemic therapies (e.g., targeted drugs and

immunotherapies), yet challenges persist in balancing efficacy

with invasiveness (2). Future directions emphasize minimally

invasive diagnostics and precision medicine, as outlined in recent

studies (3). Axillary lymph node metastasis is one of the important

features of breast cancer and has a key impact on the staging,

diagnosis, treatment and prognosis of breast cancer. Sentinel lymph

node biopsy (SLNB) has gradually replaced Axillary lymph node

dissection (ALND) and has become the preferred method for

clinical evaluation of patients with axillary lymph node negative

early breast cancer (4). However, SLNB has limitations, including a

high false-negative rate, procedural invasiveness, excessive lymph

node resection, and risks of complications, prolonged operative

time, and elevated costs. It is also limited by medical conditions and

doctor’s operating level. Some hospitals are not yet equipped to

carry out SLNB (5). Consequently, there is pressing demand for the

development of effective, non-invasive methods capable of

predicting sentinel lymph node metastasis (SLNM) in breast

cancer, which would significantly contribute to reducing surgical

trauma and improving diagnostic accuracy.
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With the continuous deepening of the concept of precision

medicine, breast cancer treatment is increasingly developing in the

direction of individualized and multidisciplinary comprehensive

intervention. Studies have shown that about 20% to 30% of breast

cancer patients have positive of the human epidermal growth factor

receptor 2 (HER2) gene (6, 7). Past targeted drugs have only

targeted HER2-positive breast cancer patients and have limited

efficacy in HER2-negative patients. However, in the HER2-negative

population, approximately 45% to 55% of patients have HER2-Low

expression (8, 9). Recent research (10, 11) shows the advent of a new

antibody-drug conjugate (ADC) has given HER2-Low breast cancer

patients new treatment opportunities in preoperative

neoadjuvant treatment.

The early and accurate identification of HER2 gene status plays

a pivotal role in implementing personalized treatment strategies

and optimizing prognosis (12). Currently, HER2 status is assessed

through surgery, biopsy, or genetic analysis, but these methods are

limited by tissue sample size and tumor heterogeneity, leading to

high false-negative rates and inconsistent results. Thus, establishing

a simple, non-invasive strategy to assess both sentinel lymph node

and HER2 status in breast cancer is essential for improving

diagnostic accuracy and reducing surgical risks.

Breast imaging examination methods include ultrasound,

mammography, MRI, CT, etc., each of which has its own

advantages and disadvantages. Ultrasound assessment of axillary

lymph nodes is more convenient and cost-effective, but image

quality depends largely on the experience level of the operator,

which may lead to fluctuations in accuracy and reliability. In

contrast, mammography has achieved a high degree of

standardization and is relatively less affected by operations, so the

image quality is more stable (13). With the rapid development of

artificial intelligence technology, in recent years, many studies have

used radiomic models to detect lesions, distinguish benign and

malignant tumors, predict molecular typing of breast cancer, assess

axillary lymph node metastasis risk and predict prognosis, and have

achieved high diagnostic efficiency (14, 15). At present, most studies

based on radiomic methods to predict HER2 status of breast cancer

use MRI images, mainly targeting HER2 positive and negative. Only

a few studies involve HER2-Low status, and there is still a lack of

molybdenum target radiomic studies that can accurately distinguish

different HER2 states (16–18).

This study aims to combine preoperative mammography images

with clinical and pathological data to create a radiomics model that
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predicts sentinel lymph node metastasis (SLNM) and HER2 status.

The goal is to provide reliable, non-invasive diagnostic evidence for

preoperative breast cancer evaluation, axillary lymph node

metastasis risk assessment, and personalized treatment planning.
2 Materials and methods

2.1 Study subjects

This retrospective study included 838 female breast cancer

patients who received treatment at Xinjiang Medical University

Cancer Hospital between January 2016 and September 2024. The

patients met the following inclusion criteria: (1) aged 24 to 88 years;

(2) pathologically confirmed breast cancer; (3) sentinel lymph node

biopsy (SLNB) or axillary lymph node dissection (ALND), with

comple te ALND if SLN was pos i t ive ; (4) comple te

immunohistochemistry (IHC) data (ER, PR, HER2); (5)

preoperative mammography; (6) unilateral breast cancer diagnosis

in women aged 20–88 years; (7) complete clinical, pathological, and

mammographic data; (8) no prior endocrine therapy, radiotherapy,

or chemotherapy; (9) signed informed consent. Exclusion criteria

included: (1) incomplete clinical data or poor-quality

mammography; (2) no postoperative HER2 IHC or fluorescence

in situ hybridization (FISH) testing, or an IHC score of 2+ without

FISH; (3) distant metastasis; (4) prior breast cancer or other

malignancies; (5) male breast cancer.
2.2 Clinical data collection

The 838 patients were randomly divided into a training set (586

cases) and a validation set (252 cases) in a 7:3 ratio. Data collected

included age, ethnicity, menopausal status, lesion size, histological

grade, TNM stage, vascular tumor thrombus, ER, PR, HER2, Ki-67,

CK5/6, nerve invasion, SLN metastasis, and mammographic

features (e.g., breast density, mass shape, margin, density,

architectural distortion, calcification, skin changes). Ethnicity was

classified into four categories: Han Chinese, Uyghur, Kazakh, and

Others (including Hui and Mongolian). This classification reflects

the predominant ethnic groups in Xinjiang and aligns with prior

epidemiological studies in this region. HER2 status was classified

according to the 2018 ASCO/CAP guidelines as HER2-zero (IHC

score of 0), HER2-low (IHC score of 1+ or 2+ with negative FISH),

or HER2-positive (IHC score of 3+ or 2+ with positive FISH) (19).
2.3 Instruments and methods

2.3.1 Mammography image acquisition
IHC or FISH serves as the gold standard for HER2 assessment

in breast cancer. Experienced breast X-ray specialists analyzed

craniocaudal (CC) and mediolateral oblique (MLO) images using

standard imaging techniques, ensuring maximum compression and

automatic exposure control. Particular attention was given to
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lesions, axillary lymph nodes, and skin conditions during image

acquisition. Image omics feature extraction and analysis.

