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Purpose: Photodynamic therapy (PDT) is an innovative non-invasive therapy for

human cancer treatment. The significance of apoptosis-related genes (ARGs) in

the prognosis of bladder cancer (BLCA) has gradually emerged. Therefore, this

study aims to investigate the prognostic significance and pathogenesis of PDT

related genes (PDTRGs)-ARGs in BLCA cases.

Methods: Based on the BLCA data in TCGA, PDTRGs-ARGs with prognostic value

in BLCA patients were screened. Subsequently, the prognostic value and

diagnostic performance of all candidate genes were evaluated by univariate

Cox regression analysis and ROC curves. Then, GSEA, GSVA and immune

microenvironment analysis were conducted based on candidate genes. Finally,

the molecular mechanisms of key candidate genes in BLCA patients were initially

explored by qRT-PCR, CCK-8 analysis, Transwell Assay and Western Blotting.

Results: A total of 5 ARGs-PDTRGs (EMP1, FGFR1, PLPPR4, JUN, TNFRSF25) were

screened as prognostic biomarkers for BLCA. Survival analysis revealed

significant differences in overall survival of the five prognostic biomarkers in

the high/low expression groups. ROC curve analysis revealed that the five

prognostic biomarkers had strong prognostic predictive ability. QRT-PCR

proved that the expression of EMP1, FGFR1, PLPPR4 and JUN was obviously

reduced, while TNFRSF25 was markedly increased in BLCA tissue samples and

cell lines. The following research confirmed that FGFR1 inhibited the biological

process of T24 cells by activating cGMP-PKG pathway.

Conclusion: Five ARGs-PDTRGs (EMP1, FGFR1, PLPPR4, JUN, TNFRSF25) were

screened as prognostic biomarkers for BLCA. Among them, FGFR1 inhibits the

biological process of T24 cells via activating cGMP-PKG pathway.
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1 Introduction

Bladder cancer (BLCA) has a high incidence and mortality,

which brings a huge economic burden to the patient’s family and

society (1). Smoking, occupational exposure and schistosomiasis

infection are the main risk factors for BLCA (2). Studies have shown

that BLCA accounts for 5%-10% of all cancers in men, with a higher

incidence than in women (3). BLCA mainly occurs in the urothelial

epithelium, including myogenic bladder cancer (MIBC) and non-

myogenic prostate cancer (NMIBC). Among them, NMIBC

accounts for about 4/5 of BLCA, and its treatment strategy is

mainly radical treatment combined with systemic therapy (4, 5).

However, detection of early-stage tumors is still insufficient, and

current treatment strategies have not significantly improved the

overall survival rate of BLCA patients (6). Accordingly, it is

necessary to explore novel prognostic biomarkers in BLCA

tumorigenesis, so as to provide new treatment options for BLCA

patients (7).

Photodynamic therapy (PDT) is a non-invasive and innovative

therapy that utilizes photosensitizers to generate reactive oxygen

species clusters upon photoactivation, thereby inducing targeted

cell death (8, 9). PDT is well tolerated in clinical patients and is

increasingly used in the treatment of human cancers, including

bladder cancer (10, 11). For example, the photosensitizer 5-

aminolevulinic acid (5-ALA) has been studied for screening

NMIBC patients before and after transurethral resection of

bladder tumors (TURBT) (12). Currently, PDT is considered an

important treatment option for combination therapy (13). PDT was

combined with intravesical chemotherapy or systemic therapy to

improve local tumor control (11). Therefore, further research and

exploration of PDT will contribute to the development of new

treatment plans for BLCA.

Apoptosis pathway is a basic biological phenomenon that

occurs regularly in cells and plays a key role in maintaining cell

and tissue homeostasis (14, 15). However, if this balance is

disrupted, it will directly or indirectly lead to the occurrence of a

variety of diseases (16). More and more studies are devoted to

exploring the value of apoptosis-related genes (ARGs) in cancer (17,

18). One study found that YWHAQ, MAP2K1, EGFR and

SCAPN14 were related to the prognosis of BLCA (19). Although

scholars are paying increasing attention to the function of ARGs in

various human tumors, the prognostic value of PDT associated

genes (PDTGs) -ARGs in BLCA remains unclear. Therefore, this

research aims to investigate the prognostic significance and its

mechanism of PDTGs-ARGs in BLCA patients.

For this study, differentially expressed ARGs-photodynamic

therapy related genes (PDTRGs) in BLCA patients were screened

from numerous cohorts, and genes with prognostic value were

further identified and validated by least absolute shrinkage and

selection operator (LASSO) regression analysis. Besides, the

mechanism and immune microenvironment of prognostic markers

were explored. Moreover, the expression level of prognostic markers

was validated in BLCA tissue samples and cell lines. It is worth noting

that we also preliminarily explored the pathway of FGFR1 in BLCA.

