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Background: Colorectal cancer (CRC) is a malignant tumor originating from the

epithelial cells of colon or rectum. Currently, the main treatment strategy is

surgery with chemotherapy and radiotherapy, but the 5-year survival rate is only

63%. Therefore, new therapeutic targets should be discovered and identified to

improve survival. This study explored the critical role of anoikis-related genes in

CRC development, investigated the regulatory mechanism and identified

potential therapeutic drugs using data from the TCGA database, offering a

theoretical foundation for CRC diagnosis and treatment.

Methods: Anoikis-related genes differentially expressed in CRC tissues

compared to normal tissues were identified using data from the TCGA dataset.

Prognostic gene signatures were constructed using both univariate and

multivariate Cox regression models. Validation of target gene expression was

performed by Western blotting and qRT-PCR. To elucidate the regularity

mechanisms underlying the identified gene signature, KEGG, GO, immune

infiltration analysis and ssGSEA were conducted. Additionally, various

computational algorithms were employed to evaluate the immunotherapeutic

responses of different risk groups. The oncoPredict package predicted candidate

chemotherapy agents.

Results: Based on screening and identification results, we established three

anoikis-related genes: LEP, HAMP, and FAM43B, as the prognostic prediction

genes of CRC. We successfully constructed the study model and demonstrated

that the risk score of the anoikis-related prognostic prediction signature is an

independent prognostic factor in overall survival. Additionally, the results of

immune microenvironment infiltration showed that the high-risk score group

had a greater infiltration of the M0, M1, and M2 macrophages. In the

immunotherapy cohort, the prognosis of patients with a high score, as judged

by the study model, was significantly better. The risk score of the anoikis-related

prognostic prediction gene is associated with the immunotherapy response in

metastatic colorectal cancer.
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Conclusions: Our study reports on the identification of anoikis-related gene

subtypes and the construction of a prognostic signature in CRC, which, in turn,

can provide a basis for further study of the molecular mechanism, clinical

diagnosis, and treatment of CRC.
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1 Background

Colorectal cancer (CRC) is a heterogeneous disease

characterized by gene fusion, epigenetic changes, somatic

mutation and genetic instability, posing a serious threat to human

health (1–4). Approximately 70% of sporadic CRC cases originate

from adenomatous polyps, while 25–30% are linked to sessile

serrations (5). CRC has a complex and diverse pathogenesis,

influenced by various factors such as environmental and dietary

factors, lifestyle choices, and familial and hereditary factors (6). At

present, surgical resection is the main treatment method for CRC,

yet even with the addition of modern adjuvant systemic therapies,

only 20% of CRC patients achieve a cure (7). Globally, over 1.85

million CRC cases and 850,000 deaths are reported annually. It is

claimed that in 20% of the newly diagnosed CRC cases, the disease

has already progressed to the metastatic stage, while it will become

metastatic later in the other 25% of the patients (8). Treatment

options for metastatic CRC remain limited, with chemotherapy

being the conventional method. However, clinically, only a few

tumor-targeted chemotherapy drugs are available, such as

epidermal growth factor receptor inhibitors and vascular

endothelial growth factor inhibitors, and these drugs are effective

only in patients with specific mutations (9). Encouragingly, rapid

development and in-depth research on molecular biology and

genotyping have shifted tumor-targeted therapy from the

molecular level to the genetic level, yielding promising results.

Thus, there is a pressing need to identify new therapeutic targets

for CRC to fit in the targeted therapy development.

Loss of adhesion or improper adhesion between cells and the

extracellular matrix (ECM) is known as “nesting.” Once normal

epithelial cells lose contact with the ECM, they rapidly undergo

anoikis, a specific form of apoptosis first described in 1994 by Frisch
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et al. Endothelial and normal epithelial cells are typically adhesion-

dependent, relying on signal transmission between cells and the

ECM for survival, which is a phenomenon known as anchoring

dependence (10). For example, when normal epithelial cells and

solid tumor cells without metastatic properties lose their

intercellular connection and basement membrane support, they

detach from their original site and enter the bloodstream, leading to

apoptosis. This type of cell apoptosis that breaks away from the

original living environment is called anoikis, and it plays a crucial

role in maintaining stability and structural integrity. It is essential

for the entire process of organism genesis, development, renewal,

and degradation to prevent the exfoliated cells from planting and

growing in unsuitable places (11). However, malignant tumor cells

evade anoikis, allowing them to migrate and proliferate in new sites

after shedding from the primary tumor. Anoikis is closely

associated with tumor progression and prognosis, making it a

potential target for anti-cancer therapies. Despite this, the role of

anoikis-related genes in the development of common malignant

tumors of the digestive tract in CRC remains unclear.