All image data were processed using Unet software for

segmentation. The region of interest (ROI) was manually outlined by

a radiologist with over five years of experience, unaware of the

pathological results. Using the Python-based pyradiomics toolkit,

1,409 features were initially extracted. After stability screening with an

intra-class correlation coefficient (ICC > 0.75), 1,302 highly stable

features were retained for subsequent analysis. Features included first-

order statistics, 2D shape descriptors, texture features, and high-order

features (e.g., GLCM, GLRLM, GLSZM, GLDM, NGTDM). Synthetic

Minority Over-sampling Technique (SMOTE) was used to balance

data. Z-score normalization was applied to standardize feature values

across the training cohort, using the mean and standard deviation of

each feature derived from the training set, which were then applied to

both training and test sets to avoid data leakage. Feature selection was

performed using interclass correlation coefficient (ICC), independent

sample t-test, andLASSO,with features having ICC>0.75 retained.The

data were split into training and test cohorts (7:3), with t-tests used to

identify statistically significant features, followed by LASSO screening.

2.3.2 Model construction
A support vector machine (SVM) algorithm was employed to

model the features through LASSO. For the SVM implementation,

we employed a radial basis function(RBF)kernel with y parameter

scaling, while reserving 99% of the dataset for training through a

test_size parameter of 0.01.For LASSO regression, we implemented

10-fold cross-validation with a values spanning 4 logarithmic scales

(1074 to 101),maximum iterations of 100,000,and random state

stabilization(seed=15). Class balancing was achieved through

weighted samples, with LASSO regularization strength optimized

across three orders of magnitude using 10-fold cross-validation and

a convergence tolerance of 1e-4. The performance of models was

evaluated using receiver operating characteristic (ROC) curves,

calibration curves, and clinical value assessed using decision curve

analysis (DCA).
2.4 Statistical analysis

Statistical analysis was performed using SPSS 21, R (version 3.4.1),

and Python (version 3.1). All tests were two-sided, with P < 0.05

considered significant. Quantitative data are presented as mean ±

standard deviation (X ± s); for normally distributed data, independent

t-tests were used, while non-parametric Mann-Whitney U tests were

applied to ranked data. Chi-square tests were used for categorical data

comparisons. Ethnicity was treated as a categorical variable. Chi-

square tests compared distributions between groups, and multivariate

logistic regression included ethnicity as dummy variables (Set theHan

Chinese as the reference group). Univariate and multivariate logistic

regression analysis identified clinical and imaging features associated

with HER2 expression and SLN metastasis. ROC and DCA curves

were generated using Python, with 95% confidence intervals (CI). The

model’s performance was evaluated by area under the curve (AUC),

sensitivity, and specificity.
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3 Results

3.1 Analysis of clinical characteristics of
sentinel lymph node metastasis

This study included 838 patients (mean age 52.4 ± 10.6 years),

413 of whom had sentinel lymph node metastasis and 425 did not,
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all with complete clinical and pathological data. No significant

differences were found between the training and test groups for any

clinical or pathological factors (P > 0.05) (Table 1). In the training

cohort, univariate analysis identified 12 clinical and pathological

factors associated with sentinel lymph node status, including

ethnicity, lesion size, histological grade, vascular tumor thrombus,

nerve invasion, menopausal status, Ki67, clinical stage, mass
TABLE 1 Baseline characteristics of the study sample.

Baseline parameters Total (n = 838) Training (n=588) Testing (n = 250) P

HER2 expression 0.360

HER2 zero expression 246 (29.356) 164 (27.891) 82 (32.800)

HER2 low expression 297 (35.442) 213 (36.224) 84 (33.600)

HER2 positive expression 295 (35.203) 211 (35.884) 84 (33.600)

Sentinel lymph
node metastasis

0.975

No sentinel lymph
node metastasis

425 (50.716) 298 (50.680) 127 (50.800)

Sentinel lymph node metastasis 413 (49.284) 290 (49.320) 123 (49.200)

Age (years) 0.201

>40 739 (88.186) 524 (89.116) 215 (86.000)

≤40 99 (11.814) 64 (10.884) 35 (14.000)

nationality 0.491

Han 511 (60.979) 363 (61.735) 148 (59.200)

minority 327 (39.021) 225 (38.265) 102 (40.800)

Lesion size (cm) 0.997

>2 523 (62.411) 367 (62.415) 156 (62.400)

≤2 315 (37.589) 221 (37.585) 94 (37.600)

Histological grading 0.197

I 36 (4.296) 30 (5.102) 6 (2.400)

II 399 (47.613) 280 (47.619) 119 (47.600)

III 403 (48.091) 278 (47.279) 125 (50.000)

Vascular
aneurysm thrombus

0.955

none 515 (61.456) 361 (61.395) 154 (61.600)

have 323 (38.544) 227 (38.605) 96 (38.400)

ER expression (%) 0.975

>10% 482 (57.518) 338 (57.483) 144 (57.600)

