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a narrative review
Yinglin Guo1†, Ning Li2†, Chonghui Song1, Juan Yang1,
Yinglan Quan1 and Hongjiang Zhang2*
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Breast cancer (BC) is the most common malignant tumor among women

worldwide, posing a substantial threat to their health and overall quality of life.

Consequently, for early-stage BC, timely screening, accurate diagnosis, and the

development of personalized treatment strategies are crucial for enhancing

patient survival rates. Automated Breast Ultrasound (ABUS) addresses the

limitations of traditional handheld ultrasound (HHUS), such as operator

dependency and inter-observer variability, by providing a more comprehensive

and standardized approach to BC detection and diagnosis. Radiomics, an

emerging field, focuses on extracting high-dimensional quantitative features

from medical imaging data and utilizing them to construct predictive models

for disease diagnosis, prognosis, and treatment evaluation. In recent years, the

integration of artificial intelligence (AI) with radiomics has significantly enhanced

the process of analyzing and extracting meaningful features from large and

complex radiomic datasets through the application of machine learning (ML) and

deep learning (DL) algorithms. Recently, AI-based ABUS radiomics has

demonstrated significant potential in the diagnosis and therapeutic evaluation

of BC. However, despite the notable performance and application potential of ML

and DL models based on ABUS, the inherent variability in the analyzed data

highlights the need for further evaluation of these models to ensure their

reliability in clinical applications.
KEYWORDS

breast, breast tumor, automatic breast ultrasound, artificial intelligence, radiomics,
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1 Introduction

Breast cancer (BC) is one of the most frequent cancers among

women worldwide. According to the latest data from the International

Agency for Research on Cancer (IARC), approximately 2.3 million new

cases of female BC and close to 670,000 related deaths will occur

globally in 2022 (1), if it is identified at the early stage, the survival rate

is significantly improved.

Automated breast ultrasound (ABUS) is an advanced

ultrasound imaging technology approved by the U.S. Food and

Drug Administration (FDA) in 2012 (2). Compared with

conventional ultrasound, ABUS has several advantages, including

operator independence, whole-breast coverage and stable image

quality. Additionally, ABUS can reconstruct coronal plane (CP)

images, which is not achievable with conventional ultrasound. CP

imaging is particularly valuable for the diagnosis of breast lesions as

it provides crucial anatomical and symptomatic information (3).

Comprehensive analysis of tumors using large volumes of image

data from ABUS remains a challenge for sonographers.

Additionally, the interpretation of ultrasound images may depend

on the clinical experience of sonographers, which can affect the

diagnostic accuracy and efficacy of ABUS (4).

Radiomics is a field that analyzes a vast number of medical

images to extract numerous features reflecting disease characteristics,

and explores the associations between the features and patients’

prognoses for precision medicine (5). Specifically, this technology

employs various image processing algorithms to enhance image

quality and utilizes diverse techniques and methods for high-

throughput data analysis to extract quantitative features—such as

shape, texture, and filtering characteristics—from regions of interest

(ROIs). Traditional radiomics often uses software to extract and

screen those features that canmost effectively capture the intra-tumor

and inter-tumor heterogeneity. Then, it uses statistical analysis

methods such as multivariate logistic regression (LR) analysis to

construct the model (6).

Significant advances in the field of Artificial intelligence (AI), it

holds promise in increasing the diagnostic value of ultrasound

imaging for histological analysis based on machine learning (ML)

and deep learning (DL) (7, 8). Radiomics can enhance the utility of

existing data for clinicians by integrating advanced mathematical

analysis from AI (9). The integration of radiomics with imaging tool

like Magnetic resonance imaging (MRI) and mammography (MG)

shows promise for early BC screening (10, 11). In breast

ultrasonography, the large volume of data, easy accessibility of

images, and diverse image types have led to the increasing

involvement of AI-based radiomics in the diagnostic process.

Currently, multimodal ultrasound radiomics is one of the most

active areas of investigation (12–14). ABUS, an emerging breast

imaging technology, offers high-quality image presentation,

allowing for the extraction of more precise ultrasound features

with strong diagnostic potential.

We searched on PubMed and Web of Science for publications

from 2020 up to September 2024. The search keywords included

“Automated Breast Ultrasound”, “Breast Cancer”, “Deep Learning”,

“Machine Learning” and “Artificial Intelligence”. A total of 46
Frontiers in Oncology 02
relevant papers were included. This review outlines the

fundamental concepts of ABUS, radiomics, and AI, aiming to

summarize the current status and research progress of ABUS

radiomics based on traditional ML and DL algorithms in the

applications of assisting BC detection, diagnosis, classification,

and prognosis evaluation.
2 Methods

The publications were searched in the databases of PubMed and

Web of Science. The search was limited to studies published

between 2020 and September 2024. Exclusion criteria were

applied, which were not associated with radiomics. Additionally,

studies consisting solely of review, systematic review, meta-analysis

were excluded. Following the removal of duplicate studies, A total of

46 relevant papers were included, the workflow of the study was

shown in Figure 1.
3 Introduction to ABUS and radiomics

3.1 Overview and workflow of ABUS

Studies have shown that women with extremely dense breast

tissue have a 4.7 times higher risk of breast cancer compared to

those with lower breast density (15). Since the 1980s, researchers

have proposed the development of ABUS technology in response to

the limitations of MG in screening dense breasts (16, 17). Currently,

ABUS has been evaluated as a complementary tool to MG,

providing the ability to scan the entire breast without operator

variability while maintaining the benefits of handheld ultrasound

(HHUS), including superior tissue penetration and lesion

characterization (18).

ABUS is a computer-based ultrasound screening system

designed to evaluate the entire breast tissue using an automated

probe. This system ensures symmetry and bilaterality in screening

results. Each breast is imaged in three different views: axial, sagittal,

and coronal. Volumetric data is stored and transferred to a

workstation after the scan. This eliminates the need for

sonographers to perform image acquisition and interpretation

simultaneously during breast screening using ABUS. ABUS helps

standardize breast ultrasound and overcome limitations of

ultrasound, including reduced operator dependency and shorter

examination times (3). Currently available ABUS systems include

both prone and supine scanning modes (19), the most commonly

used in clinical practice are mainly supine, including the Invenia

ABUS system from GE and ACUSON S2000 automated breast

volume scanner (ABVS) from Siemens (3, 20). In this article, the 3D

Automated Breast Ultrasound technology is uniformly referred to

as ABUS. The basic structure of both ABUS systems includes a main

unit (ultrasound diagnostic device), high-frequency and large-sized

sensors, a curved transducer, and an image data processing system.

