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Background: Microsatellite instability (MSI) is a crucial molecular phenotype in

colorectal cancer (CRC), which aids in determining treatment strategies and

predicting prognosis. However, existing prediction methods have limitations and

are not universally applicable to all patient populations. Consequently, we

proposed a hybrid prediction model that integrates pathological and clinical

features to predict MSI.

Materials and methods: This study encompassed two patient cohorts: The

Cancer Genome Atlas cohort (TCGA set, n = 559), which was divided into

training and internal validation subsets at a ratio of 7:3, and the Dongyang CRC

cohort (Dongyang set, n = 123), serving as an external testing cohort. Two deep

learning approaches—semi-supervised and fully-supervised—were employed to

extract features from pathological images. Subsequently, the pathomic

signatures derived from these approaches were integrated with clinical

features to develop a hybrid model. The hybrid model was assessed using an

external validation cohort to determine the area under the curve (AUC).

Furthermore, to investigate genes associated with MSI, we performed

enrichment analysis and constructed a protein-protein interaction (PPI)

network using mRNA sequencing data obtained from the TCGA database.

Results: The fully-supervised pathological model demonstrated promising

performance, achieving an AUC of 0.928 in the internal validation cohort,

compared to the semi-supervised pathological model’s AUC of 0.786. In the

external testing cohort, the model attained an AUC of 0.811. Subsequently, a

hybrid model was established, which achieved an AUC of 0.949 in the validation

cohort and a robust AUC of 0.862 in the test cohort. Additionally, a nomogram

was developed to enhance its clinical applicability. Gene Ontology (GO) analysis

identified differentially expressed genes (DEGs) related to MSI status, which were

enriched in humoral immune response, among other pathways. Kyoto

Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment
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Analysis (GSEA) revealed enrichment in pathways such as rheumatoid arthritis. A

PPI network identified key hub genes, including IFNG and CD8A.

Conclusion: The fully-supervised model consistently outperformed the semi-

supervised model in predicting MSI. Furthermore, the hybrid model, which

combines pathological and clinical features, demonstrated strong

predictive ability.
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Introduction

CRC is the third most prevalent cancer worldwide and the

second leading cause of cancer-related deaths (1, 2), with over 1.9

million new cases and one million deaths reported in 2020 (3).

Microsatellites are short, repetitive DNA sequences, one to four

base pairs in length, found throughout the genome. Their repetitive

nature makes them prone to replication errors, which are typically

corrected by mismatch repair (MMR) systems (4, 5). Mutations,

deletions, or methylations affecting the MMR gene lead to the loss

or impairment of its function, resulting in deficient mismatch

repair (dMMR), a critical mechanism underlying MSI (6). MSI is

a distinct mechanism that contributes to tumorigenesis in 10% of

CRC cases and is a hallmark of hereditary Lynch syndrome-

associated cancers (7). Identifying MSI is crucial for CRC

management, as it significantly affects diagnosis, prognosis, and

treatment planning (8). Patients with microsatellite instability-high

(MSI-H) are a favorable group that can benefit substantially from

immunotherapy for solid tumors (9). This highlights the critical

role of MSI in advanced solid tumors.

Several diagnostic methods are commonly used to detect deficient

dMMR or MSI in clinical settings, including immunohistochemistry

(IHC) to identifyMMR protein deficiencies andmolecular tests such as

polymerase chain reaction (PCR) or next-generation sequencing

(NGS) (10). IHC testing requires optimal experimental conditions

and skilled pathologists, along with access to tumor tissues (four

proteins need to be tested), which can sometimes be insufficient.

PCR or NGS testing requires specialized infrastructure that may not

be universally available in hospitals, often leading to longer turnaround

times or higher costs (11). Given these challenges, MSI testing is not

universally applicable across all patient populations. Therefore,

developing a universally accessible MSI testing method is imperative.