≤10% 356 (42.482) 250 (42.517) 106 (42.400)

PR expression (%) 0.739

>20% 366 (43.675) 259 (44.048) 107 (42.800)

≤20% 472 (56.325) 329 (55.952) 143 (57.200)

(Continued)
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TABLE 1 Continued

Baseline parameters Total (n = 838) Training (n=588) Testing (n = 250) P

Nerve invasion 0.443

no 732 (87.351) 517 (87.925) 215 (86.000)

yes 106 (12.649) 71 (12.075) 35 (14.000)

Whether menopause 0.862

no 453 (54.057) 319 (54.252) 134 (53.600)

yes 385 (45.943) 269 (45.748) 116 (46.400)

Ki67(%) 0.501

>20% 617 (73.628) 429 (72.959) 188 (75.200)

≤20% 221 (26.372) 159 (27.041) 62 (24.800)

CK5/6 0.658

Negative 622 (74.224) 439 (74.660) 183 (73.200)

Positive 216 (25.776) 149 (25.340) 67 (26.800)

Clinical staging 0.818

I 224 (26.730) 162 (27.551) 62 (24.800)

II 439 (52.387) 307 (52.211) 132 (52.800)

III 152 (18.138) 103 (17.517) 49 (19.600)

IV 23 (2.745) 16 (2.721) 7 (2.800)

Breast density 0.877

Density 59 (7.041) 40 (6.803) 19 (7.600)

Heterogeneous density 649 (77.446) 458 (77.891) 191 (76.400)

Fatty 130 (15.513) 90 (15.306) 40 (16.000)

Lump shape 0.929

Round/spherical 85 (10.143) 60 (10.204) 25 (10.000)

Lobular/Irregular 753 (89.857) 528 (89.796) 225 (90.000)

Edge of the tumor 0.965

smooth 118 (14.081) 83 (14.116) 35 (14.000)

glitch 720 (85.919) 505 (85.884) 215 (86.000)

Mass density 0.780

Isodensity 247 (29.475) 175 (29.762) 72 (28.800)

High Density 591 (70.525) 413 (70.238) 178 (71.200)

Structural distortion 0.565

none 368 (43.914) 262 (44.558) 106 (42.400)

have 470 (56.086) 326 (55.442) 144 (57.600)

Calcification 0.455

none 164 (19.570) 119 (20.238) 45 (18.000)

have 674 (80.430) 469 (79.762) 205 (82.000)

Skin changes 0.605

none 754 (89.976) 527 (89.626) 227 (90.800)

have 84 (10.024) 61 (10.374) 23 (9.200)
F
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margin, mass density, skin changes, and HER2 expression. These 12

factors were analyzed using multivariate logistic regression, which

identified six independent risk factors for sentinel lymph node

metastasis: ethnicity, lesion size, vascular tumor thrombus, clinical

stage, tumor margin, and HER2 expression (Table 2).
3.2 Analysis of clinical characteristics of
HER2 expression

Of the 838 patients, 246 (29.4%) had HER2-zero (0), 297 (35.4%)

had HER2 1+ or 2+ (FISH-), and 295 (35.2%) had HER2 2+ (FISH+)

or HER2 3+. No significant differences were found between the

training and test groups (P > 0.05). In the training cohort, after

incorporating 20 variables into univariate and multivariate logistic

regression, seven factors were identified as independent risk factors

for HER2 expression: lesion size, PR expression, menopausal status,

SLN metastasis, Ki67, CK5/6 expression, and calcification (Table 3).
Frontiers in Oncology 06
3.3 Construction of radiomics prediction
model for sentinel lymph node metastasis

A total of 1,302 stable radiomic features (ICC ≥ 0.75) were

analyzed for each patient, with 1,060 showing high stability (ICC ≥

0.75). After preliminary screening with an independent sample t-

test, the LASSO algorithm selected the 20 best features (Figure 1)

(Table 4). These features include: First Order Statistics (3 features),

GLCM features (4 features), GLSZM features (3 features), GLRLM

features (5 features), GLDM features (2 features), Wavelet

Transform Features (4 features), Multi-scale Filtering Features (5

features), LBP Features (2 features). Based on these features and

their weighting coefficients, a radiomics score (radscore) was

calculated for each patient. The support vector machine (SVM)

algorithm was used to construct a prediction model. The model’s

performance was evaluated using the receiver operating

characteristic (ROC) curve, achieving an AUC of 0.84 in the

training set and 0.83 in the validation set (Figure 2) (Table 5).
TABLE 2 Univariate and multivariate logistic regression analysis for predicting SLNM.

Subgroups
Univariable Analysis Multivariable Analysis

b SE Z P OR (95%CI) b SE Z P OR (95%CI)

age 0.01 0.21 0.04 0.964 1.01 (0.66 ~ 1.54)

nationality 0.56 0.14 3.93 <.001 1.75 (1.33 ~ 2.32) 0.39 0.19 2.02 0.044 1.48 (1.01 ~ 2.17)

Lesion size 0.88 0.15 5.97 <.001 2.40 (1.80 ~ 3.21) -1.05 0.26 -3.98 <.001 0.35 (0.21 ~ 0.59)

Histological grading 1.41 0.41 3.41 <.001 4.09 (1.82 ~ 9.19) 0.66 0.56 1.18 0.238 1.93 (0.65 ~ 5.74)

Vascular aneurysm thrombus 1.90 0.16 11.78 <.001 6.66 (4.86 ~ 9.13) 1.45 0.20 7.13 <.001 4.27 (2.86 ~ 6.36)