A set of ABUS images generated by Invenia ABUS is displayed

in Figure 2.
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3.2 Radiomics

Computer-Aided Detection (CAD) has greatly enhanced disease

detection and diagnosis by extracting tumor characteristics through

advanced computational analysis, particularly in breast and lung

cancer screening. Recently, radiomics has emerged as an important

extension of CAD (21), which involves extracting numerous

quantitative features from medical images using automated or

semi-automated high-throughput software tailored to a specific

imaging modality. This process identifies relevant features that

reflect both macroscopic (e.g., tumor shape and texture) and

microscopic information (e.g., pathology and genetics), enabling

predictive models for clinical functions such as screening,

diagnosis, prognosis, and efficacy assessment (22, 23).

Currently, ultrasound-based radiomics employs two distinct

approaches for feature extraction: semi-automatic methods

requiring manual segmentation with subsequent traditional ML

analysis (24), and fully automated DL methods capable of

performing end-to-end tasks including image segmentation,

lesion detection, and classification. These DL techniques can be
Frontiers in Oncology 03
further categorized into supervised, unsupervised, and semi-

supervised learning paradigms (25, 26).

The current workflow of radiomics is divided into fivemain steps:

①Image acquisition. In clinical practice for BC, commonly used

imaging modalities include ultrasound, MG, and MRI. Medical

images must be acquired in strict compliance with operational

standards (27). ②Pre-processing and tumor segmentation. Image

pre-processing typically involves noise removal and resolution

enhancement. Because of the lack of standardized methods for

segmentation and feature extraction, image segmentation primarily

focuses on delineating the ROIs (28). Common image segmentation

techniques include manual, semi-automatic, and automatic

segmentation (29). ③Feature Extraction, which includes statistical

texture features, morphological features, and filtering features. DL

extracts more abstract features directly from raw data (27). ④Feature

selection to reduce overfitting by usingmethods like filteringmethods

(23), wrapper methods, and embedding methods (30). ⑤Modeling to

predict disease prognosis and biological behavior through feature

analysis, followed by training ML or DL models, the models were

evaluated through cross-validation and external validation sets (23,
FIGURE 1

Flow diagram of study selection.
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27, 31). The ABUS radiomics workflow integrating both traditional

ML and DL approaches is shown in Figure 3.
4 Introduction and applications of
traditional machine learning for ABUS
radiomics

4.1 Introduction of traditional machine
learning for ABUS radiomics

ML is a critical branch of AI that leverages datasets to train

models and generates predictions by synthesizing information from

all data samples. These predictions can then be used to assist in

clinical decision-making. As of November 2022, the FDA has

approved 521 ML algorithms for clinical use, of which 392 can be

applied to radiomics (32). To enable clinical applications, common

ML methods can be categorized into the following types, including

reinforcement learning, unsupervised learning, and supervised

learning (33). ML algorithms used in traditional radiomics are

typically supervised. Supervised learning involves training a model

on labeled data, allowing the model to learn the mapping between

inputs and outputs with instances of the expected outputs labeled by

a human which is referred to as the “ground truth” (34).

In ABUS radiomics, traditional ML algorithms are mainly

applied to texture analysis, screening, and extraction of

quantitative features from radiomics images to create predictive
Frontiers in Oncology 04
models and decision-support tools. The steps of ultrasound

radiomics based on traditional ML algorithms are mainly divided

into image segmentation, feature extraction, feature screening, and

model build. The image segmentation part is mainly performed in a

semi-automatic form, with one or more physicians with years of

imaging experience performing ROIs regions through platforms

such as 3D Slicer, ITKSNAP, MaZda, SEG3D2, and Deepwise. The

manual delineation of ROIs is a labor-intensive and time-

consuming process (35–39). The Python-based pyradiomics

package is a widely used tool for feature extraction in radiomics

studies. It provides a convenient and comprehensive open-source

platform that can efficiently process and extract numerous radiomic

features (40, 41). For feature selection, statistical tests such as the t-

test, chi-square test, Least Absolute Shrinkage and Selection

Operator (LASSO) regression, and Gradient Boosted Decision

Trees (GBDT) are commonly employed to reduce the feature

dimensionality and enhance the model’s generalization ability.

Although traditional radiomics methods require manual feature

extraction, many clinicians prefer these approaches for constructing

models and implementing clinical functions. This is because of their

advantages in terms of model interpretability and flexibility in

clinical applications. These methods have been effectively used to

differentiate between benign and malignant tumors, predict axillary

lymph node metastasis, assess the efficacy of neoadjuvant therapies,

and predict preoperative Ki-67 expression levels. Table 1

summarizes the performance of traditional ML methods applied

to ABUS radiomics.
FIGURE 2

A set of 3-D ABUS images generated by Invenia ABUS.
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4.2 Applications of traditional machine
learning for ABUS radiomics

4.2.1 Lesion classification
Accurate screening of benign and malignant breast lesions

enables timely intervention in patients with malignant tumors,

significantly improving survival rates and preventing unnecessary

treatments for those with benign lesions. Currently, the accurate and

consistent identification of certain lesions through visual inspection

remains challenging. Several studies have explored the diagnostic

potential of traditional ML techniques applied to ABUS radiomics to

distinguish between benign and malignant breast lesions. ABUS, as a

3D ultrasound modality, provides a three-plane view, with image

segmentation typically performed using axial plane (AP) and CP.

Images obtained from these two planes are generally easier to analyze

and interpret. This aligns better with the reading preferences of

radiologists and the requirements of clinical examination.

Wang et al. manually segmented the largest lesions in AP and

CP views using ITK-SNAP and developed a classification model

with Support Vector Machine (SVM), Logistic Regression (LR), and

Extreme Gradient Boosting (XGBoost). The SVM model achieved

the best performance, with an Area Under the Curve (AUC) of

0.857 ± 0.058 and sensitivity (SEN), specificity (SPE), accuracy

(ACC), and precision (PRE) values of 87.9%, 68.2%, 80.7%, and

82.9%, respectively. The study found that features from the AP
Frontiers in Oncology 05
provided superior classification performance compared to the CP,

and leveraging data from both planes enabled the construction of a

model with more comprehensive performance (42).

Ma et al. developed an ABVS model using CP features and a

multimodal model combining ABVS, B-ultrasound, and strain

elastography (SE). The multimodal model demonstrated superior

performance compared to other models, achieving an AUC of 0.946

on the validation set, significantly enhancing the model’s diagnostic

efficacy. Several studies have demonstrated that multimodal models

exhibit superior performance compared to unimodal imaging models

(36, 43). Multimodal models involving ABUS data are typically based

on combinations of ABUS with HHUS, SE, contrast-enhanced

ultrasound (CEU), or digital breast tomosynthesis (DBT) (43, 44,

52). Since ABUS provides three-dimensional views, multiplanar

features can significantly improve classification performance.