This study applies the CRC data from the TCGA database to

investigate the anoikis-related gene expression to stratify patients

and construct anoikis-related subtypes. Moreover, it explores the

regulatory mechanism and potential targeted therapies, providing

new insights into the molecular mechanism, clinical diagnosis, and

treatment of CRC.
2 Materials and methods

2.1 Acquisition and processing of training
dataset

In this study, data integration and extraction of CRC samples

were performed using the TCGA Target GTEX dataset available in

the UCSC Xena database (12). Survival information for CRC

samples was retrieved from the integrated data on cell literature

(13). Ultimately, 698 RNA-seq expression samples were prepared

for this research, including 51 normal intestinal tissues and 647

CRC samples, along with clinical information of 630 patients. The

clinical information statistics of patients (training set) are shown in

Supplementary Figure 4.
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2.2 Acquisition and processing of validation
queue data

GSE39582 (https://pubmed.ncbi.nlm.nih.gov/23700391/),

containing microarrays of CRC tissue samples to verify the

prediction model, was used in this study. These microarrays were

sourced from the GPL570 (Affymetrix Human Genome U133A

array) platform and initially analyzed using GEO2R. All data were

processed in R software (version R 4.1.2) the limma package (limma

3.26.8) and Biobase 2.30.0 (14). A log transformation was applied to

the original data, followed by a t-test. GEO2R was used to compare

the submitter-supplied data, with fold-change significance set at P <

0.05 and a threshold of >2.0 or < –2.0. If duplicate genes were

encountered, the median expression value was taken as the final

expression amount. During data processing, the no-load probe was

first deleted. Probs corresponding to multiple genes were also

deleted. The median expression value was taken as the expression

value of the gene for multiple probes mapping to the same gene.
2.3 Acquisition and processing of anoikis-
related genes

The anoikis-related gene list was downloaded from the MSigDB

database (https://www.gsea-msigdb.org/gsea/msigdb/) on the file

“msigdb.v7.4.symbols.gmt” by searching for the term “anoikis”

under Gene Ontology Biological Process (GOBP)-related pathway

genes. After removing the duplication genes, 34 genes were included

in the analysis.

The HALLMARK pathway gene set (msigdb.v7.4.symbols.gmt)

was also downloaded from the MSigDB database. Genes with a

degree of >2 (connectivity between a single gene and other genes)

were selected for subsequent cluster analysis. A total of 21 genes

were identified: AKT1, SRC, MTOR, NOTCH1, MCL1, PIK3CA,

PTK2, ITGB1, TSC2, STK11, CAV1, SNAI2, ITGA5, CHEK2, E2F1,

IKBKG, NTRK2, BCL2, CEACAM6, PTRH2, and TLE1.

MuTect1 software with default parameter values and

IndelGenotyper (https://software.broadinstitute.org/gatk/) was

applied for variant calling (15). Each tumor sample was paired

with a corresponding paracancerous tissue to filter out any

variations common to both the tumor and the normal sample.

Unsupervised clustering analysis was performed to cluster

patients into different molecular subtypes by R package

“ConsensusClusterPlus” according to the anoikis-related genes

expression. The following criteria were applied during clustering:

(1) increased intra-group correlation with decreased inter-group

correlation following clustering; (2) no cluster with a small sample

size, and (3) a gradual and smooth increase in the cumulative

distribution function (CDF) curve. Gene set variation analysis

(GSVA) used the hallmark gene set (c2.cp.kegg.v7.2) derived from

the MSigDB database to explore differences in biological processes

related to anoikis genes among clusters.
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2.4 Model building

The up-regulated genes were treated as clusters’ markers. After

identifying the clustering subtypes, limma v3.26.8 was applied to

perform differential gene expression analysis among the subtypes,

with a threshold FDR < 0.05 and |log2FC| > 2 to identify

differentially expressed genes. In total, 477 identified genes were

selected for subsequent analysis; 2 genes were in cluster 1 and the

rest 475 genes were in cluster 2. These genes were further analyzed

using univariate Cox regression analysis with a significance

threshold of P < 0.01. As a result, 47 genes were identified as

significant prognostic factors; their up-regulation was associated

with poorer outcomes.

Next, the least absolute shrinkage and selection operator (Lasso)

regression algorithm was applied to identify the genes significantly

associated with the prognostic factors through the “glmnet” package

in R. This analysis yielded three signature genes, which were used to

construct a prognostic model. The model’s formula was as follows:

Risk Score =o
n

i=1
Expressioni � Coefficienti  

where Expressioni     presents the amount of expression of each

gene, and Coefficienti means the weight coefficient of each gene.

Survival analysis was conducted using the “surveyors” package

in R to assess the prognostic difference between the high and low-

score groups, which was categorized by the median score value.

Principal component analysis (PCA) was performed to visualize the

transcriptome profiling differences between the groups.
2.5 Functional enrichment analysis

The Cytoscape (v3.9.1) software was employed to draw the

Protein–Protein Interaction (PPI) network of anoikis-related genes.