ER expression 0.24 0.14 1.74 0.082 1.28 (0.97 ~ 1.68)

PR expression 0.19 0.14 1.34 0.180 1.21 (0.92 ~ 1.58)

Nerve invasion 1.09 0.23 4.77 <.001 2.97 (1.90 ~ 4.64) 0.37 0.30 1.23 0.218 1.45 (0.80 ~ 2.63)

Menopausal status -0.30 0.14 -2.18 0.029 0.74 (0.56 ~ 0.97) 0.21 0.19 1.12 0.262 1.24 (0.85 ~ 1.80)

Ki67 expression 0.32 0.16 2.02 0.043 1.38 (1.01 ~ 1.87) -0.15 0.24 -0.61 0.540 0.86 (0.54 ~ 1.38)

CK56 expression -0.24 0.16 -1.49 0.136 0.79 (0.58 ~ 1.08)

Clinical staging 3.21 0.52 6.13 <.001 24.76 (8.88 ~ 69.07) 3.22 0.61 5.25 <.001 25.00 (7.51 ~ 83.23)

Breast density -0.13 0.27 -0.48 0.634 0.88 (0.52 ~ 1.50)

Lump shape 0.36 0.23 1.57 0.116 1.44 (0.91 ~ 2.27)

Edge of the tumor 1.31 0.23 5.71 <.001 3.69 (2.36 ~ 5.79) 1.05 0.29 3.55 <.001 2.85 (1.60 ~ 5.07)

Mass density 0.32 0.15 2.08 0.038 1.37 (1.02 ~ 1.85) 0.22 0.21 1.02 0.310 1.24 (0.82 ~ 1.89)

Structural distortion 0.22 0.14 1.58 0.114 1.25 (0.95 ~ 1.64)

Calcification 0.30 0.18 1.71 0.088 1.35 (0.96 ~ 1.90)

Skin changes 1.24 0.26 4.73 <.001 3.46 (2.07 ~ 5.79) 0.58 0.35 1.69 0.091 1.79 (0.91 ~ 3.54)

HER2 expression 0.58 0.18 3.30 <.001 1.79 (1.27 ~ 2.53) 0.61 0.24 2.58 0.010 1.84 (1.16 ~ 2.92)
OR, Odds Ratio, CI, Confidence Interval.
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3.4 Construction of radiomics prediction
model for HER2 expression

From the craniocaudal (CC) and mediolateral oblique (MLO)

mammographic images, 1,302 radiomic features were extracted.

After dimensionality reduction using ICC and t-tests, 54 optimal

features were selected by LASSO regression (Figure 3) (Table 6).

These features include: First Order Statistics (9 features), GLCM

features (5 features), GLSZM features (10 features), GLRLM

features (8 features), GLDM features (6 features), Wavelet

Transform Features (12 features), Multi-scale Filtering Features

(10 features), LBP Features (4 features). A radiomics model based

on these features showed strong prediction performance for HER2

status. ROC analysis revealed AUCs of 0.85 (training) and 0.84

(validation) for HER2-zero (0); 0.82 (training) and 0.78 (validation)

for HER2 1+ or 2+ (FISH-); and 0.87 (training) and 0.84

(validation) for HER2 2+ (FISH+) or HER2 3+ (Figure 4) (Table 7).
Frontiers in Oncology 07
4 Discussion

The evolving approach to breast cancer surgery emphasizes

minimizing trauma and enhancing patient quality of life. Accurate

preoperative assessment of HER2 status and sentinel lymph node

metastasis is crucial for tailoring treatment plans, evaluating

prognosis, and predicting recurrence risk (20, 21). This study

demonstrates that radiomic features derived from mammography

effectively predict HER2 expression subtypes and sentinel lymph

node (SLN) metastasis. Our model achieved AUCs of 0.82–0.87 in

the training set, outperforming traditional clinical-pathological

assessments. These findings provide a non-invasive tool to guide

personalized treatment strategies and reduce unnecessary surgical

interventions. The decision curve analysis (DCA) further confirmed

the clinical utility of the model, showing a net benefit across a wide

range of threshold probabilities (10–60%). For example: In high-

risk patients (predicted SLN metastasis probability >60%),
TABLE 3 Univariate and multivariate logistic regression analysis for predicting HER2 positive, low, and zero expression.

Subgroups
Univariable Analysis Multivariable Analysis

b SE t P OR (95%CI) b SE t P OR (95%CI)

age -0.18 0.20 -0.90 0.370 0.84 (0.57 ~ 1.24)

nationality 0.07 0.13 0.57 0.569 1.08 (0.83 ~ 1.39)

Lesion size 0.40 0.13 3.08 0.002 1.50 (1.16 ~ 1.94) 0.40 0.18 2.26 0.024 1.48 (1.05 ~ 2.09)

Histological grading 0.65 0.32 2.06 0.039 1.92 (1.03 ~ 3.55) 0.05 0.35 0.16 0.876 1.06 (0.53 ~ 2.10)

Vascular aneurysm thrombus 0.20 0.13 1.54 0.123 1.22 (0.95 ~ 1.58)

ER expression 0.25 0.13 1.92 0.055 1.29 (0.99 ~ 1.66)

PR expression -0.28 0.13 -2.23 0.026 0.75 (0.59 ~ 0.97) -0.46 0.15 -3.03 0.002 0.63 (0.47 ~ 0.85)

Nerve invasion 0.20 0.19 1.04 0.299 1.22 (0.84 ~ 1.79)