Compared to HHUS, ABUS’s CP texture features demonstrate

superior performance in distinguishing benign and malignant

lesions. However, reconstructed coronal images have relatively

lower resolution, which may lead to the omission of critical

features such as microcalcifications. Additionally, most current

studies focus on features extracted from the largest cross-sectional

area of tumors, leaving the three-dimensional volumetric information

underutilized. Future research should explore dynamic imaging

characteristics of benign and malignant lesions to further enhance

diagnostic accuracy.
FIGURE 3

The radiomics workflow for ABUS imaging integrates two distinct methodologies. Traditional machine learning relies on manual processes including
image acquisition, feature extraction and selection, followed by model construction to complete tasks. Deep learning primarily employs
convolutional neural networks (CNN) composed of three core components: convolutional layers for local feature extraction, pooling layers for
dimensionality reduction, and fully connected layers that map extracted features to output layers for final task execution. SVM, Support Vector
Machine; LASSO, Least Absolute Shrinkage and Selection Operator; RF, Random Forest; ROC, Receiver Operating Characteristic.
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TABLE 1 The performance of traditional ML methods applied to ABUS radiomics.

No.
Description

Study
design

Training
targets

Developed a radiomics model by
extracting 208 features from multi-
planar ABVS images, selecting
features using RFE, RF, and chi-

square tests, and evaluating
classifiers SVM, LR, XGBoost with

5-fold cross-validation

Single-center
study;
Internal
validation

Classification:
malignant
vs. benign

Developed a radiomic nomogram by
extracting 1101 features from multi-
planar ABVS images, selecting 19
key features through ICC > 0.75,

mRMR and LASSO, and combining
them with clinical factors (lesion
size, BI-RADS 4 subcategories)

via LR

Single-center
study;
Internal
validation

Classification:
malignant
vs. benign

Developed a multimodal radiomics
model by extracting 1652 features
from ABVS, B-ultrasound, and SE,
selecting 14 key features through
ICC > 0.75, univariate correlation
analysis, GBDT, and combining

selected features through
multivariate LR

Single-center
study;
Internal
validation

Classification:
malignant
vs. benign

Developed a clinical-radiomics
nomogram by extracting radiomics
features from ABVS and SE images,
screening features using Mann-
Whitney U test, and LASSO with
tenfold cross-validation, and

combining selected features with
clinical risk factors and BI-RADS
scores through multivariate LR

Single-center
study;
Internal
validation

Classification:
malignant
vs. benign

Developed a radiomics nomogram
by extracting features from ABVS
and US images, screening them

using univariate correlation analysis
and GBDT, then combining selected

radiomics features with clinical
factors (age, VTI score, SWV)

through multivariate LR

Single-center
study;
Internal
validation

Classification:
malignant
vs. benign
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2022 Wang et al. (42) SVM, LR, XGBoost
Simens

Acuson S2000
ABVS 200

AUC= 0.857 ± 0.058,
SEN=87.9%, SPE=68.2%,
ACC=80.7%, PRE=82.9%

2022 Wang et al. (39) LR
Simens

Acuson S2000
ABVS 193

Training set: AUC= 0.959,
ACC= 91.6%, SEN=90.2%,
SPE= 92.7%,PPV= 91.4%,

NPV=91.8%
Validation set: AUC= 0.925
ACC= 86.7%, SEN=83.3%,

SPE= 90.5%,PPV=
90.9%, NPV=82.6%

2023 Ma et al. (36) LR
Simens

Acuson S2000
ABVS, SE,

US
620

Training set: AUC= 0.975,
ACC= 93.78%, SPE=
92.02%, SEN= 96.49%

Validation set: AUC= 0.946
ACC= 87.63%, SPE=
83.93%, SEN= 93.24%

2023 Guo et al. (43) LR
Simens

Acuson S2000
ABVS, SE 423

Training set: AUC=0.972
Validation set: AUC=0.964

2023 Ma et al. (44) GBDT, LR
Simens

Acuson S2000
ABVS, US 190

Training set: AUC= 0.900,
ACC= 80.9%, SPE= 79.5%,

SEN= 85%
Validation set: AUC= 0.911
ACC= 86.8%, SPE= 89.3%,

SEN= 80%
,

,

,
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TABLE 1 Continued

No.
Description

Study
design

Training
targets

eveloped a predictive model by
tracting 2632 radiomics features
m intratumoral and peritumoral
gions in ABUS images, selecting
5 key features through Z-score
malization, ICC, Wilcoxon rank-
sum test, mRMR, and LASSO
ression, and integrating them via

SVM classifier

Dual-center
study;
Internal
validation

Predict Ki-67
expression
patterns

eveloped a radiomics nomogram
y extracting 1702 features from
intratumoral and peritumoral
gions in ABVS images, selecting
15 key features using LASSO
egression, and integrating them
ith ultrasound-reported lymph
de status and tumor size through

multivariate LR

Single-center
study;
Internal
validation

Predict Ki-67
expression
patterns

eveloped a radiomics model by
extracting features from

intratumoral and peritumoral
ions on ABVS images, combined
h clinical and serological features,
and employed model-weighted
semble methods to predict HER2
status, with feature selection
rformed using classifiers like RF,

LGBM, GBC, ETC

Multi-center
study;
External
validation

Preoperative
prediction of
HER2 status

eveloped a predictive model by
tracting 1409 radiomics features
m intratumoral and peritumoral
gions in ABVS images, selecting
key features using ICC, WRS,
MR, and LASSO regression, and
integrating them through

XGBoost classifier

Dual-center
study;
External
validation

Predict Ki-67
expression
patterns

eloped an ABVS-based radiomics
odel by extracting 2628 features
m pre- and post-NAC ultrasound
mages, selecting 13 key features
using LASSO regression, and
evaluating their predictive

Single-center
study;
Internal
validation

Predicting the
Efficacy of
Neoadjuvant
Chemotherapy
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2023 Li et al. (45)
LR, SVM, RF,
XGBoost, KNN