This research aimed to identify novel prognostic biomarkers, explore
Frontiers in Oncology 02
their role in the pathogenesis of BLCA, understand their relationship

with the immune microenvironment, and lay the foundation for

prolonging the survival of BLCA patients.
2 Methods

2.1 Differential expression genes
identification

The mRNA expression profile, clinical information and survival

information of BLCA were obtained from The Cancer Genome Atlas

(TCGA) database as a training set. After pretreatment, 398 BLCA

specimens and 19 normal control specimens were retained. The

GSE13507 dataset was obtained from the Gene Expression Omnibus

(GEO) database as a validation set, including 188 BLCA specimens and

68 normal specimens. Besides, the genes related to photodynamic

therapy were searched in GeneCards database with the keyword

“Photodynamic therapy”, and screened using a relevance score>0.7 as

the threshold, resulting in a total of 210 PDTRGs. Moreover, a search

was conducted in the MSigDB database using the keyword “Apoptosis”,

and five sets of ARGs were downloaded, including “HALLMARK-

APOPTOSIS.v2024.1.Hs”, “ALCALA-APOPTOSIC.v2024.1.Hs”,

“KEGG-APOPTOSIS.v2024.1.Hs”, “WP-APOPTOSIS.v2024.1.Hs”,

and “REACTOME-APOPTOSIS.v2024.1.Hs”, and a total of 463

ARGs were obtained after deduplication.

Next, R package “limma” (20, 21)was used to analyze the DEGs

between tumor specimens and normal specimens in the TCGA-

BLCA datase.
2.2 Weighted gene co-expression network
analysis and candidate gene screening

The samples were grouped as traits and analyzed by R package

“WGCNA” to screen BLCA-related module genes. The module

most related to BLCA was selected as the key module, screen the

crucial genes in the key module according to the criteria of |GS|>0.2,

and recorded as the BLCA-related module genes. Next, DEGs

intersect with ARGs and PDTRGs respectively to obtain DEGs-

ARGs and DEGs-PDTRGs. Then the pearson correlation (cor)

between the two genes was calculated, and all DEGs-ARGs and

DEGs-PDTRGs with |cor| > 0.3 were denoted as DEGs-ARGs-

PDTRGs. Then, take the intersection of DEGs-ARGs-PDTRGs and

the module genes obtained from WGCNA analysis, and record

them as candidate genes for subsequent analysis.
2.3 Functional enrichment analysis and
protein-protein interaction (PPI) network
analysis

To reveal the potential mechanisms of candidate genes, Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) functional enrichment of the above candidate genes were
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conducted using the R-package “clusterProfiler” (22). In addition,

PPI relationship among key genes was obtained through the

STRING database, and a PPI network was mapped.
2.4 Screening and validation of prognostic
biomarkers

To assess the association between key genes and patient

survival, univariate Cox regression analysis was conducted on key

genes in TCGA-BLCA dataset, and key genes with prognostic value

were obtained (P ≤ 0.05). The selected genes were then analyzed by

LASSO regression and 10x cross-validation was employed to

identify prognostic biomarkers in patients (23, 24). Besides,

Kaplan-Meier (K-M) survival analysis was employed on the high

and low level groups of biomarkers using R package survival. To

evaluate the diagnostic performance of biomarkers, receiver

operating characteristic (ROC) curves were plotted for the

biomarker (25). The expression and diagnosis of the biomarkers

were then verified separately in the validation set GSE13507.
2.5 GSEA and GSVA enrichment analysis

Based on the MSigDB database, single gene GSEA analysis was

conducted on markers in the TCGA-BLCA dataset to investigate

the significant enrichment pathway of the biomarker. Besides, 17

immune response pathways in the Immport database were used as

background gene sets for enrichment score calculation. R-packet

limma difference analysis was used to screen out the different

immune response pathways between the two groups of samples,

calculate the association between markers and different immune

response pathways.
2.6 Immune microenvironment analysis

In the training set, CIBERSORT was employed to assess the

proportion of immunoinfiltrating cell types in patients. The

differences between two groups of immune infiltrating cells were

analyzed using Wilcoxon test, and Spearman was applied to analyze

the association between biomarkers and immune cells.
2.7 Clinical samples and cells