R package “clusterProfiler” (16) was employed to perform gene

oncology (GO) enrichment analysis with a significance threshold of

P-value < 0.05. CRC patients were classified into various clusters to

explore the functional roles of CRC-related genes by

“ConsensusClusterPlus” package in R with 80% resampling rate

Pearson correlation and 50 iterations. Additionally, PCA was

applied to analyze gene-expression profiles in both the high- and

low-score CRC groups.
2.6 Sample collection and processing

Tumor and paired adjacent tissues from the patients (n = 26)

were obtained from ZIBO CENTRAL HOSPITAL (Zibo, Shandong,

China). None of the donors had taken any drugs or hormones prior

to surgery. The ethics review committee of the ZIBO CENTRAL

HOSPITAL was informed of the process and due approval

was obtained.
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All tissue samples were collected from the discarded tissues in

surgery. After collection, the samples were quickly frozen in liquid

nitrogen and stored at −80°C freezers. RNA was extracted from the

snap-frozen samples by placing them in precooled TRIzol reagent

(Thermo Fisher Scientific, Waltham, MA, USA), followed by

chloroform extraction and isopropanol precipitation. Then, the

extracted RNA was quantified with a spectrophotometer. The

proteins were extracted using the ProteoExtract Native Protein

Extract ion Kit (Thermo Fisher Scient ific , Wal tham,

Massachusetts, USA), according to the manufacturer ’s

instructions, and the extracted protein concentrations were

measured using the Quick Start Bradford protein assay.
2.7 Verification of the expression of target
genes

Protein preparation, Western blotting, RNA isolation, and qRT-

PCR were performed as previously described (17). The following

primers were used for RT-PCR: LEP, sense 5′-GCCCAGCAACATT
AT CCAGT-3′ and anti-sense 5′-AGCCCTTTCTCAAAGGCTTC-
3′; HAMP, sense 5′-CACAACAGAC GGGACAACTT-3′ and anti-

sense 5′-CGCAGCAGAAAATGC AGATG-3′; and FAM43B, sense

5′-AGGGTAAGGGGAGGGGATA A-3′ and anti-sense 5′-
CCTAAAAATACC CAA TACCAAACA-3′.

The rabbit monoclonal anti-Leptin (LEP) antibody (ab16227),

rabbit monoclonal anti-Hepcidin-25 antibody (HAMP)

(ab238974), and rabbit monoclonal anti-FAM43B antibody

(ab121299) were purchased from Abcam (Cambridge, UK). The

mouse anti-rabbit IgG-horseradish peroxidase (HRP)-conjugated

secondary antibody (1:5000 in TBST) was purchased from Soleibao

(Beijing, China). The specific detailed steps are provided in the

Supplementary Material.
2.8 Single sample gene set enrichment
analysis

Single sample gene set enrichment analysis (ssGSEA) was used

to calculate the normalized enrichment score (NES) score in each

channel of each sample in the HALLMARK gene set, implemented

in the GSVA R package (18–20). The enrichment analysis of

differentially up-regulated genes among the subtypes was

completed by the clusterProfiler R package, with significance

thresholds set to pvalueCuttoff=0.05, pAdjustMethod=“BH”.
2.9 Immune infiltration analysis

The ESTIMATE algorithm was applied to calculate the stromal

score, immune score, and ESTIMATE score (21). Immune cell

infiltration, comprising 22 infiltrating immune cell types, was

assessed using the CIBERSORT algorithm (parameter settings:

perm=200, arrays=FALSE; other parameters were set by default),

which was integrated into the IOBR R package (version 3.6.5) (22).
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2.10 Prediction of the potential
chemotherapeutic agents and
immunotherapy cohort

We downloaded the gene-expression profiles and the

corresponding drug response data from the Genomics of Drug

Sensitivity in Cancer 2 (GDSC2) database using oncoPredict

package in R (23). Sensitivity scores were then generated using

oncoPredict package to predict the half-maximal inhibitory

concentration (IC50) of all drugs in CRC patients. Data were

downloaded from The IMvigor210 using the IOBR package (24,

25), including tumor mutation burden, therapeutic responses, gene-

expression profiles, survival data, and neoantigen information.
2.11 Statistical analysis and other details

R software version 4.1.2 was used for the statistical analysis. Data

integration and mapping were performed using the tidyverse package

(26). The Kaplan–Meier curves were employed to assess the

differences in the overall survival (OS) between the high- and low-

score CRC patient groups, with the log-rank tests for significance test.

To compare continuous and ordered categorical variables, we applied

the Wilcoxon test and the Kruskal–Wallis test. The assessed variables

include score distribution differences between clinical features,

differences in the HALLMARK NES scores between the clusters,

and immune cell infiltration proportions between different sub-rents.