GE Healthcare
Invenia ABUS

ABUS 936
Training set: AUC=0.868
Testing set: AUC=0.822

D
ex
fro
re

no

reg

2024 Wu et al. (46) LR
Simens

Acuson S2000
ABVS 197

Training set: AUC=0.905,
SPE= 0.944, SEN=0.745

Validation set: AUC=0.882,
SPE=0.909, SEN=0.727

D
b

re

r
w

no

2024 Wang et al. (35)
RF, LGBM,
GBC, ETC

Simens
Acuson S2000

ABVS 271

Validation set: AUC=0.826,
SPE= 0.750, SEN=0.909
Test set: AUC=0.700,
SPE=0.419, SEN=0.861

D

reg
wit

en

pe

2024 Hu et al. (47) SVM, RF, XGBoost
Simens

Acuson Oxana 2
ABVS 668

Training set: AUC=0.957
Testing set: AUC=0.920,
ACC= 0.846, PRE=0.907

D
ex
fro
re

m

2023 Jiang et al. (48) LR, SVM, RF
Simens

Acuson Oxana 2
ABVS 248

Pre-NAC: AUC=0.790,
SEN=0.364, SPE=0.821,

ACC=0.620
Post-NAC: AUC=0.890,

SEN=0.500,
SPE=0.929, ACC=0.773
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TABLE 1 Continued

No.
Description

Study
design

Training
targets

performance for NAC response
using LR, SVM, and RF classifiers
with five-fold cross-validation

Developed a radiomics nomogram
by extracting 837 features, selecting
13 key features using LASSO with
ten-fold cross-validation, and

integrating them with retraction
phenomenon and US-reported ALN

status through multivariate LR

Single-center
study;
Internal
validation

Predicting
axillary lymph

node
tumor burden

Developed an ABVS-based
radiomics model by extracting 5901
features, selecting key features per
plane using LASSO regression with

ten-fold cross-validation, and
integrating them with convergence
sign, strain elasticity level, positive

SLN number and Ki67 index
through LR

Single-center
study;
Internal
validation

Prediction
of

lymphovascular
invasion status

Developed a radiomics nomogram
by first extracting 1316 radiomics

features from ABUS images,
selecting 1109 features with ICCs ≥
0.8, then identifying 7 key features
via Student’s t-test and LASSO
regression, which was combined
with tumor size, US-reported LN

status, and ABUS retraction
phenomenon in LR to build the

predictive model

Multi-center
study;
External
validation

Prediction of
metastatic
lymph

node burden

Developed an ABVS-based
radiomics nomogram by extracting
110 features, selecting key features
through LASSO regression with ten-
fold cross-validation (ICC ≥0.80),

and integrating them via
multivariate LR

Multi-center
study;
External
validation

Assessment of
axillary lymph

node
metastasis risk
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2023 Chen et al. (49) LR
GE Healthcare
Invenia ABUS

ABUS 310

Training set: AUC=0.876,
SEN=0.853, SPE=0.826,
ACC=0.831, PPV=0.538,

NPV=0.959
Test set: AUC=0.851,
SEN=0.765, SPE=0.825,

ACC=0.814,
PPV=0.481, NPV=0.943

2023 Li et al. (50) SVM, LR
Simens

Acuson S2000
ABVS 335

Training set: AUC=0.950,
SEN= 83.67%, SPE=

92.47%, ACC= 90.64%,
PPV= 74.55%, NPV=

95.56%
Validation set: AUC=0.88,

SEN= 70.00%, SPE=
88.75%, ACC= 85.00%,

PPV= 60.87%,
NPV= 92.21%

2023 Li et al. (38) LR
GE Healthcare
Invenia ABUS

ABUS 517
Training set: AUC=0.924
Validation set: AUC=0.812

2023 Wang et al. (51) LR
Simens

Acuson S2000
ABVS, US 276

Training set: AUC= 0.781,
SEN=0.838, SPE=0.634,

ACC=0.722
Validation set: AUC= 0.773,
SEN=0.800, SPE=0.800,

ACC=0.800
Test set: AUC= 0.828,

SEN=0.853,
SPE=0.660, ACC=0.742
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4.2.2 Prediction of invasive markers
BC is a highly heterogeneous disease, with multiple potential

therapeutic molecular targets that play crucial roles in cell

metastasis, invasion, apoptosis, and cell cycle regulation. Ki-67 is

a crucial biomarker for assessing BC; its expression level reflects the

tumor’s proliferative activity (53, 54). Accurate Ki-67 assessment

provides valuable information for BC management (45–47).

Wu et al. developed an ABVS-based radiomics model for Ki-67

prediction by analyzing ROIs in CP across different Ki-67

expression levels. They reconstructed peritumoral ROIs using a

dilation algorithm, selected features through LASSO regression, and

constructed the predictive model via LR. The model demonstrated

robust performance with AUC values of 0.905 in the training set

and 0.882 in the validation set. Utilizing readily accessible input

data, this approach shows significant clinical value (46).

The expression of human epidermal growth factor receptor 2

(HER2) is closely linked to the prognosis of BC, with HER2-positive

cases accounting for about 14% of all female BC cases (55). These

patients demonstrate greater heterogeneity, and lower survival

rates. HER2 expression indicates clinical aggressiveness and aids

physicians in treatment decisions (56, 57). Since trastuzumab

received approval for HER2-positive metastatic BC in 1998,

several tyrosine kinase inhibitors (TKIs) and antibody-drug

conjugates (ADCs) targeting HER2 have been approved for

clinical use (58). Due to its critical role, HER2 has become an

essential diagnostic and therapeutic biomarker for BC (59).

Wang et al. developed four optimal models using weighted and

feature combination methods to predict HER2 status in BC using

ABVS-based radiomics features. The weighted combination model

achieved an AUC of 0.700, SEN of 86.1%, and SPE of 41.9% in test

set (35). Due to the lack of a strict standard for ROIs division,

outlining accuracy can impact model performance. To minimize

operator bias in semi-automatic segmentation, multiple

sonographers are employed for ROIs delineation. Optimized

weighted combination models that include ABVS-based intra

tumoral and peritumoral radiomics features along with clinical

data show promise for noninvasive preoperative prediction of

HER2 status in BC.

However, current ABUS primarily provides morphological and

echogenic features while lacking functional information (e.g.,

hemodynamics), which may limit its predictive capability for

certain biomarkers. Therefore, multimodal integration becomes

particularly crucial for improving the accuracy of predicting

tumor marker expression levels.
4.2.3 Treatment response and risk assessment
Neoadjuvant therapy (NAT) is a common treatment for early-

stage BC that reduces tumor size, enhances surgical removal success,

and increases the likelihood of breast-conserving surgery (60, 61). It

can also eliminate axillary lymph node metastases (ALND) detectable

during sentinel lymph nodes (LNs) biopsy post-treatment. Currently,

effectiveness assessments mainly rely on post-treatment evaluations,

which may delay timely treatment adjustments.