Menopausal status -0.29 0.13 -2.26 0.024 0.75 (0.58 ~ 0.96) -0.32 0.13 -2.42 0.015 0.72 (0.56 ~ 0.94)

Sentinel lymph node status 0.75 0.13 5.82 <.001 2.13 (1.65 ~ 2.74) 0.78 0.16 4.80 <.001 2.19 (1.59 ~ 3.01)

Ki67 expression 0.65 0.14 4.66 <.001 1.92 (1.46 ~ 2.54) 0.55 0.16 3.41 <.001 1.74 (1.26 ~ 2.39)

CK56 expression -0.67 0.15 -4.50 <.001 0.51 (0.38 ~ 0.68) -0.94 0.17 -5.60 <.001 0.39 (0.28 ~ 0.54)

Clinical staging 0.75 0.20 3.80 <.001 2.11 (1.44 ~ 3.11) -0.39 0.28 -1.38 0.166 0.68 (0.39 ~ 1.18)

Breast density -0.23 0.26
-

0.88
0.381 0.80 (0.48 ~ 1.33)

Lump shape -0.10 0.20 -0.51 0.610 0.90 (0.60 ~ 1.35)

Edge of the tumor 0.02 0.18 0.13 0.895 1.02 (0.72 ~ 1.46)

Mass density -0.23 0.14 -1.66 0.097 0.79 (0.60 ~ 1.04)

Structural distortion 0.13 0.13 1.00 0.315 1.14 (0.88 ~ 1.46)

Calcification 0.59 0.16 3.73 <.001 1.81 (1.32 ~ 2.47) 0.41 0.16 2.51 0.012 1.51 (1.10 ~ 2.09)

Skin changes 0.05 0.21 0.25 0.804 1.05 (0.70 ~ 1.58)
OR, Odds Ratio, CI, Confidence Interval.
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clinicians may prioritize SLNB to confirm metastasis and plan

axillary dissection, aligning with current guidelines. Conversely, in

low-risk patients (predicted probability <20%), the model supports

avoiding unnecessary SLNB procedures, opting instead for watchful

waiting or non-invasive monitoring. This stratification could reduce

surgical complications by 30–40% in low-risk cohorts, as observed

in breast cancer risk management studies (21).This dual-threshold

approach highlights the utility of DCA in translating model outputs

into actionable decisions, as similarly demonstrated in glioma

biomarker research (22). Unlike ROC analysis, which evaluates

diagnostic accuracy (AUC), DCA quantifies clinical net benefit by

balancing true-positive gains against false-positive harms. For

instance, in our HER2 expression model, the AUC of 0.87 reflects

high discriminative power, while DCA shows that applying the

model at a 15–50% threshold range would prevent 35–50% of

unnecessary biopsies without compromising sensitivity. While

AUC-ROC quantifies diagnostic accuracy, DCA evaluates clinical

net benefit. Both metrics were analyzed (Figure 4D), but AUC
Frontiers in Oncology 08
remains the gold standard for direct comparison with prior

radiomics studies, such as those investigating RAD51, SCN3B,

and CDK2 in cancer biomarker discovery (22–24).

Recent studies have focused on the relationship between breast

cancer lymph node metastasis and primary lesion imaging features

(25). While significant progress has been made, most radiomics

research has focused on predicting non-sentinel lymph node (SLN)

status (26) or axillary lymph node (ALN) (27, 28) metastasis to

reduce postoperative complications. Research on SLN status,

however, remains limited. This study found that ethnicity, lesion

size, vascular tumor thrombus, clinical stage, mammography-based

tumor margin, and HER2 expression were independent predictors

of SLN metastasis, aligning with previous studies (4, 29). Previous

research has highlighted a strong correlation between tumor margin

characteristics and ALN metastasis (ALNM) risk (30), Spiculated

margins, in particular, increase ALNM risk by approximately

sixfold compared to clear margins, a finding supported by this

study. This may be attributed to cancer cell infiltration inducing
FIGURE 1

Independent sample t-test and LASSO regression analysis were used to screen the significant features for predicting sentinel lymph nodes.
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fibrosis, which accelerates the formation of blood and lymphatic

vessels, thereby facilitating tumor spread. However, some studies

suggest that fibroplasia might slightly delay tumor spread (31).

HER2 is a transmembrane receptor protein with tyrosine kinase

activity, typically in an inactive state, playing a role in cell growth

and differentiation. HER2 positive is associated with tumor

development and metastasis. This study confirmed the association

between high HER2 expression and SLN metastasis, consistent with

the findings of Ding J et al. (31). Other studies have also identified

vascular invasion and tumor size as strongly correlated with SLN

metastasis. In this study, vascular tumor thrombus was regarded as

a key predictor; when present, the risk of SLN metastasis was 4.27

times higher than that of patients without vascular tumor

thrombus, and the impact exceeded other indicators. This

suggests that the tumor may have broken through the local

limitations of the breast and has higher potential for spread and

metastasis, further highlighting the value of clinical pathological

factors in predicting SLN status and providing a strong basis for

individualized treatment strategies. To explore a non-invasive and

efficient method for identifying SLN status before surgery, the

predictive model constructed based on mammography in this

study achieved an area under the receiver operating characteristic

(ROC) curve (AUC) of 0.84 in the training set. It is expected to serve

as a digital biomarker that conveys information similar to SLN

biopsy or lymph node dissection, providing an important reference

for clinical treatment decisions. In comparison, Dong et al. (32)

predicted lymph node status based on T2WI-FS and DWI sequence

imagomics, with AUC =0.805; while Ding et al. (33) used DCE-MRI

intratumoral and combined intratumoral and peritumoral
TABLE 4 Optimal characteristics for predicting SLNM.