The Fisher exact test was used to compare unordered categorical

variables, such as the distribution of immunotherapy patients among

different scoring groups. Heat maps were generated using the

ComplexHeatmap R package, while gene correlation maps were

visualized with the corrplot R package (27, 28). The single or

multifactor forest map was drawn by using the forestmodel

R package (29). P <.05 were considered statistically significant

for all analyses. Statistical test marks: *P <.05, **P <.01, ***P <.001,

***P <.0001. NS: not significant.
3 Results

3.1 Landscape of anoikis-related gene
changes

In the training set samples, we compared the 21 anoikis-related

gene expression between CRC patients and normal adjacent cancers

and found that the expression levels of CEACAM6, CHEK2, E2F1,

IKBKG, NOTCH1, PTK2, PTRH2, SRC, STK11, and TSC2 were

higher in cancerous tissues than they were in normal adjacent tissues

(Figure 1A). Besides, we compared the anoikis-related gene

expression across CRC patients with varying clinical characteristics

and found that the MCL1 expression was higher in the older age

group. CAV1, CHEK2, IKBKG, ITGA5, ITGB1, PTK2, SNAI2 were

higher, while PTRH2 was lower in the invasion-existing group than

they were in the invasion-absent group. TLE1 was higher in the group

with the primary lymph node compared to the group without it.
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BCL2 and CHEK2 were lower and IKBKG, ITGA5, NTRk2, PTK2,

SRC, and TSC2 were higher in grade III/IV comparing to grade I/II.

IKBKG was higher in the group with the Venous-Under the

condition of invasion than that without it (Supplementary Figure 1).

A summary analysis of somatic mutation incidence within these 21

anoikis-related genes in the TCGA-COADREAD queue showed that

14 of these genes exhibited relatively high mutation frequency. Among

the 321 samples in the TCGA-COADREAD queue, 124 (38.63%)

showed mutations in the anoikis-related genes, with PIK3CA showing

high mutation frequency, while other genes displayed lower mutation

rates (Figure 1B). The chromosomal location distribution of these

anoikis-related genes is presented in Supplementary Figure 2 and the

corresponding volcano map is shown in Supplementary Figure 3.
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3.2 Regulation patterns of different anoikis-
related genes in tumors

To explore the interactions among these anoikis-related genes,

we constructed a PPI network from the String database, with

isolated nodes removed. The analysis revealed that AK1 and

PIK3CA were closely related to other genes (Figure 2A). SRC and

TSC2, MCL1, and CAV1 showed significant correlation based on

their expression (Figure 2B). GO enrichment analysis results

showed that these genes are significantly enriched in pathways

related to anoikis, focal induction, and protein heterodimerization

activity, which further confirmed that the screened genes were

anoikis-related genes (Supplementary Figure 4).
FIGURE 1

Landscape of gene expression differences and mutations in anoikis-related genes. (A) Box plot comparing the expression levels of anoikis-related
genes between normal adjacent tissues (blue) and cancerous tissues (red) in CRC patients. **P <.01, ***P <.001, ****P <.0001. NS, not significant;
(B) Summary of somatic mutations in anoikis-related genes in CRC patients from the TCGA-COADREAD cohort (321 patients).
frontiersin.org

https://doi.org/10.3389/fonc.2025.1579843
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Shen et al. 10.3389/fonc.2025.1579843
We performed cluster analysis on CRC samples in the training set

queue on the expression of these anoikis-related genes. The optimal

number of clusters was determined to be k = 2, as indicated by the

CDF decline curve and the cluster sample distribution heat map

(Figures 3A, B). The cluster1 subtype demonstrated a significantly

better OS outcome (HR = 0.68, log-rank P <.05, Figure 3C). The

expression of anoikis-related genes in cluster 1 and cluster 2

subgroups were compared using the principal component analysis

(PCA). The results suggested that there were significant differences

between cluster 2 and cluster 1 (Figure 3D). Next, we characterized

the anoikis-related gene expression between the subtypes and verified

the statistical significance using the Kruskal–Wallis rank-sum test,

revealing significant differences in gene expression (Figure 3E,

marked with an asterisk). Positively correlated genes displayed

similar expression patterns, whereas negatively correlated genes

exhibited inverse expression trends. Figure 3F shows the expression

heat map and the clinical characteristics heat map of each

cuproptosis-related subgroup of patients. These results indicate that

the two clusters were closely related to CRC.
3.3 Immunoregulatory mechanism of
different molecular subtypes of anoikis-
related genes

After determining the relevant subtypes of CRC by using anoikis-

related genes, we employed the CIBERSORT algorithm to compare

immune cell infiltration between Clusters 1 and 2 (Figure 4A). The

proportion of plasma cells and other immune cells was significantly

lower in Cluster 2 than in it was Cluster 1 (P = 0.0003). At the same

time, we further calculated differences in the immune scores,

ESTIMATE scores, and matrix scores of the clusters using the
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ESTIMATE algorithm. Cluster 2 exhibited significantly lower

tumor purity scores compared to that in Cluster 1 (Figure 4B).

Moreover, we utilized the HALLMARK pathway data from the

MSigDB database to calculate the enrichment scores (ssGSEA scores)

of different CRC subtypes by using the GSVApackage. The

significance between the groups was determined by the rank sum

test. Cluster 1 was observed to be positively correlated with most

cancer super-pathways (rank-sum test, P = 0.00005). Specifically,

oncogenic pathways such as DNA repair (rank-sum test, P =

0.00006), MYC targets V1 (rank-sum test, P = 0.00004), and MYC

targets V2 (rank-sum test, P = 0.00002) showed a strong correlation

with Cluster 1. Conversely, several pathways such as HEME

metabolism (rank-sum test, P = 0.00007), ANDROGEN response

(rank-sum test, P = 0.00003), and HYPOXIA pathways (rank-sum

test, P = 0.00002) were negatively correlated with Cluster 1.