Jiang et al. collected ABVS images from patients within one

week before the start of NAC and one week after the second NAC
T
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cycle to identify image features associated with NAT efficacy. The

results showed that the prediction performance of features extracted

after the second treatment cycle was significantly superior to that of

pretreatment features (AUC 0.89 vs. 0.79). This suggests that

postoperative assessment differs from pre-treatment evaluation,

likely due to changes in the tumor microenvironment following

treatment (48).

ALND, including the number and distribution of positive LNs,

is a key factor in determining the pathological stage of BC (62).

Therefore, an accurate assessment of ALND involvement is

essential for developing appropriate treatment plans. ALND can

be diagnosed by sentinel lymph node biopsy in patients with early-

stage BC (63), the false-positive rate is approximately 10% (64);

therefore, developing a radiomics model for the assessment of

ALND is clinically significant. Chen et al. compared several

models, including an ABUS feature model with tumor diameter,

retraction phenomenon, hyperechoic halo, ABUS radiomics model,

and multi-modal ABUS radiomics model incorporating ultrasound

reports of axillary lymph node status and retraction phenomenon.

The AUC value for the training set was 0.876 and the test set was

0.851 (49). Current research primarily focuses on the extraction and

analysis of radiomic features. However, the complexity of the tumor

microenvironment suggests that predicting LNs should not rely

solely on imaging data. Given that tumor invasiveness, immune

microenvironment status, and molecular heterogeneity all influence

metastatic risk, future studies should integrate multimodal data,

including pathological characteristics and molecular biomarkers, to

develop a comprehensive “imaging-pathology-molecular”

predictive model.
5 Introduction and applications of
deep learning for ABUS radiomics

5.1 Introduction of deep learning for ABUS
radiomics

Since AlexNet demonstrated its remarkable performance in

image recognition challenges, DL, as a key branch of AI, has

gained widespread attention (65). DL is a crucial subfield of ML

that focuses on representation learning through hierarchical

nonlinear transformations. It is particularly adept at processing

unstructured data (e.g., images, text) and can adapt to supervised,

unsupervised, or semi-supervised learning paradigms (66, 67). This

is achieved by connecting simple nonlinear modules through a

multilayered neural network that mimics the structure of the

human brain (68). The emergence of DL has expanded the range

of applications in the field of computer vision (67). In imaging, DL

employs multilayer neural networks to transform input data into

outputs that align with desired outcomes. Common types of outputs

include object locations for lesion detection, pixel labels for image

segmentation, and image categories for lesion classification. The

basic architecture of DL is Convolutional Neural Network (CNN)

(69). Inspired by the biological visual cortex, a CNN typically

comprises three primary components: convolutional layers,
Frontiers in Oncology 10
pooling layers, and fully-connected layers (70). The convolutional

layers serve as the core feature extractors, applying multiple

convolutional kernels to capture local patterns like edges and

textures. Pooling layers then reduce spatial dimensionality while

preserving critical features. These extracted features are

subsequently mapped to outputs through fully-connected layers

for final classification or prediction tasks. As the network depth

increases, CNNs progressively learn more complex hierarchical

representations (68). As combinations of layers have become

more diverse, deep neural network architectures built on CNN

have been successfully applied to image analysis. Notable examples

include AlexNet (65), VGGNet (71), ResNet (72), DenseNet (73),

etc. In recent years, the establishment of several medical imaging

databases has facilitated data mining and the development of high-

performance models has been significantly simplified by the

widespread use of generalized neural network frameworks and

automated processing workflows (74). Meanwhile, Transformer

architectures based on self-attention mechanisms have also

demonstrated promising potential in medical image analysis,

significantly improving the accuracy of lesion classification and

segmentation through their superior long-range dependency

modeling capabilities (75).

Currently, DL, one of the most powerful data-driven AI

technologies, enables the development of fully automated

workflow. DL models generally achieve higher accuracy and

performance than traditional ML algorithms. As the field of DL

continues to evolve, these algorithms are expected to become

mainstream tools for medical radiomics in the future. To date,

DL algorithms have been applied to ABUS radiomics for tasks such

as lesion detection, tumor segmentation, and lesion classification.

Table 2 summarizes the performance of DL methods applied to

ABUS radiomics.
5.2 Application of deep learning for ABUS
radiomics

5.2.1 Lesion detection
Traditional ML methods for identifying breast lesions are

largely manual, whereas DL methods enable automatic tumor

detection. Several studies have applied DL for breast lesion

detection using HHUS. For example, Yap et al. systematically

compared three DL architectures (patch-based LeNet, U-Net, and

transfer learning-optimized FCN-AlexNet) with four conventional

methods for breast ultrasound lesion detection. The results

demonstrated that FCN-AlexNet achieved optimal performance

with a True Positive Fraction of 0.98, indicating excellent lesion

detection capability (104). Currently, the DL frameworks used for

lesion detection in ABUS images mainly include 3D CNN, 3D U-

Net, and R-CNN.

Unlike HHUS, the main challenge for lesion detection in ABUS

radiomics is how to correctly process 3D images instead of 2D

images (105), regarding lesion detection in ABUS, previous

approaches have mainly focused on clustering the localization

results of 2D slices to form the final 3D results (106, 107). Oh
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TABLE 2 The performance of DL methods applied to ABUS radiomics.

Image No.
escription Study design

Training
targets

y proposes a 3D CNN
shold loss, integrating
feature supervision and
oxel-wise thresholding
lesions detection

Single-center study;
Internal validation

lesions detection

proposes a 3D U-Net
l attention and residual
for lesions detection

Single-center study;
Internal validation

lesions detection

y proposes a 3D CNN
ble learning and focal

or tumor detection

Single-center study;
Internal validation

lesions detection

roposes a 3D Inception
th an asymmetric loss
on to maintain low
false positives

Single-center study;
Internal validation

lesions detection

proposes an improved
network for 2D slice
on with a rescoring
and tubelet model to
patial consistency and
ce false positives

Single-center study;
Internal validation

lesions detection

proposes an optimized
et with densely deep
and threshold mapping
lesion detection

Single-center study;
Internal validation

lesions detection

proposes Faster R-CNN
se, coronal, and sagittal
images, followed by
l clustering and U-Net-
stprocessing to reduce
false positives

Single-center study;
External validation

lesions detection

y proposes an SSL-E
bining self-training with
o-labels to consist

Single-center study;
Internal validation

lesions detection
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TABLE 2 Continued