Fifty-four patients who underwent radical resection of BLCA in

our hospital were enrolled. During the operation, BLCA tissue

specimens and adjacent tissue specimens (≥5 cm from cancer

tissue) of all patients were collected. The study was approved by

the Clinical Research Ethics Committee of our hospital, and

subjects signed informed consent. Human BLCA cell lines T24,

J82 and normal uroepithelial cells SV-HUC-1 were obtained from

the ATCC Repository in the United States. All cells were incubated
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in DMEM medium containing double antibody (1×105U/L

penicillin, 100mg/L streptomycin) and 10% fetal bovine serum,

and then cultured in a 5% CO2 incubator at 37 °C. FGFR1

overexpression vector PCDNA3.1-FGFR1 (OE-FGFR1) and

negative control pcDNA3.1 vector(NC) were provided via Hanbio

(Shanghai, China). Cell transfection was conducted according to the

Lipofectamine TM2000 manual, and the cells were incubated for 48

hours for further study.
2.8 qRT-PCR

Based on the operation manual, total RNA was isolated from

cells and tissues using Trizol reagents. 2mg total RNA was

synthesized into cDNA according to the instructions of Prime

ScriptTM RT kit, which was employed as a template for qRT-

PCR reaction using SYBR Green PCR kit. The relative gene

expression was calculated by The 2-△△Ct method was applied to

calculate the relative gene expression, and GAPDH as the

internal reference.
2.9 Cell proliferation analysis

The transfected cell suspension was laid on 96-well plates with a

density of 2 × 103 cells each well, and three accessory wells were set

up in each group. After cell attachment, marked as 0h, the cells were

incubated for 0, 24, 48 and 72 h, respectively. Then, the cells were

treated with 10mL CCK-8 reagent and incubated for 2 hours.

Measure the absorbance at 450 nm using a microplate reader

(TECAN, Mechelen, Belgium).
2.10 Transwell assay

Cells were collected from each group, and then and then 500 m L

of cell suspension was joined in the upper chamber of transwell, and

500mL of medium (containing 10% fetal bovine serum) was joined

in the lower chamber. The cells were incubated for 24 h at constant

temperature, then the cells were fixed with 4% paraformaldehyde

for 15 min, stained with crystal violet for 20 min, and the cells in the

bright field of vision were observed under an inverted microscope.

Invasion assay: Matrigel was diluted in proportion, and 50mL
dilution was spread on the bottom of the upper chamber of the

transwell and cultured for 5 hours until solidification. The following

experiments were performed as migration assay.
2.11 Western blotting

Cells in every group were obtained and total protein was

extracted via RIPA protein lysate (ProMab Biotechnology, USA).

The BCA kit (CWBio) was applied to measure protein concentration,

the protein samples were treated via 10% SDS-PAGE gel
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electrophoresis, and next, move onto PVDF membrane (CWBio) via

semi-dry method. After 2 hours of closed culture with 5% skim milk

powder, the corresponding diluted primary antibody was joined and

cultured at 4°C for 12 h, followed by the diluted secondary antibody

was joined and cultured at 37 °C for 2 h. After 3 times of washing with

PBS, the chemiluminescent developer ECL was added for

development. Using GAPDH as internal reference gene.
2.12 Statistical analysis

R 4.3.3, GraphPad Prism 9.5 and SPSS 22.0 were employed for

data handling, plotting and statistical analysis. Wilcoxon rank sum

test or T test were employed to compare continuous variables. The

comparison of categorical variables was performed by chi-square

test. Pearson correlation coefficient was applied to assess the

correlation between two continuous variables. The R package

“pROC” plots the ROC curve and calculates the AUC separately

to evaluate the diagnostic performance of each biomarker. Data

were shown as mean ± standard deviation (SD). Each group of

experiments was repeated three times., and P less than 0.05 was

supposed obviously significant.
3 Results

3.1 Screening of DEGs

In this project, a total of 1630 DEGs were screened based on

tumor samples and normal samples from the TCGA-BLCA dataset,

containing 866 down-regulated genes and 764 up-regulated genes

(Figure 1A). The heatmap shows the expression of DEGs in tumor
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specimens and normal specimens, and it can be seen that all DEGs