In contrast, Cluster 2 was positively correlated with most

immune response super-pathways (rank-sum test, P = 0.00006).

Among these pathways, immune pathways such as IL6, JAK, and

STAT3 signaling (rank-sum test, P = 0.00003); IL2, STAT5

signaling (rank-sum test, P = 0.00008); and interferon-gamma

response (rank-sum test, P = 0.00006) showed a strong

correlation with Cluster 2. Pathways negatively correlated with

Cluster 2 included bile acid metabolism, spermatogenesis, and

MYC targets V1, as shown in Figure 4C.
3.4 Analysis of the regulation model of
different molecular subtypes of anoikis-
related genes

After exploring differences in the immune mechanisms among the

subgroups, we further analyzed the differentially expressed genes
FIGURE 2

Regulation patterns of different anoikis-related genes in tumors. (A) PPI network of anoikis-related genes, with genes marked in purple included in
the clustering analysis. (B) Spearman correlation matrix of anoikis-related gene expression in CRC. Statistical test marks: *P <.05, **P <.01,
***P <.001, ***P <.0001. NS, not significant.
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among subtypes. A total of 477 significantly differential genes expressed

among subtypes were selected for KEGG and GO enrichment analyses

(Figure 5). KEGG pathway enrichment revealed that these genes were

significantly enriched in ECM–receiver interactions, neuroactive light–
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receiver interactions, and other pathways. While GO enrichment

showed that these genes were associated with external encapsulating

structure organization, extracellular structure organization, extracellular

matrix organization, extracellular matrix structural constituent,
FIGURE 3

Cluster results of anoikis genes in CRC. (A) Thermal graph of sample classification based on cluster analysis. (B) Consensus clustering CDF curves for
k values from 1 to 9. (C) Kaplan-Meier curves showing the outcome difference among patients with different subtypes. (D) Principal component
analysis of the expression of anoikis-related genes in the Target GTEX dataset. (E) Box plot comparing the expression levels of anoikis-related genes
between different cuproptosis subtypes. (F) Heatmap illustrating the differential expression of anoikis-related genes in different subtypes and clinical
characteristics of patients. *P<.05, ****P<.001, ***P<.0001. NS, not significant.
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FIGURE 4

Immunoregulatory mechanism of different molecular subtypes of anoikis-related genes. (A) Box plot comparing the scores of different cellular
immune infiltration proportions between Cluster 1 (blue) and Cluster 2 (red) using the CIBERSORT algorithm. (B) Box plots illustrating the
comparison of ESTIMATE scores, immune scores and stromal scores between Cluster 1 (blue) and Cluster 2 (red) using the ESTIMATE algorithm.
(C) Heatmap of hallmark pathway enrichment scores (ssGSEA scores) across CRC subtypes calculated by the GSVA R package. Statistical test marks:
*P <.05, **P <.01, ***P <.001, ***P <.0001, ****P<.0001. NS, not significant.
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https://doi.org/10.3389/fonc.2025.1579843
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Shen et al. 10.3389/fonc.2025.1579843
collagen-containing extracellular matrix, glycosaminoglycan binding,

heparin-binding, collagen trimer, and so on.
3.5 Construction of anoikis-related gene
scoring system

Among the selected 477 differentially expressed genes, we used

the up-regulated genes across subtypes to conduct univariate Cox

regression analysis and screened with threshold P < 0.01. This

yielded 47 genes that might be significant prognostic factors, and a

forest plot was generated to show the top 20 genes with the lowest

P-value (Figure 6A). The high- and low-expression groups were

determined with the median expression value as the threshold. The

top eight genes with the most significant P-values were selected to

generate the Kaplan–Meier plots (Figures 6B–I).

Thereafter, we performed Lasso regression on the 47 significant

prognostic factors and identified three signature genes (LEP,

HAMP, and FAM43B) to establish a prognosis model (Figure 7).

The score of each patient was calculated based on the gene

expression in the tissue by using the above model formula. The

patients were then placed in high- or low-score groups based on the

median score. The survival analysis revealed that patients with

higher scores had significantly lower OS compared to those with

low scores (Figure 8). To validate the model, we calculated the
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scores of each sample using the GSE39582 dataset and divided the

TCGA-COADREAD sample into high- and low-score groups based

on the median score. Similar to the results obtained for the TCGA

queue, patients with high scores in the GSE39582 dataset have

worse outcomes compared to those with low scores (Figure 9).