Image No.
Description Study design

Training
targets

ization, and a copy-paste
egy to enhance tumor
iversity and address
class imbalance

y proposes a patch-based
onvLSTM network by
ng inter-slice correlations
generating heat maps
for localization

Multi-center study;
Internal validation

lesions detection

tudy developed a Mask
R-CNN with an attention
nd mask score head for
umor segmentation

Multi-center study;
External validation

lesions
segmentation

dy proposed an SC-FCN-
network that integrates
nal LSTM to model inter-
ependencies and spatial-
el attention to enhance
minative feature fusion

Single-center study;
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segmentation
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er network with iterative
e refinement to improve
ndary delineation for
umor segmentation

Single-center study;
Internal validation
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segmentation
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TABLE 2 Continued

Image No.
Description Study design

Training
targets

y proposes a novel deep
network integrating an
ic segmentation network
esNet architectures to
ance morphological
eature extraction

Single-center study;
Internal validation

lesions
segmentation

y proposed a cross-model
tion-guided network
g V-Net and 3D Mask R-
with a hybrid loss to
ce tumor segmentation

Single-center study;
Internal validation

lesions
segmentation

y proposed a knowledge
n method with decoupled
ive learning and ranking
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entation by efficiently
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Single-center study;
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tumor segmentation
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TABLE 2 Continued

Image No.
Description Study design

Training
targets

i-scale feature fusion for
tumor segmentation

udy developed a two-stage
ep learning framework
ing automatic segmentation
eepLab-V3 and multiview
feature fusion for

lesions segmentation

Multi-center study;
External validation

lesions
segmentation

dy proposed a dual-branch
er-decoder network with
l-local feature fusion and
convolution to enhance

all tumor segmentation

Multi-center study;
External validation

lesions
segmentation

udy proposed a 3D U-Net
atial attention and residual
s for tumor classification

Single-center study;
Internal validation

lesions
classification

udy proposed a multiview
N based on modified
n-v3 with transfer learning
for classification

Single-center study;
Internal validation
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classification

udy proposed a multi-task
g framework combining a
entation encoder-decoder
work and a multi-scale
ation branch, enhanced by
ive feature refinement, to
intly improve tumor
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classification
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ture extraction network
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breast tumors
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breast tumors
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TABLE 2 Continued

Image No.
patients

Performance Description Study design
Training
targets

113 ACC=90.9%, AUC=0.91

The study developed a deep
convolutional neural network with
a sliding-window approach for

automatic detection and
classification of breast lesions

Single-center study;
Internal validation

lesions
classification

363

mass classification:SEN
=87.75%, SPE =93.75%,

AUC=0.9491
cancer classification:

SEN=63.95%,
SPE=61.57%, AUC=0.6802

The study developed a deep
convolutional neural network with

a mask branch network and
template masks derived from

radiology reports for classifying
breast lesions

Single-center study;
Internal validation

lesions
classification

214
ACC=95.24%,
AUC=99.76%

The study proposed a multi-view
stereoscopic attention network

with 3D localization and
Transformer-based classification

Single-center study;
Internal validation

lesions
classification

216
AUC=0.949,

SEN=82.14%, SPE=95.56%

The study developed a multiview
deep learning model with

automatic segmentation (DeepLab-
V3) and classification (Inception-
v3 backbone) based on ABVS

images for identifying
breast cancer

Multi-center study;
External validation

lesions
classification

eural network; Faster R-CNN, fast region-based convolutional neural networks; SSL-E, semi-supervised learning EfficientDet; R-CNN, region-based
, multidomain consistency constraint model; GLGM, global and local feature interaction model combined with graph fusion; GRUC-Net, GRU

ally residual-capsuleneural network; MVSA-Net, multiview stereoscopic attention network; IoU, Intersection over Union; CenDis, centers of detected
95, 95% Hausdorff distance; MSD, mean surface distance; RMSD, residual mean square distance; CMD, center of mass distance; REC, Recall; PRE,
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2022 Hejduk et al. (101) CNN
GE Healthcare
Invenia ABUS

ABUS

2022 Kim et al. (102) DenseNet
GE Healthcare
Invenia ABUS

ABUS

2023 Ding et al. (103) MVSA-Net IBUS BE3 ABUS

2024 Li et al. (96) Inception-v3
Simens

Acuson S2000
ABVS

3D CNN, three-dimensionally convolutional neural network; 3D U-Net, three-dimensionally U-shaped convolutional
convolutional neural networks; DSGMFFN, deepest semantically guided multi-scale feature fusion network; MDCC
Classified Network; CMSVNet, classification branch for multi-task learning network; 3D Res-CapsNet, three-dimension
and ground truth cancers; FPs, false positives; SEN, sensitivity; DSC, Dice similarity coefficient; JAC, Jaccard index; H
Precision; JI, Jaccard index; AP, average precision; JC, Jaccard coefficient; ASD, average surface distance; AUC, area
n
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et al. developed a 3D breast nodule detection system combining 2D

Faster R-CNN and U-Net. The method employs confidence

thresholding and hierarchical clustering to reduce 2D false

positives (FPs), then aggregates sequential 2D detections into 3D

cuboids. Evaluation results showed 90.98% SEN (11.6 FPs/case) on

Dataset A and 93.65% SEN (8.6 FPs/case) on Dataset B (82).

Wang et al. proposed an improved 3D CNN architecture for

cancer detection in ABUS. The study achieved outstanding

performance with 95% SEN and only 0.84 FPs per volume. This

was accomplished by introducing 3D dilated convolutions to

enhance multi-scale feature extraction, optimizing the training

process with a hybrid loss function, and designing an adaptive

threshold map to refine the cancer probability map. However, the

method still has limitations, including misclassification of benign

lesions, missed detection of small cancerous regions, high

computational demands of the 3D network. Future research will

focus on improving malignancy classification, optimizing shadow

region detection, and enhancing efficiency through lightweight

network design (76).

DL offers significant advantages in tumor detection, including

high efficiency and automation, effectively enhancing physicians’

diagnostic workflow. However, non-tumorous regions such as

vascular dilatation and glandular shadows may still lead to FPs,

while the SEN for small lesions remains notably lower than that for

larger tumors. These limitations indicate significant opportunities

for further optimization and enhancement of the technology.

5.2.2 Tumor segmentation
In addition to detection, tumor segmentation is clinically

significant, as it helps to precisely delineate the boundaries of

lesions (108). This segmentation forms the foundation for tumor

analysis, lesion load assessment, and surgical planning (109). In

early studies, mass segmentation primarily relied on manually

selected features (110–112). However, manual feature selection

has inherent drawbacks, including inefficiency and subjectivity.