Optimal Characteristics P value

original_firstorder_Kurtosis <0.01

original_firstorder_Skewness 0.03

original_glszm_HighGrayLevelZoneEmphasis 0.04

original_glszm_LargeAreaHighGrayLevelEmphasis <0.01

original_ngtdm_Busyness <0.01

wavelet-LH_firstorder_Maximum 0.02

wavelet-LH_firstorder_Median <0.01

wavelet-LH_glszm_HighGrayLevelZoneEmphasis 0.02

wavelet-LH_glrlm_RunEntropy <0.01

wavelet-LH_glrlm_RunLengthNonUniformityNormalized 0.01

wavelet-LH_ngtdm_Contrast 0.01

wavelet-HL_glcm_Imc1 0.02

wavelet-HL_glszm_GrayLevelNonUniformity 0.04

wavelet-HL_glrlm_ShortRunLowGrayLevelEmphasis 0.04

wavelet-HL_gldm_DependenceVariance 0.01

wavelet-HH_glszm_HighGrayLevelZoneEmphasis 0.02

wavelet-HH_glszm_LargeAreaLowGrayLevelEmphasis 0.03

wavelet-HH_gldm_DependenceEntropy 0.04

wavelet-LL_glszm_SizeZoneNonUniformity 0.03

log-sigma-1-mm-3D_glszm_SizeZoneNonUniformity 0.04

log-sigma-2-mm-3D_firstorder_Mean 0.04

log-sigma-2-mm-3D_glcm_MCC <0.01

log-sigma-2-mm-3D_glcm_MaximumProbability 0.01

log-sigma-2-mm-3D_glszm_GrayLevelNonUniformityNormalized 0.04

log-sigma-2-mm-3D_glszm_SizeZoneNonUniformity <0.01

log-sigma-2-mm-3D_glszm_SmallAreaLowGrayLevelEmphasis 0.02

log-sigma-2-mm-3D_ngtdm_Strength 0.01

log-sigma-3-mm-3D_glszm_GrayLevelNonUniformityNormalized 0.04

log-sigma-3-mm-3D_glszm_SmallAreaLowGrayLevelEmphasis 0.01

log-sigma-3-mm-3D_glrlm_LongRunLowGrayLevelEmphasis <0.01

log-sigma-3-mm-3D_ngtdm_Contrast <0.01

square_gldm_DependenceNonUniformity 0.03

squareroot_ngtdm_Contrast 0.04

logarithm_firstorder_InterquartileRange 0.02

logarithm_firstorder_Maximum 0.01

logarithm_firstorder_Median <0.01

logarithm_glcm_MaximumProbability 0.02

logarithm_glcm_SumSquares <0.01

(Continued)
TABLE 4 Continued

Optimal Characteristics P value

logarithm_glszm_GrayLevelNonUniformityNormalized <0.01

logarithm_glrlm_ShortRunLowGrayLevelEmphasis <0.01

exponential_firstorder_Maximum 0.04

exponential_gldm_DependenceNonUniformity 0.04

exponential_gldm_GrayLevelNonUniformity 0.02

exponential_gldm_SmallDependenceLowGrayLevelEmphasis 0.04

gradient_glszm_GrayLevelVariance 0.02

gradient_glrlm_ShortRunLowGrayLevelEmphasis <0.01

gradient_ngtdm_Contrast 0.04

gradient_ngtdm_Strength <0.01

lbp-2D_firstorder_Median <0.01

lbp-2D_glrlm_GrayLevelNonUniformity 0.04

lbp-2D_glrlm_RunLengthNonUniformity 0.03

lbp-2D_glrlm_RunLengthNonUniformityNormalized 0.04

lbp-2D_glrlm_RunVariance 0.04

lbp-2D_gldm_DependenceEntropy 0.04
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radiomics models, with AUCs of 0.704 and 0.796. These results are

broadly consistent with this study’s findings. This study also found

that multiple mammography features and clinical pathology factors

are independently related to SLN status, highlighting the potential

value of mammography imaging as a non-invasive tool to identify

SLN status in breast cancer patients. With the growing use of

neoadjuvant systemic therapy (NAST), SLN biopsy is frequently

performed after neoadjuvant therapy. In these cases, radiomics

evaluation can assist in subsequent treatment decisions,

particularly when therapy leads to downstaging.

The precise stratification of HER2 expression subtypes (HER2-

zero, -low, -positive) is pivotal for tailoring ADC therapies. For

example, HER2-low patients, once considered ineligible for HER2-

targeted drugs, now represent a population with emerging

therapeutic options. The DESTINY-Breast04 trial (10)

demonstrated that DS-8201 significantly improves survival in
Frontiers in Oncology 10
HER2-low metastatic breast cancer. Our radiomics model, with

an AUC of 0.84 for HER2-low identification, provides a non-

invasive tool to preoperatively pinpoint these candidates, thereby

avoiding undertreatment due to misclassification. Moreover,

integrating radiomics with clinical factors supports can optimize

treatment strategies and minimize surgical overtreatment. This

study revealed that several clinicopathological factors were

independently associated with changes in HER2 expression

patterns. These factors, including lesion size, PR expression,

menopausal status, axillary lymph node status, Ki67, CK5/6, and

mammography calcification, predicted HER2 zero, low, and

positive expression, in line with previous studies (20, 34–36). The

observed association between calcification features and HER2

expression may reflect underlying biological processes.