Following the successful construction and validation of the

prognostic model, we performed univariate and multivariate Cox

regression analyses to evaluate whether the score was an

independent prognostic factor of OS. Multivariate Cox analysis

confirmed that the score remained an independent OS predictor

after adjusting for other confounding factors (Figures 10A, B) on

the TCGA–COADREAD sample. The GSE39582 dataset also

confirmed the score as an independent OS prognostic factor in

both multivariate and multivariate Cox analyses (Figures 10C, D).
3.6 Verification of signature gene-
expression results

We validated the three signature genes at both the mRNA and

protein levels. The results showed that the mRNA and protein levels

of LEP, HAMP, and FAM43B in CRC were higher than those in the

control group, consistent with the Gene Chip data. All samples from

the same experimental set and those from gels/blots were processed

simultaneously (Figure 11).
FIGURE 5

Results of GO and KEGG enrichment analysis of anoikis-related genes of CRC: (A) KEGG enrichment analysis; (B) GO biological process;
(C) molecular function; and (D) cellular component.
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3.7 Risk scoring of different clinical features

An analysis of the risk score for different clinical features of

patients with TCGA–COADREAD. The results demonstrated

significant differences in score distribution when stratified by

cancer stages and lymph invasion status (Figure 12).
3.8 Molecular mechanism analysis of
prognosis differences in different score
groups

After the validation of the prognostic model, we re-classified the

patients into two groups based on the median prognostic model
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score. We also used the ESTIMATE algorithm to assess the immune

score and matrix score differences between the two patient groups.

As shown in Figures 13A, B, patients with high immune scores were

significantly greater than those with low immune scores. The

correlation between the immune score and the prognostic model

score, the ESTIMATE score, and the prognostic score is shown in

Figures 13C, D.

The CIBERSORT algorithm was employed again to calculate the

infiltration immune cell infiltration proportion for each patient and to

compare differences in the tumor microenvironment (TME) between

high- and low-prognostic model score groups. The infiltration degree

of immune cells, particularly macrophages M0, M1, and M2, was

higher in the high-prognostic model score group compared to that in

the low-prognostic model score group (Figure 13E).
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FIGURE 7

Lasso regression analysis for the identification of prognostic signature genes. (A) Lasso coefficient profiles of 47 selected genes. Each track
represents a gene, with the x-axis indicating the log value of lambda, the y-axis indicating the coefficient of the independent variable. (B) Tenfold
cross-validation for tuning the parameter selection in the Lasso model. The partial likelihood of deviance is plotted against log lambda. The red dots
show the mean deviance and the dotted vertical lines represent the confidence interval for each lambda. (C) Bar plot showing the regression
coefficient of the three signature genes selected by the Lasso regression model.
FIGURE 6

Identification and survival analysis of significant prognostic factors. (A) Forest plot of univariate Cox regression for the top 20 differentially expressed
genes, showing hazard ratios (HR) and 95% confidence intervals (CI). (B–I) Kaplan–Meier survival curves for the top eight genes (LEP, SPOCK1,
SFRP2, CPEB1, CCBE1, ASPN, P4HA3, and MGP) with the lowest P-values. Patients were divided into high-expression (red) and low-expression (blue)
groups according to the median expression threshold.
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Furthermore, we compared the immune scores in both high-

and low-prognostic model score groups in different HALLMARK

pathways. We found that the low-prognostic model score group was

positively correlated with many cancer super-pathways, including

MYC targets V2, PI3K AKT MTOR signaling, and DNA repair. A

few pathways were negatively correlated with the low-prognostic

score group, such as TGF b signaling, NOTCH signaling, and IL6-

JAK-STAT3 signaling.

In contrast, the high-prognostic model score group was

positively correlated with immune response super-pathways, such

as complement, IL2 STAT5 signaling, and angiogenesis. A few

pathways are negatively correlated with the high-score group, such

as oxidative phosphorylation, DNA repair, and MYC targets

V2 (Figure 13F).
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3.9 Potential treatment strategies of the
model

We calculated the sensitivity scores of the drugs using the

OncePredict package. The results revealed that Sapitinbi_1549,

Dihydrorotenone_1827, Ulixertinib_1908, Ulixertinib_2047,

SCH772984_ 1564, and VX-11e_2096 were the top six drugs with

positive correlations to the scores, while Doramapimod_1042,

SB216763_1025, AZD8055_1059, NU7441_1038, JQ_2172, and

BMS-754807_2171 were the top six drugs with negative correlations

(Figures 14A–D).

To further validate the clinical relevance of the scoring model, we

evaluated its predictive efficacy in an independent immunotherapy

cohort (phs000452.v2.p1). We used the same algorithm as the training
FIGURE 8

Prognostic analysis of the anokis-related gene score in TCGA CRC patients. (A) Kaplan–Meier survival curve for OC in high- and low-score groups.
(B) Time-dependent receiver operating characteristic (ROC) curve evaluating the predictive accuracy of the prognostic model for 3-year, 5-year, and
7-year survival rates. (C) Score distribution of each sample in the dataset (high-score patients in red and low-score patients in blue). (D) Scatter plot
showing the distribution of survival times in each sample in the dataset. Red dots indicate a decreased number of patients, while blue dots represent
survivors. (E) Heat map showing the gene expression levels of the three Lasso-selected signature genes in the high- and low-risk groups, with
corresponding risk scores.
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set to calculate the risk score for each patient. The patients were then

placed in high-score and low-score groups based on the surv-cutpoint

function. A comparison of the overall survival (OS) of the two groups

of patients through Kaplan–Meier survival analysis showed that

patients in the low-score group had a significantly better prognosis

than those in the high-score group (log rank P < 0.05), indicating that

in our scoring model, high-score patients had improved prognosis after

receiving immunotherapy. Patients insensitive to immunotherapy

generally had higher scores, as shown in Figures 14E–G.
4 Discussion

By utilizing the CRC data from the TCGA database, this study

identified the CRC subtypes of anoikis-related genes and developed
Frontiers in Oncology 12
a prognostic signature. The expression levels of CEACAM6,