can be well separated by group (Figure 1B).
3.2 Screening of candidate genes

In this study, sample grouping was used for WGCNA analysis,

and BLCA-related module genes were screened. First, we

determined the soft threshold of the data. After calculation, the

optimal soft threshold was determined to be 7 (Figure 2A). Then,

according to the standard of hybrid dynamic shear tree, the

modules are divided into 26 modules (Figure 2B). As shown in

Figure 2C, in the correlation heat map, MEsteelblue showed a high

correlation with the Tumor group samples (cor=-0.33& P=6e-12),

and could be used as a key module. 1544 module genes were

screened using |GS| > 0.2 as the criterion. To screen for ARGs and

PDTRGs significantly associated with BLCA, DEGs were

intersected with ARGs and PDTRGs, respectively, resulting in 35

DEGs-ARGs (Figure 2D) and 61 DEGs-PDTRGs (Figure 2E). Then,

pearson correlation between DEGs-ARGs and DEGs-PDTRGs was

calculated. Among them, all the DEGs-ARGs and DEGs-PDTRGs

with |cor| > 0.3 were selected as DEGS-ARGS-PDTRGs, and there

were 84 DEGS-ARGS-PDTRGs. They were intersected with Model

Genes, and the 21 intersection genes obtained were used in the next

study (Figure 2F).
3.3 KEGG and GO enrichment analysis

KEGG enrichment analysis revealed that 149 KEGG pathways

were markedly enriched (P<0.05). The cluster tree map

demonstrated that the significant TOP15 pathway, and 21 crucial
FIGURE 1

Identification of DEGs. (A) Volcanic plot of DEGs. Each dot represents a gene, and the color of the dot represents the significance of the differential
gene, ranging from blue to red, and the reder the color, the more significant the gene is. According to the reference line, the genes in the upper
right corner were up-regulated DEGs, the genes in the upper left corner were down-regulated DEGs, and the remaining genes were no difference
genes. The labeled genes in the figure are the ten most significant genes. (B) Heat map of DEGs. In the annotation bar above, green represents
normal samples and pink represents tumor samples; the color gradient in the central density heatmap indicates sample expression density, with
darker red signifying higher density; the gray bar annotation indicates sample size; in the heatmap below, the x-axis represents samples, the y-axis
represents genes, red denotes highly expressed genes, and blue denotes lowly expressed genes.
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genes were mainly participated in the MAPK signaling pathway.

and the significant TOP15 pathways were visualized by cluster tree

diagram, and it was found that 21 candidate genes were mainly

involved in MAPK signaling pathway. Breast cancer, Epstein-Barr

virus infection, and Hepatitis B pathways (Figure 3A). GO

enrichment analysis proved that 21 crucial genes were mainly

participated in epigenesis migration (BP), cAMP dependent

protein kinase (CC), and ubiquitin protein ligase binding (MF)

processes (Figures 3B-D). Meanwhile, PPI relationships between

candidate genes were obtained through the STRING database,

resulting in a total of 27 PPI relationships for 17 genes

(Supplementary Figure 1).
3.4 Screening and validation of prognostic
biomarkers

Univariate Cox regression analysis of crucial genes in the

TCGA-BLCA dataset identified six genes with prognostic

significance, including EMP1, GSN, FGFR1, PLPPR4, JUN, and

TNFRSF25 (Figure 4A). Subsequently, LASSO regression analysis

was conducted on six crucial genes, and it was ultimately

determined that EMP1, FGFR1, PLPPR4, JUN, and TNFRSF25
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genes could serve as prognostic biomarkers (Figures 4B, C). In

addition, patients were classified into different groups based on the

expression of these five prognostic biomarkers, and the analysis

revealed survival differences between the different groups (P< 0.05,

Figures 4D–H). Among them, EMP1, FGFR1, PLPPR4 and JUN

high expression group had a lower survival rate, while TNFRSF25

high expression group showed the opposite trend (Figures 4D–H).

Draw ROC curves of biomarkers in the training set TCGA-

BLCA and assess the diagnostic significance of each biomarker. The

results showed that all five prognostic biomarkers had good

diagnostic value (AUC>0.8, Figure 5A) in the training set TCGA-

BLCA. At the same time, the five prognostic biomarkers also had

good diagnostic value in the validation set (AUC>0.7, Figure 5B).

Additionally, the expressions of EMP1, FGFR1, PLPPR4, JUN, and

TNFRSF25 were significantly different between the training set and

the validation set, and the difference trend was consistent (P<0.05,

Figures 5C, D).
3.5 GSEA and GSVA enrichment analysis

The GSEA algorithm was employed to further investigate the

potential biological mechanisms of prognostic biomarkers and visualize
FIGURE 2

Screening of candidate genes. (A) Map of the scale-free soft threshold distribution. When R² reaches 0.85 (marked by the red line), the soft threshold
tends to stabilize. At this point, the value 7 is closest to the 0.85 threshold. Additionally, when the mean connectivity approaches 0, the
corresponding soft threshold is also 7. Therefore, we selected 7 as the optimal soft threshold. (B) Merging graph of gene clustering and module
partitioning. Different colors represent different modules, and gray is the default for genes that cannot be classified in any module. (C) Heatmap of
module and trait correlation. Red represents positive correlation, green represents negative correlation, and the depth of color represents the degree
of correlation. (D) Venn plot of DEGs and PDTRGs. (E) Venn diagram of DEGs and ARGs. (F) Venn plot of Model Genes versus DEGs-ARGs-PDTRGs.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1578695
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2025.1578695
the TOP10 KEGG pathways (Supplementary Figures 2A–E). Among