Calcification, caused by calcium deposition in breast tissue, often

develops due to tissue ischemia and necrosis resulting from hypoxia
TABLE 5 Performance evaluation of sentinel lymph node status model.

Model Evaluation

Training Queue Testing Queue

AUC
(95% CI)

Sensitivity Specificity Accuracy
AUC

(95% CI)
Sensitivity Specificity Accuracy

Performance evaluation of
sentinel lymph node

status models

0.84
(0.79-0.87)

0.73 0.76 0.75
0.83

(0.71-0.84)
0.73 0.76 0.79
FIGURE 2

Sentinel lymph node status prediction model. (A): Training set ROC curve (B): Test set ROC curve (C): Calibration curve analysis of prediction model
(D): Decision curve analysis of prediction model. Training Queue AUC (95% CI): 0.84 (0.79-0.87); Testing Queue AUC (95% CI): 0.83 (0.71-0.84).
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and nutrient deficiency in rapidly growing tumors (37). HER2

positive is known to drive tumor proliferation and metabolic

reprogramming, potentially leading to hypoxia-induced necrosis

and subsequent calcium deposition in the tumor microenvironment

(38). Additionally, HER2 signaling activates pathways such as

PI3K/AKT and MAPK, which promote cellular stress and

apoptosis, further contributing to dystrophic calcifications (39).

Radiomic features capturing clustered or linear calcifications on

mammography may thus serve as non-invasive indicators of HER2-

driven tumor aggressiveness. This hypothesis aligns with prior

studies demonstrating that the presence of microcalcifications

strongly increased the likelihood of HER2 positive (36). Similarly,

our study found that calcification is strongly associated with HER2

expression, with the risk of calcified lesions being 1.51 times higher

than non-calcified lesions. Clustered or linearly distributed

calcifications should raise particular concern among clinicians.

Integrating these biological insights with radiomic models could

enhance their utility in guiding targeted therapies. Additionally,
Frontiers in Oncology 11
CK5/6, a basal cell marker, serves as an indicator of tumor cell

differentiation and plays a crucial role in classifying breast cancer

subtypes and evaluating invasiveness. As a basal cell marker, CK5/6

reflects the differentiation status of tumor cells and plays an

important role in breast cancer subtype classification and invasive

assessment. This study found that CK5/6 positivity is more

common in less differentiated and HER2-low expressing breast

cancers, especially in basal-like subtypes, which show greater

invasiveness and metastatic ability. These findings further

emphasize the potential of combining mammography imaging

with clinical pathology factors in improving HER2 expression

models and provide a valuable basis for developing personalized

treatment strategies. Studies have also shown that a predictive

model based on mammography can effectively distinguish the

three HER2 expression states in breast cancer. In the test set, the

model’s AUCs for distinguishing between HER2 positive, HER2 low

expression, and HER2 zero expression were 0.87, 0.82, and 0.85,

respectively, which was superior to the previously reported single-
FIGURE 3

Independent sample t-test and LASSO regression analysis were used to screen significant features for predicting HER2.
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parameter MRI radiomics method (40). For instance, Bian et al.’s

(41) multi-parameter MRI-based imaging study had an AUC of

0.76 in distinguishing HER2 positive from HER2 negative, but

when identifying tumors with low HER2 expression and zero HER2

expression, the AUC was only 0.71. In contrast, the mammography

imaging model in this study can more accurately distinguish

different expression states of HER2, showing greater diagnostic

efficiency. Although IHC and FISH are standard methods for

assessing HER2 expression, their limitations include lack of

representativeness from a single sample and tumor heterogeneity.

This study suggests that incorporating radiomics features into

diagnostics can assist pathologists in achieving more

comprehensive HER2 identification and enhancing the precision

of biopsy target selection (42, 43). Additionally, during neoadjuvant

chemotherapy, radiomics can dynamically track HER2 expression

changes, enabling timely adjustments to treatment strategies. For

patients with drug-resistant or triple-negative breast cancer,

imaging-guided re-detection of low HER2 expression in clinical

trials may become a critical strategy for optimizing treatment. In

addition, Future research may incorporate advanced nanomaterials

to enhance imaging resolution and therapeutic monitoring, thereby

refining radiomic feature extraction and clinical applicability (44).

Although our model demonstrated high diagnostic accuracy

and potential clinical application value, its clinical translation

requires validation in multicenter cohorts. We recognize that

variations in mammography equipment and regional differences

in HER2 testing protocols (e.g., IHC/FISH criteria) may impact
TABLE 6 Optimal characteristics for predicting HER2 positive, low, and
zero expression.