To address these issues, Kozegar et al. developed a new adaptive

region growing algorithm combined with deformable model. This

approach achieved a mean Dice of 0.74 ± 0.19 (110). In recent years,

automatic tumor segmentation has become mainstream, with

commonly used DL frameworks including U-Net, R-CNN, and

V-Net.

Lei et al. developed a region-based CNN incorporating a mask

scoring mechanism for automated segmentation of breast tumors in

ABUS images. The method achieved a mean Dice similarity

coefficient (DSC) of 82.1% ± 14.5% on the independent test set.

However, its complexity requires substantial computational

resources, limiting its practical applicability (85).

Segmentation architecture design relies heavily on expert

knowledge. Neural architecture search automates this process.

Cao et al. proposed Auto-DenseUNet, which leverages neural

architecture search automates and a densely connected structure

to optimize feature fusion through multi-scale aggregation nodes. A

decoupled search-training strategy was introduced to balance

search efficiency and model performance. On the ABUS dataset,

Auto-DenseUNet achieved a mean DSC of 77.8% and demonstrated
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competitive performance on a cardiac MRI dataset. However,

domain shift across datasets remains a challenge for further

investigation (88).

Zhou et al. proposed CMANetfusion, a cross-model attention

segmentation network integrating 3D Mask R-CNN with V-Net.

This framework achieves tumor segmentation in ABUS images

through probability map-guided feature fusion and a hybrid loss

function, attaining a DSC of 64.57% on single-center data. However,

the model demonstrates limitations in segmenting small tumors

and lesions adjacent to nipples, while exhibiting high computational

demands. Future optimizations could incorporate multi-task

learning and lightweight architecture design to enhance

performance (91).

DL models can automatically extract features, significantly

improving segmentation efficiency while reducing manual

intervention. However, current research primarily focuses on

static images, leaving the dynamic segmentation capability for

real-time ABUS video analysis largely unexplored. Future work

should leverage self-supervised pretraining to minimize annotation

dependency and develop lightweight networks to meet clinical real-

time requirements.

5.2.3 Classification of lesions
BI-RADS 4 lesions have a high biopsy rate, but many are

benign. DL models can help distinguish benign from malignant

lesions, reducing unnecessary biopsies. ABUS generates 3D images,

leveraging multi-view information for improved classification.

However, ABUS imaging features challenge lesion classification

due to pixel and grayscale limitations. Precise lesion localization

is crucial, especially boundary delineation. Current methods for

interpreting ABUS images are limited in stereoscopic boundary

localization and feature extraction, and do not effectively utilize

long-range features or attention mechanisms. Improvements are

needed to fully exploit stereoscopic information and features from

different views to enhance diagnostic accuracy.

Zhuang et al. proposed a tumor classification method for ABUS

images called the Classifying-ABUS Architecture. This method

extracts the image of interest (IOIs) and ROI employing a Shared

Extracting Feature Network combining VGG16 and a novel

Shallowly Dilated Convolutional Branch Network to extract both

general and ultrasound-specific features. Then employs GRU

Classification Network to integrate sequence features for

classification. The experimental results demonstrate that the

proposed method achieved a classification ACC of 92.86% for the

test set (99). However, current methods still face challenges in

capturing long-range spatial relationships and sophisticated feature

patterns in ultrasound imaging.

Ding et al. proposed MVSA-Net, a two-stage classification

method for breast ultrasound images. MVSA-Net consists of a

stereo localization unit and a classification unit. The stereo

localization unit uses a stereo attention module and segmentation

output design to accurately locate the tumor region. The

classification unit then uses a transformer network to classify the

tumor as benign or malignant. This approach achieved an ACC of

95.24% with an AUC of 99.76%, significantly improving
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classification speed and efficiency. Key contributions include the

module’s focus on the tumor’s edge regions and the transformer

network’s global attention mechanism, which enables MVSA-Net to

capture long-range feature dependencies (103).

A common challenge in classification models is the imbalance

between malignant and benign samples, with malignant cases

usually being much fewer than benign ones. This imbalance can

negatively affect model training. Also, when working with small

datasets, models tend to overfit the training data. To address these

issues, future studies could employ data augmentation techniques to

increase sample diversity and enhance model performance.
6 Discussion

The combination of AI and ABUS radiomics has demonstrated

multifaceted clinical application value in BC diagnosis and

treatment assessment, significantly improving tumor detection

and diagnostic accuracy while effectively predicting tumor

molecular marker expression levels and assessing ALND risk.

Current research shows that the multimodal joint modeling of

ABUS with B-ultrasound and SE can achieve complementary

advantages: ultrasound compensates for ABUS’s limitations in

detecting peripheral lesions, poor imaging performance in large

breasts, and restricted evaluation of axillary and nipple regions

through its flexibility (113), while SE further enriches model

features by quantifying tissue stiffness as an important biological

characteristic (40). However, existing studies are mostly limited to

the joint analysis of ABUS with B-ultrasound and SE, with relatively

insufficient research on cross-modal fusion with other imaging

techniques such as CEU, MRI, and CT. ABUS radiomics is

increasingly being combined with key pathomics elements like

histological grading and immunohistochemical markers, as well

as clinomics parameters including survival data and hematological

features, representing a growing research priority. By establishing

quantitative correlations between imaging features and pathological

microenvironment and molecular subtypes, we can further reveal

the biological basis of ABUS signs. Currently, there remains a

significant gap in key technology research for DL-based

multimodal data fusion of ABUS, which will become an

important direction for future research.

However, it is noteworthy that while these advanced

technologies enable precise diagnosis, they still face several key

challenges in clinical practice. First, existing studies generally suffer

from insufficient external validation data. In the process of

promoting data diversity, it is crucial to ensure the prompt

implementation of standardized protocols and enhance the

security of multi-center collaboration through strengthened

privacy data measures. Additionally, different medical institutions

may use different models of ABUS equipment, and variations in

image resolution, scanning parameters, and coronal reconstruction

algorithms among different manufacturers’ ABUS devices exist.

Most models are only trained on single-device data, so the

generalization capability of models across different ABUS devices
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still requires validation. Beyond equipment differences, the lack of

standardized protocols may introduce data heterogeneity due to

variations in operator experience. Therefore, strict adherence to the

manufacturer’s scanning guidelines is essential when using ABUS.