them, FGFR1 mainly participates in ribosome, cytoskeleton in muscle

cells, oxidative phosphorylation, cGMP-PKG signaling pathway and

other pathways (Supplementary Figure 2E). Eleven immune response

pathways with significant differences between different groups were

screened by GSVA algorithm, among which the Interferon-Receptor

pathway was upregulated in the cancer group, while the remaining 10

response pathways were downregulated in the cancer group

(Figure 6A). Besides, the enrichment scores of 11 immune response

pathways are shown in Figure 6B. Moreover, correlation analysis

between the five genes and differential immune response pathways

revealed that FGFR1 was mainly negatively correlated with Cytokine

Receptors, TCR signaling Pathway, Antimicrobials and other

pathways (Figure 6C).
3.6 Immune microenvironment analysis

First, Figure 7A presents the relative proportions of the 22

immune cells in each tumor sample. Next, an analysis of the relative

proportions of 22 immune cells found that the five immune cells,

Mast cells resting, Macrophages M1, Macrophages M0, B cells naive

and NK cells resting, showed significant differences between

different groups (Figure 7B). Subsequently, correlation analysis
Frontiers in Oncology 06
between the five biomarkers and 22 types of immune cells

revealed obvious positive relationship between EMP1 and CD4

memory resting of T cells, and obvious negative relationship with

plasma cells (Figure 7C).
3.7 Validation of prognostic biomarker
expression

Here, we examined the expression of EMP1, FGFR1, PLPPR4,

JUN, and TNFRSF25 in BLCA tissue specimens and two BLCA cell

lines, T24 and J82. The results pointed out that EMP1, FGFR1,

PLPPR4, and JUN were all markedly decreased in BLCA tissue

specimens and cell lines (T24 and J82) compared with adjacent

normal tissue specimens and SV-HUC-1 cells (Figures 8A, B), while

TNFRSF25 showed the opposite trend (Figures 8A, B). This is

consistent with the expression trend of bioinformatics analysis. The

expression of five biomarkers was more significant in T24 cells, and

based on this difference, T24 cells were selected for subsequent

research. Previous studies have shown that the FGFR family plays a

key role in the occurrence and development of BLCA (26, 27), but

most of the existing literature focuses on the carcinogenic effect of

FGFR3, while the prognostic value of FGFR1 in BLCA remains

unknown. In addition, verification experiments showed that the
FIGURE 3

KEGG and GO enrichment analysis. (A) Cluster tree diagram of KEGG enrichment analysis. The size of the node represents the number of enriched
genes. The larger the node, the more enriched genes. The node color indicates the salience of pathway enrichment, with the more red the color,
the more significant. (B) Cluster tree diagram of GO (BP) enrichment results. (C) Cluster tree diagram of GO (CC) enrichment results. (D) Cluster tree
diagram of GO (MF) enrichment results.
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expression of FGFR1 in BLCA tissues and cell lines changed most

significantly compared with other biomarkers. Therefore, FGFR1

was selected for subsequent research.
3.8 FGFR1 overexpression inhibited T24
cell proliferation, migration and invasion

We investigated the effect of FGFR1 on the biological function

of T24 cells. OE-FGFR1 and its NC were transfected into T24 cells,

and qRT-PCR confirmed the successful transfection, and the

transfection NC did not change the expression level of FGFR1

(Figure 9A). Besides, overexpression of FGFR1 markedly reduced

the proliferation, migration, and invasion abilities of T24 cells

(Figures 9B–D). All data suggested that upregulation of FGFR1

expression inhibits T24 cell biological processes.
3.9 FGFR1 inhibits the biological function
of T24 cells by activating the cGMP PKG
pathway

Supplementary Figure 2E showed a clear relationship between

FGFR1 and cGMP-PKG signaling pathway. Therefore, western
Frontiers in Oncology 07
blotting was applied to detect the effect of FGFR1 on the cGMP/

PKG pathway. The data indicated that the protein levels of PKG1 and

PKG2 were obviously upregulated in the FGFR1 overexpression group.

However, PKG inhibitor (D)-DT-2 inhibited this increase (D)-DT-2

(Figure 10A). Subsequently, we evaluated the impact of PKG inhibitor

(D)-DT-2 on the biological functions of T24 cells. The data revealed

that overexpression of FGFR1 reduced cell proliferation (Figure 10B)

and invasion (Figure 10C) compared to the NC group, but this

inhibition was restored after the addition of PKG inhibitor (D)-DT-2

(Figures 10B, C). Therefore, we hypothesized that FGFR1 may inhibit

the cellular biological processes of T24 cells by activating the cGMP-

PKG pathway.
4 Discussion

BLCA is a malignant cancer with high mortality. At present,

there are a variety of treatment methods, the treatment effect is not

ideal due to tumor recurrence, metastasis, chemotherapy drug

resistance and other reasons, and the clinical outcome of patients

is very unsatisfactory (28, 29). Accordingly, the development and

identification of effective prognostic biomarkers are very helpful to

optimize treatment and improve the prognosis of BLCA patients.