Optimal Characteristics P value

original_firstorder_Kurtosis <0.01

original_firstorder_Skewness 0.03

original_glszm_HighGrayLevelZoneEmphasis 0.04

original_glszm_LargeAreaHighGrayLevelEmphasis <0.01

original_ngtdm_Busyness <0.01

wavelet-LH_firstorder_Maximum 0.02

wavelet-LH_firstorder_Median <0.01

wavelet-LH_glszm_HighGrayLevelZoneEmphasis 0.02

wavelet-LH_glrlm_RunEntropy <0.01

wavelet-LH_glrlm_RunLengthNonUniformityNormalized 0.01

wavelet-LH_ngtdm_Contrast 0.01

wavelet-HL_glcm_Imc1 0.02

wavelet-HL_glszm_GrayLevelNonUniformity 0.04

wavelet-HL_glrlm_ShortRunLowGrayLevelEmphasis 0.04

wavelet-HL_gldm_DependenceVariance 0.01

wavelet-HH_glszm_HighGrayLevelZoneEmphasis 0.02

wavelet-HH_glszm_LargeAreaLowGrayLevelEmphasis 0.03

wavelet-HH_gldm_DependenceEntropy 0.04

wavelet-LL_glszm_SizeZoneNonUniformity 0.03

log-sigma-1-mm-3D_glszm_SizeZoneNonUniformity 0.04

log-sigma-2-mm-3D_firstorder_Mean 0.04

log-sigma-2-mm-3D_glcm_MCC <0.01

log-sigma-2-mm-3D_glcm_MaximumProbability 0.01

log-sigma-2-mm-3D_glszm_GrayLevelNonUniformityNormalized 0.04

log-sigma-2-mm-3D_glszm_SizeZoneNonUniformity <0.01

log-sigma-2-mm-3D_glszm_SmallAreaLowGrayLevelEmphasis 0.02

log-sigma-2-mm-3D_ngtdm_Strength 0.01

log-sigma-3-mm-3D_glszm_GrayLevelNonUniformityNormalized 0.04

log-sigma-3-mm-3D_glszm_SmallAreaLowGrayLevelEmphasis 0.01

log-sigma-3-mm-3D_glrlm_LongRunLowGrayLevelEmphasis <0.01

log-sigma-3-mm-3D_ngtdm_Contrast <0.01

square_gldm_DependenceNonUniformity 0.03

squareroot_ngtdm_Contrast 0.04

logarithm_firstorder_InterquartileRange 0.02

logarithm_firstorder_Maximum 0.01

logarithm_firstorder_Median <0.01

logarithm_glcm_MaximumProbability 0.02

(Continued)
TABLE 6 Continued

Optimal Characteristics P value

logarithm_glcm_SumSquares <0.01

logarithm_glszm_GrayLevelNonUniformityNormalized <0.01

logarithm_glrlm_ShortRunLowGrayLevelEmphasis <0.01

exponential_firstorder_Maximum 0.04

exponential_gldm_DependenceNonUniformity 0.04

exponential_gldm_GrayLevelNonUniformity 0.02

exponential_gldm_SmallDependenceLowGrayLevelEmphasis 0.04

gradient_glszm_GrayLevelVariance 0.02

gradient_glrlm_ShortRunLowGrayLevelEmphasis <0.01

gradient_ngtdm_Contrast 0.04

gradient_ngtdm_Strength <0.01

lbp-2D_firstorder_Median <0.01

lbp-2D_glrlm_GrayLevelNonUniformity 0.04

lbp-2D_glrlm_RunLengthNonUniformity 0.03

lbp-2D_glrlm_RunLengthNonUniformityNormalized 0.04

lbp-2D_glrlm_RunVariance 0.04

lbp-2D_gldm_DependenceEntropy 0.04
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model generalizability. To address this, we are attempting to

initiate partnerships with institutions in geographically diverse

regions of China, aiming to collect heterogeneous data for

external validation.
5 Conclusion

In conclusion, breast cancer mammography radiomics

demonstrated high accuracy in identifying HER2 subtypes and

predicting sentinel lymph node (SLN) metastasis. This has
Frontiers in Oncology 13
significant implications for developing personalized treatment

plans, assessing prognosis, and guiding clinical decision-making.

However, the use of radiomics is still in its early stages. As data

sharing expands and machine learning technology advances, its

potential value in the medical field requires further exploration.
6 Limitation

This study has several limitations: (1) This study is limited by its

single-center retrospective design, which may restrict the
FIGURE 4

HER2 expression prediction model. (A): Training set ROC curve (B): Test set ROC curve (C): Calibration curve analysis of prediction model (D):
Decision curve analysis of prediction model. Training Queue AUC (95% CI): Her2-zero 0.85 (0.74~ 0.87), Her2-low 0.82 (0.72-0.86), Her2-positive
0.87 (0.73-0.93); Testing Queue AUC (95% CI): Her2-zero 0.84 (0.75 ~ 0.89), Her2-low 0.78 (0.61 ~ 0.86), Her2-positive 0.84 (0.76–0.89).
TABLE 7 Performance evaluation of HER2 expression model.

Model
Evaluation

Training Queue Testing Queue

AUC (95% CI) Sensitivity Specificity Accuracy AUC (95% CI) Sensitivity Specificity Accuracy

HER2 zero
expression

0.85 (0.74~ 0.87) 0.84 0.73 0.82 0.84 (0.75 ~ 0.89) 0.86 0.77 0.75

HER2 low
expression

0.82 (0.72-0.86) 0.78 0.73 0.78 0.78 (0.61 ~ 0.86) 0.75 0.71 0.76

HER2 positive
expression

0.87 (0.73-0.93) 0.87 0.84 0.81 0.84 (0.76–0.89) 0.84 0.78 0.81
frontiersin.org

https://doi.org/10.3389/fonc.2025.1578458
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhao et al. 10.3389/fonc.2025.1578458
generalizability of the model to other populations. While we employed

rigorous internal validation, future multicenter studies are imperative

to assess performance across diverse ethnic groups, imaging devices,

and clinical protocols. Challenges such as inter-institutional data

harmonization and ethical approvals currently hinder immediate

expansion, but collaborative efforts are underway; (2) ROI

delineation was performed using a two-dimensional approach, which

may be influenced by the volume effect. Future studies could consider

using three-dimensional imaging to enhance accuracy; (3) Some

clinical characteristics were assessed semi-qualitatively, and the

results could be influenced by evaluator subjectivity.
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