CHEK2, E2F1, IKBKG, NOTCH1, PTK2, PTRH2, SRC, STK11,

and TSC2 in tumor tissues were significantly higher than those in

adjacent tissues. Several anoikis-related genes have been implicated

in tumor progression across malignancies, including CRC (30).

CEACAM6, a key member of the immunoglobulin superfamily and

a nonspecific cross-antigen, may play a synergistic role with various

proteins such as ITGB1 and CYR62 in promoting tumor growth,

proliferation, migration, and angiogenesis, contributing to CRC

occurrence and development (31–33). Studies have shown that

E2F1 can act both as a promoter of cell proliferation and an

inhibitor of apoptosis, playing a dual role in tumor progression.

High expression of E2F1 is correlated with the reduction of the

tumor volume, independent of tumor location and lymph node

metastasis (34). Notch 1 is overexpressed in CRC and identified as a
FIGURE 9

Prognostic analysis of the anokis-related gene score in GSE39582 CRC patients. (A) Kaplan–Meier survival curve for OC in high- and low-score
groups. (B) Time-dependent receiver operating characteristic (ROC) curve evaluating the predictive accuracy of the prognostic model for 3-year,
5-year, and 7-year survival rates. (C) Score distribution of each sample in the dataset (high-score patients in red and low-score patients in blue).
(D) Scatter plot showing the distribution of survival times in each sample in the dataset. Red dots indicate decreased patients, while blue dots
represent survivors. (E) Heat map showing the gene expression levels of the three Lasso-selected signature genes in the high- and low- risk groups,
with corresponding risk scores.
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potential carcinogen of CRC contributing to the occurrence and

development of the disease (35, 36). KEGG enrichment analysis of

these genes showed that these differential genes were significantly

enriched in ECM–receiver interactions, neuroactive light–receiver

interactions, and other similar pathways. Furthermore, we stratified

CRC patients based on the anoikis-related gene expression of nest-

loss apoptosis and constructed the relevant subtype identification.

We successfully constructed a prognostic model between the

subtypes and the laser Cox regression analysis and verified the

validity of our model in independent datasets. Patients were divided

into high- and low-score groups based on the median score. The

prognosis of patients in the high-score group was significantly

poorer than those in the low-score group. These results indicate

that the anoikis-related gene plays an important role in the

pathogenesis of CRC and has a significant impact on the

prognosis of CRC patients.

Tumor-infiltrating immune cells are important components of

tumor tissues and play a major role in tumor initiation and
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progression. These immune cells reveal the heterogeneity types

and diversity of the tumor and provide prognostic information for

cancer patients (37). Among these, macrophages, originating from

the bone marrow stem cells and differentiating under the effect of

various stimulators, participate in both the innate immunity and

specific immunity of the body and play an important role in the

elimination of pathogenic microorganisms and tissue repair in the

body (38). The CRC tumor-associated macrophages (TAM) are

abundant and contribute to immunosuppression, tumor cell

proliferation, angiogenesis, tumor progression, metastasis, and

resistance to therapy. Both antitumor M1 macrophages and

tumor-promoting M2 macrophages coexist in the TME and their

interactions directly influence CRC progression and clinical

treatment strategies (39). M2 macrophages produce growth-

promoting factors that stimulate tumor growth in a way that

promotes healing as well. However, it should be noted that the

transition of M2 macrophages to M1 macrophages can decelerate

tumor progression (40). One of the mechanisms of immune escape
FIGURE 11

Validation of signature gene expression at mRNA and protein levels in CRC tissues compared to those in normal tissues. (A) RT-PCR results of the
mRNA expression levels of the three signature genes. (B) Western blot analysis of the protein levels of the three signature genes. (C) Quantification
of protein expression levels for these three signature genes. Data are presented as mean ± SD (n = 3). **P <.01.
FIGURE 10

Univariate and multivariate Cox regression analyses evaluating independent prognostic factors for OS. (A, B) Independent prognostic value of the
model’s score. (A) Univariate Cox analysis; (B) multivariate Cox analysis. (C, D) Independent prognostic value of the score of the validation set
GSE39582. (C) univariate Cox analysis; (D) multivariate Cox analysis.
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is that the tumor reprograms macrophage metabolism to prevent

M1 macrophage-mediated inflammatory reaction from increasing

the killing of tumor cells. Although the macrophages in the CRC

TME are not completely M1 and M2 type, M2 macrophages are

usually more prevalent and induce immunosuppression to promote

tumor growth (41). In this study, we obtained bulk RNA-seq and

microarray data of CRC and employed CIBERSORT algorithm to

compare the differences in immune cells between high- and low-

score groups. The results showed that the proportion of M0, M1,

and M2 macrophages in the high-score group was significantly

higher than that in the low-score group. In contrast, the proportions
Frontiers in Oncology 14
of CD4 memory-activated T cells, activated mast cells, and plasma

cells were lower in the high-score group than they were in the low-

score group, suggesting that macrophage infiltration plays a critical

role in CRC progression. These observations indicate that the

anoikis-related genes may affect the microenvironment of CRC by

regulating macrophages, leading to the occurrence of CRC.