BLCA is the first cancer for which PDT has been approved for
FIGURE 4

Screening and prognostic value of prognostic biomarkers. (A) Forest plot of univariate Cox regression analysis results. The leftmost column displays
the selected genes, while the second and third columns present their corresponding P-values and HR (Hazard Ratio) values respectively. The HR
values are followed by their 95% confidence intervals in parentheses. In the right-side figure, the red/green squares represent HR values, with the
flanking line segments indicating the 95% confidence intervals of the HR values. (B, C), LASSO regression analysis results. In Panel (B), the position of
the left dashed line indicates the point of minimum cross-validation error. Based on this position (lambda.min), the corresponding log(Lambda) value
on the horizontal axis is determined. The top of the panel displays the number of key genes, which is 5. After identifying the optimal log(Lambda)
value, the corresponding gene and its coefficient can be located in Panel (C). (D–H) K–M survival curves for five prognostic biomarkers, with the
horizontal axis representing total survival time (years) and the vertical axis representing survival probability; Red represents the high expression
group, blue represents the low expression group. (D) EMP1; (E) FGFR1; (F) PLPPR4; (G) JUN; (H) TNFRSF25.
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clinical treatment. PDT not only directly kills tumor cells, but also

induces immunogenic cell death (ICD), improving the efficacy of

anti-tumor immunotherapy (30, 31). According to reports, many

ARGs are associated with the occurrence and prognosis of BLCA

(32). However, the prognostic significance of ARGs-PDTRGs in

BLCA remain unclear. For this study, based on the BLCA data in

TCGA, 21 candidate genes of ARGs-PDTRGs were screened by a

variety of bioinformatics methods. Five candidate genes interrelated

to the prognosis of BLCA were further identified, and the

prognostic value and mechanism of these five candidate genes in

BLCA were systematically analyzed.

MAPK signaling plays a crucial role in tumor development and

immunotherapy, and prognostic genes related to the MAPK

pathway can predict the prognosis of BLCA patients (33).

MAPK signaling marks two different subpopulations of tumor

cells in BLCA, and inhibiting MAPK signaling can suppress

tumor growth (34). Moreover, a meta-analysis showed that

Epstein-Barr virus (EBV) is significantly associated with the

occurrence of BLCA (35). The current study revealed that 21

candidate genes were mainly involved in MAPK signaling
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pathway, Breast cancer, Epstein-Barr virus infection and Hepatitis

B pathways. So that, we speculate that these genes may participate in

the occurrence and development of BLCA via the above pathways,

but this conclusion still needs further verification.

For this research, five ARGs-PDTRGs (EMP1, FGFR1, PLPPR4,

JUN, TNFRSF25) were finally identified as BLCA prognostic

biomarkers after a series of bioinformatics analyses. K-M survival

curve revealed obvious survival differences between groups. ROC

curve analysis showed that these five biomarkers had high diagnostic

value. Song et al. (36) established an ARGs model, which can predict

the clinical outcomes and immunotherapy of BLCA. Another study

(37) constructed a BLCA prognostic signature based on 17 ARGs,

which could predict the clinical outcomes of BLCA cases and lay the

foundation for individualized treatment of cases. A total of 5

prognostic markers were screened in current research, including

EMP1, FGFR1, PLPPR4, JUN and TNFRSF25. Among them,

EMP1 is a key gene indicating the M1/M2 ratio, and its

upregulation suggests a short survival of BLCA patients. Besides,

epithelial membrane protein 1 (EMP1) expression level can be used

as an indicator of BLCA cell proliferation, metastasis and
FIGURE 5

Diagnostic value and expression of prognostic biomarkers. (A, B), ROC curve analysis of prognostic biomarkers. The area under the curve is called
AUC (Area Under the Curve), which indicates prediction accuracy. The higher the AUC value (i.e., the larger the area under the curve), the higher the
prediction accuracy. (A) Training set TCGA-BLCA; (B) Validation set GSE13507. (C, D), Differential expression analysis of prognostic biomarkers. (C)
Training set TCGA-BLCA; (D) Verification set GSE13507.
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immunotherapy efficacy (38). Fibroblast growth factor receptor 1

(FGFR1), a member of the FGFR family, is associated with the

proliferation of BLCA cells (39). Phospholipid phosphatase related

4 (PLPPR4) is a member of the lipid phosphophosphatases

superfamily, which can regulate neural development by affecting

neuronal plasticity through mTOR signaling pathway (40). Feng

et al. (41) screened nine dephosphorylation related genes, including

PLPPR4, and constructed a prognostic signature related to papillary

renal cell carcinoma, which could accurately predict the survival

outcomes of PRCC cases. JUN is a major component of activator

protein-1 (42). Han et al. demonstrated that c-Jun is a new bone

metastasis marker for luminal type breast cancer and that inhibition

of c-Jun effectively inhibited the malignant progression in MCF7-BM

cells (43). Tumor necrosis factor receptor superfamily 25

(TNFRSF25) is a T cell co stimulatory receptor and a potential

target for cancer therapy. TNFRSF25 agonists can stimulate CD8+T

cells and exert anti-tumor effects (44). Overall, all five prognostic

markers are potential therapeutic targets for BLCA.