Furthermore, as a core component of medical big data, medical

imaging data is subject to strict data sharing regulations due to its

storage standards, clinical application scenarios, and privacy

sensitivity (114, 115). Current privacy protection technologies

mainly focus on data de-identification and differential privacy

(114, 116), but their privacy protection effectiveness still needs

evaluation. McMahan et al. proposed federated learning (FL), a

distributed ML framework (115). This framework coordinates

multi-center collaboration through a central server: each hospital

trains models using local data and only uploads parameter updates

to the central server to generate a global model, which is then

returned to each institution. This approach enables the mining of

multi-center data value while protecting local data. Current

research has confirmed its feasibility in ultrasound image pre-

training (117), providing new ideas for ABUS privacy data research.

While addressing challenges of data privacy protection and

model generalization capability, AI models face another critical

bottleneck in clinical applications - the problem of insufficient

interpretability. So-called “black box” models refer to algorithmic

systems that lack transparency in their internal decision-making

mechanisms (118). Such models often focus too much on the

mapping relationship between input and output during

development while neglecting the visualization of decision

processes, making it difficult for clinicians to understand the

model’s specific reasoning logic. This comprehension gap easily

leads to clinicians’ distrust of AI diagnostic results. More

importantly, even if the model achieves high prediction accuracy,

its output may lack clinical interpretability, reducing the operability

of prediction conclusions (117). Therefore, promoting Explainable

Artificial Intelligence (XAI) appears particularly important. XAI

aims to make the decision-making process of AI applications

transparent not only to domain experts or data scientists but also

to clinicians unfamiliar with AI complexity through specific

methods and technologies (119). Current XAI research mainly

focuses on six methods: Feature-oriented methods, global

methods, concept models, surrogate models, local pixel-based

methods, and human-centric methods. Feature-oriented methods

related to radiomics can quantify features’ contribution to model

prediction; Concept Models can translate models into concepts

understandable by physicians; Surrogate Models can replace

complex model predictions by constructing simple models,

providing reliable basis for personalized medicine; Local, Pixel-

based Methods can display which pixels in the input image are most

critical for model prediction; Human-centric Methods mainly

emphasize explaining models from cognitive habits (120).

Applying these XAI methods to ABUS radiomics analysis in the

future will significantly improve model interpretability and

clinical practicality.

In traditional ML and DL classification tasks, models typically

require large amounts of manually annotated data for training. The
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data annotation process is not only time-consuming and expensive

but may also introduce noise due to labeling errors, affecting model

performance. In contrast, self-supervised learning (SSL) generates

supervisory signals automatically from unlabeled data (such as

predicting image rotation angles, filling in missing parts, or

contrastive learning), significantly reducing dependence on

manual annotation and thereby decreasing data annotation costs

and complexity. SSL effectively solves the problems of high

annotation costs, insufficient generalization capability, and low

computational efficiency by utilizing the intrinsic structure of

unlabeled data to generate supervisory signals. In the future, this

method is expected to be applied to unannotated datasets such as

ABUS, further improving the efficiency and accuracy of medical

image analysis (121).

AI, with its exceptional analytical capabilities, has become an

important technological tool in ABUS radiomics research. However,

challenges such as insufficient model generalization, data privacy

protection, and model interpretability still need to be addressed. In

the future, overcoming these challenges will require close

collaboration among multidisciplinary teams. On one hand,

standardized ABUS imaging databases need to be established, and

more prospective clinical studies should be conducted to validate the

practical value of AI-assisted diagnostic systems. Simultaneously,

intuitive visualization models need to be developed to help

clinicians understand AI decision-making processes.
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119. Arrieta AB, Dıáz-Rodrıǵuez N, Del Ser J, Bennetot A, Tabik S, Barbado A, et al.
Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and
challenges toward responsible AI. Inf Fusion. (2020) 58:82–115. doi: 10.1016/
j.inffus.2019.12.012

120. Sadeghi Z, Alizadehsani R, Cifci MA, Kausar S, Rehman R, Mahanta P, et al. A
review of Explainable Artificial Intelligence in healthcare. Comput Electr Eng. (2024)
118:109370. doi: 10.1016/j.compeleceng.2024.109370

121. Abdulrazzaq MM, Ramaha NT, Hameed AA, Salman M, Yon DK, Fitriyani NL,
et al. Consequential advancements of self-supervised learning (SSL) in deep learning
contexts. Mathematics. (2024) 12:758. doi: 10.3390/math12050758
frontiersin.org

https://doi.org/10.1109/TPAMI.2021.3059968
https://doi.org/10.1007/s10851-007-0015-8
https://doi.org/10.1109/TMI.2017.2787685
https://doi.org/10.1177/0161734617737733
https://doi.org/10.1016/j.neucom.2016.09.067
https://doi.org/10.3390/diagnostics13061065
https://doi.org/10.1038/s41598-021-93030-0
https://doi.org/10.1038/s41598-021-93030-0
https://doi.org/10.1016/j.jbi.2023.104322
https://doi.org/10.1016/j.jbi.2023.104322
https://doi.org/10.1016/j.inffus.2024.102721
https://doi.org/10.1086/287954
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.compeleceng.2024.109370
https://doi.org/10.3390/math12050758
https://doi.org/10.3389/fonc.2025.1578991
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Guo et al. 10.3389/fonc.2025.1578991
Glossary

ABUS Automatic breast ultrasound
Frontiers in Oncology
ABVS Automated breast volume scanner
ACC Accuracy
ADCs Antibody-drug conjugates
AI Artificial intelligence
ALND Axillary lymph node metastases
AP Axial plane
AUC Area Under the Curve
BC Breast cancer
CAD Computer-aided
CEU Contrast-enhanced ultrasound
CNN Convolutional Neural Network
CP Coronal plane
DBT Digital breast tomosynthesis
DL Deep learning
DSC Dice similarity coefficient
FDA Food And Drug Administration
FL Federated learning
FPs False positives
GBDT Gradient Boosted Decision Trees
HER2 Human epidermal growth factor receptor 2
22
HHUS Handheld ultrasound
IARC International Agency for Research on Cancer
IOIs Image of interest
LASSO Least Absolute Shrinkage and Selection Operator
LNs Lymph nodes
LR Logistic Regression
MG Mammography
ML Machine learning
MRI Magnetic resonance imaging
NAT Neoadjuvant therapy
R-CNN Region-based convolutional neural network
PRE Precision
ROIs Regions of interest
SE Strain elastography
SEN Sensitivity
SPE Specificity
SSL Self-supervised learning
SVM Support Vector Machine
TKIs Tyrosine kinase inhibitors
XAI Explainable Artificial Intelligence
XGBoost Extreme Gradient Boosting
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