Despite the rapid development of laparoscopic CRC radical

surgery, such as total mesorectal resection and total mesocolon

resection, the median survival rate of CRC patients is still low

because many CRC patients are diagnosed at advanced stages,

resulting in poor treatment outcomes. In recent years, however,
FIGURE 12

Differences in the scores of different clinical subgroups. (A) Comparison between risk score and stage grouping. (B) Comparison between risk score
and lymphatic invasion status.
FIGURE 13

Immune cell infiltration and pathway enrichment analysis in high- and low-score groups. (A, B) Box plots comparing the (A) immune scores and
(B) ESTIMATE scores between high- and low-score groups. (C) correlation between immune score and model score. (D) correlation between
ESTIMATE score and model score. (E) Box plots showing the proportion of immune cell infiltration for different cell types between high-score (red)
and low-score (blue) groups. (F) Heatmap of HALLMARK pathway enrichment scores between different model groups. *P<.05, **P<.01, ***P<.001,
****P<.0001. NS, not significant.
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the development of oncology, immunology, molecular biology, and

other related disciplines has led to the emergence of

immunotherapy as an important treatment method for CRC.

Immunotherapy can eliminate tumors by inhibiting negative

immune regulators, activating the immune system, and enhancing

the recognition and killing of immune cells to tumors. In the

immunotherapy cohort, the prognosis of patients with high scores

significantly improved, suggesting that the model can provide a

reference for possible subsequent immunotherapy. We predicted

drug sensitivity using the GDSC2 database and found that

Sapitinib_1549, Dihydrorotenone_1827, Doramapimod_1042,

SB216763_1025, and other drugs can be used for high-sensitivity

CRC treatment, offering potential theoretical options and potential

therapeutic targets for the clinical drug treatment of CRC in

the future.

Our study successfully constructed a prognostic model by using

differential genes between the subtypes. The genes were placed in

independent datasets using the Lasso Cox analysis method and the

patients were divided into high- and low-score groups based on

their median score. The prognosis of patients with a high score was

significantly worse than those in the low-score group. In addition,
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we observed s ign ificant d i ff e rence s in the immune

microenvironment infiltration between the two groups of patients

and found that the high-score group had a higher infiltration of

macrophages M0, M1, and M2 than that in the low-score group. In

contrast, in the immunotherapy cohort, the prognosis of patients

with high scores, as judged by the model, was significantly better

than that of the patients with low scores, suggesting the possibility

of developing a possible immunotherapy. Additionally, drug

sensitivity can be predicted using the GDSC2 database. This study

also identified anoikis-related gene subtypes and developed a

prognostic signature in CRC, laying a foundation for further

investigations of the molecular mechanism, clinical diagnosis, and

treatment of CRC.

However, our study still has some limitations. We used

algorithm analyses to predict the molecular subtypes and

prognostic models of anoikis-related genes in CRC in the public

database. However, we did not verify it in our patient cohort. Future

work will aim to collect more specimens for multi-omics analysis to

validate our findings. In addition, the relevant molecular

mechanisms were not experimentally verified in this study.

Therefore, future research experiments should investigate and
FIGURE 14

Drug sensitivity and immunology response analysis based on the model scores. (A) Bubble plot showing the top six drugs positively correlated with
high-score groups, indicating higher resistance. (B) Box plots comparing log(IC50) between high-score (red) and low-score (blue) groups for the top
six drugs correlated with the score. (C) Bubble plot showing the top six drugs negatively correlated with high-score groups, indicating higher
sensitivity. (D) Box plot comparing log(IC50) between high-score (red) and low-score (blue) groups for the top six drugs correlated with the score.
(E) Kaplan–Meier survival curve for immunotherapy patients in the IMvigor210 cohort, with high-score (red) and low-score (blue) groups. (F, G) Box
plot comparing model scores between patients with complete/partial response (CR/PR) and stable/progressive disease in the IMvigor210 cohort.
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validate the regulatory mechanism underlying cell-cell

communication through ligand–receptor interactions that

contribute to CRC pathogenesis using functional experiments and

appropriate animal models.
5 Conclusions

This study has significance for the exploration of the molecular

subtypes and prognostic models of anoikis-related genes in CRC.

Our findings enhance the understanding of the molecular

mechanisms underlying CRC initiation and progression.

Moreover, this study offers a unique approach to the discovery of

predictive biomarkers and the selection of targeted therapy for CRC

treatment. We believe that the prognostic model discussed in our

study demonstrates strong stability and generalizability.
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