Many researches have found that FGFR1 plays a key role in

multiple cancers in humans, including breast cancer and colorectal

cancer (45–47). Validation experiments in this study proved that
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the levels of EMP1, FGFR1, PLPPR4 and JUN were obviously

decreased in BLCA tissues and cell lines (T24 and J82), while

TNFRSF25 showed an opposite trend, compared with those in para-

cancerous normal tissues and normal urothelial SV-HUC-1 cells.

Notably, previous studies have shown that the FGFR family plays a

key role in the occurrence and development of BLCA (26, 27), but

most of the existing literature focuses on the carcinogenic effect of

FGFR3, while the prognostic value of FGFR1 in BLCA remains

unknown. In addition, verification experiments showed that the

expression of FGFR1 in BLCA tissues and cell lines changed most

significantly compared with other biomarkers. Therefore, FGFR1

was selected for subsequent research. This research revealed that

FGFR1 was mainly participated in ribosome, cytoskeleton in muscle

cells, oxidative phosphorylation, cGMP-PKG signaling pathway

and other pathways. This finding significantly expands the

functional spectrum of FGFR1, as existing literature primarily

documents the role of the cGMP-PKG pathway in prostate

cancer, ovarian cancer, and other malignancies (48, 49), while its

regulatory mechanisms in BLCA remain an emerging field of

research. A previous study revealed that metformin inhibits the

progression of castration-resistant prostate cancer by modulating
FIGURE 6

GSVA enrichment analysis. (A) Immune response pathways with significant differences between groups. The left column is the immune response
pathway downregulated in the Tumor group. The right column is the immune response pathway upregulated in the Tumor group. Longer columns
indicate more significant differences in this pathway between groups. (B) enrichment scores of immune response pathways with significant
differences between groups. (C) Correlation between immune response pathways with significant differences and prognostic biomarkers. The
horizontal axis represents biomarkers, and the vertical axis represents immune response pathways. Color indicates the magnitude of correlation, red
indicates negative correlation, blue indicates positive correlation, the darker the color, the stronger the correlation. *P<0.05; **P<0.01.
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PDE6D-induced purine metabolic alterations and activating the

cGMP/PKG pathway (48). Another study demonstrated that

PTTG1 promotes M2 macrophage polarization through the

cGMP/PKG signaling pathway and facilitates epithelial-
Frontiers in Oncology 10
mesenchymal transition (EMT) progression in human epithelial

ovarian cancer cells (49). Through systematic in vitro experiments

and signaling pathway analysis, we have demonstrated for the first

time that FGFR1 significantly inhibits the biological functions of
FIGURE 7

Immune microenvironment analysis. (A) Relative proportions of 22 immune cells in different samples. (B) Differences in the relative proportions of
the 22 immune cells in the different groups, *P<0.05; **P<0.01; ***P<0.001. (C) Correlation between 22 immune cells and biomarkers. Red indicates
positive correlation, blue indicates negative correlation, the darker the color, the stronger the correlation.
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T24 cells by specifically activating the cGMP-PKG pathway. These

groundbreaking findings not only indicate the involvement of

FGFR1 in the pathogenesis of BLCA, but more importantly,

reveal a distinct signaling network regulated by this pathway in

BLCA. In summary, this study is the first to elucidate the critical

regulatory role of FGFR1 in the initiation and progression of BLCA

through the cGMP-PKG signaling pathway, thereby identifying a

novel potential therapeutic target for BLCA treatment.

In the past decade, new therapies such as immunotherapy have

driven the progress of BLCA treatment. Immunotherapy can enhance

its ability to clear cancer cells and strengthen the body’s anti-tumor
Frontiers in Oncology 11
immune response. Some immunotherapy drugs, such as PD-L1, PD-

1 and CTLA-4, have been applied in clinical practice (50, 51). At

present, the cell types, pathways and processes involved in anti-tumor

immunity are becoming increasingly clear (52). For example,

cytotoxic CD4+ T cells can kill autologous tumors in an MHC

class II-dependent manner and are inhibited via Tregs (53). In this

study, GSVA enrichment analysis of five prognostic biomarkers was

performed, and the Interferon Receptor response pathway was found

to be up-regulated in the tumor group, while the remaining 10

response pathways were down-regulated in the tumor group. Further

analysis showed that FGFR1 was negatively correlated with Cytokine
frontiersin.or
FIGURE 8

Expression of prognostic biomarkers in BLCA tissues and cells. (A) QRT-PCR was used to detect the expression of five prognostic biomarkers in
BLCA tissues and adjacent tissues. (B) The expression of five prognostic biomarkers in SV-HUC-1,T24 and J82 cell lines was detected by qRT-PCR.
***P<0.001.
g

https://doi.org/10.3389/fonc.2025.1578695
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2025.1578695
Receptors, TCR signaling Pathway, Antimicrobials and other

pathways. Tumor cells, immune cells, cytokines, etc. together

constitute the tumor microenvironment (TME), among which

tumor-related immune cells can be classified into two categories:

anti-tumor and pro-tumor (54). B cells are the main effector cells of

humoral immunity in TME and play a key role in regulating anti-

tumor immune responses (55). Macrophages are a double-edged

sword that play a dual role in cancer, both promoting tumorigenesis

and killing tumor cells to enhance anti-tumor response (56). NK cells

have cytotoxic functions similar to CD8+ T cells and are the first line

of natural defense, allowing to kill some tumor and virus-infected
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cells (57, 58). In this study, we found that Mast cells resting,

Macrophages M1, Macrophages M0, B cells naive and NK cells

resting have significant differences among different groups. This

suggests that these immune pathways and immune cells may be

participated in the occurrence and development of BLCA, and

provide a reliable target for immunotherapy of BLCA patients.

PDT, as a known physical therapy capable of inducing apoptosis

in tumor cells, has a natural correlation between its target sites and

tumor prognosis genes (59, 60). Therefore, the initial gene screening

in this study focused on PDT and apoptosis, ultimately identifying

five prognostic biomarkers (EMP1, FGFR1, PLPPR4, JUN,
FIGURE 9

FGFR1 overexpression inhibited T24 cell proliferation, migration and invasion. (A) QRT-PCR was used to detect the expression of FGFR1 in T24 cell
line transfected with OE-FGFR1. (B) Effect of FGFR1 overexpression on T24 cell proliferation. (C, D), Transwell to verify the effect of upregulated
FGFR1 expression on the migration (C) and invasion (D) abilities of T24 cells. **P<0.01; ***P<0.001.
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TNFRSF25). All five genes are PDTRGs and ARGs. Although this

study did not directly conduct PDT experiments, the screening of

FGFR1 derived from the PDT-related gene network, and the

discovery of the cGMP-PKG pathway, provides a new perspective

regarding the molecular mechanism of PDT in treating BLCA. A

previous study found that in the SW837 colorectal cancer cell model,

PDT treatment using aminolevulinic acid (ALA) as a photosensitizer

was significantly associated with alterations in the cGMP-PKG

signaling pathway (61). PDT induces the production of a large

amount of reactive oxygen species (ROS) in tumor cells through

laser irradiation of a photosensitizer. The resulting cytotoxicity

selectively targets tumor cells, inducing apoptosis (62). Moreover,

the generation of ROS is significantly associated with the cGMP/PKG

signaling pathway (63). This suggests that cGMP-PKGmay be one of

the conserved pathways of PDT action. This study establishes

FGFR1/cGMP-PKG as a novel regulatory axis in BLCA, providing

a fundamental basis for subsequent PDT combination strategies. The

decision to defer PDT experiments at this stage represents a rigorous

scientific approach. Initial validation of the independent role of this

novel pathway avoids confounding variables. Subsequent

investigations will involve establishing FGFR1-overexpressing cell

models subjected to PDT treatment and conducting orthotopic

murine model-based photodynamic-drug combination experiments

to further validate this mechanism.
Frontiers in Oncology 13
Although our study has achieved some satisfactory results, there

are still some limitations that cannot be ignored. First, we collected

a small number of clinical samples, which may cause some impact

on the accuracy of the results. Secondly, we have only preliminarily

explored the molecular mechanism of one prognostic marker in

BLCA, and the other genes need to be further studied. In addition,

follow-up and prognostic analysis of recruited patients were not

performed due to time constraints. Therefore, we will expand the

sample size and collect clinical data of patients to further investigate

the prognostic significance and molecular mechanism of these five

prognostic biomarkers in BLCA, in order to provide effective

personalized treatment or targeted therapy for patients.
5 Conclusion

In conclusion, this study successfully screened five important

ARGs-PDTRGs (EMP1, FGFR1, PLPPR4, JUN, TNFRSF25) as

BLCA prognostic biomarkers and analyzed their roles in BLCA

by multiple bioinformatics methods. Experimental studies have

confirmed that FGFR1 inhibits the proliferation, migration and

invasion of T24 cells via activating the cGMP-PKG pathway, which

provides a novel potential target for clinical diagnosis, treatment

and prognosis of BLCA.
FIGURE 10

FGFR1 inhibits the proliferation, migration and invasion of T24 cells by activating the cGMP-PKG pathway. (A) PKG1 and PKG2 protein expression was
determined by Western Blotting. (B–D) Effect of PKG inhibitor (D)-DT-2 on T24 cell proliferation (B), migration (C), and invasion (D). Compared with
NC group, ***P<0.001; Compared with OE-FGFR1 group, ###P<0.001.
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