In routine clinical workflows, the diagnosis of CRC typically

involves the histopathological evaluation of hematoxylin and eosin

(H&E)-stained tissue slides, which can now be digitized into whole-

slide images (WSIs) (12–14). WSIs offer comprehensive insights

into the spatial organization of tumors, enabling examination at

both low and high magnifications (9). Recent technological

advancements, particularly in deep learning (DL), have
02
revolutionized medical applications. DL-based algorithms are

increasingly utilized in pathomics to enhance the accuracy and

efficiency of disease diagnosis and prediction. These include tasks

such as tumor diagnosis, subtyping, grading, staging, prognosis

prediction, identification of pathological features, biomarkers, and

genetic changes (15, 16). The integration of artificial intelligence

(AI) with WSI analysis holds promise for improving diagnostic

capabilities in CRC and other cancers, potentially overcoming some

of the limitations associated with traditional testing methods such

as IHC, PCR, and NGS.

Although DL prediction of MSI has been extensively studied (9,

10, 17), previous research has primarily focused on predicting MSI

using only pathological images, neglecting the integration of clinical

patient characteristics. To address this, a hybrid prediction model

that combines pathology slide data with clinical data was developed

for predicting MSI in CRC. Both fully-supervised and semi-

supervised learning methodologies were employed in DL

pathological analysis. This comparative study evaluated the

predictive advantages of both approaches, thereby enhancing the

accuracy and robustness of the model and offering a scalable

solution for predicting MSI status. The workflow of this study is

illustrated in Figure 1.
Materials and methods

Patient cohort

For this study, WSIs from two large cohorts were collected, and

each WSI was assigned an MSI label based on the MSI status of the

patient. The first cohort (TCGA set, n = 559), was downloaded from

the TCGA database (https://portal.gdc.cancer.gov/). Some samples

were excluded from the analysis due to the absence of critical

clinical data or incompleteness. Pathological images and clinical

features, including gender, age, tumor site, histological grade,

histological type, TNM stage, and vascular invasion, were also

downloaded from the TCGA database and organized using

loading packages such as string, maftools, and XML in R

language software. The MSI status was determined based on the
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https://portal.gdc.cancer.gov/
https://doi.org/10.3389/fonc.2025.1580195
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wei et al. 10.3389/fonc.2025.1580195
results from NGS analysis, as reported in the original research

articles (18, 19). In this cohort, 483 and 76 cases were labeled as

MSI-L/MSS (microsatellite instability-low/microsatellite stable) and

MSI-H, respectively. The second cohort (Dongyang set), collected

from Dongyang Hospital Affiliated to Wenzhou Medical

University, comprised 123 formalin-fixed paraffin-embedded

sections from patients diagnosed with CRC across all stages

(between October 2021 and June 2023). H&E-stained images

were digitized with PANNOROMIC MIDI II scanners
Frontiers in Oncology 03
(3DHISTECH, Hungary) using a 20× objective and saved as

mrxs. format files. Through genetic testing of postoperative

paraffin specimens, 105 and 18 cases were identified as MSI-L/

MSS and MSI-H, respectively.

For model training, the TCGA dataset was divided into training

and internal validation subsets in a 7:3 ratio. The training subset

was used for hyperparameter tuning through cross-validation, while

the internal validation subset was employed to evaluate the

generalization performance. Additionally, an external testing
FIGURE 1

Workflow of the study for predicting MSI in CRC.
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dataset was incorporated to evaluate the generalizability of the

model. A flowchart outlining the cohorts used in this study is

shown in Figure 2.
Regions of interest delineation and image
preprocessing

WSIs were digitized at a 20 × magnification with a pixel

resolution of approximately 0.5 mm/pixel. A fully-supervised DL

approach involved manual annotation of cancer regions of interest

(ROIs) by experienced pathologists using Qupath v0.5.1, with

annotations subsequently reviewed for accuracy. In contrast,

semi-supervised DL does not require manual annotation.

To enhance computational efficiency, algorithms based on Python

were employed to automatically crop H&E-stainedWSIs, each typically

encompassing approximately 100,000 × 100,000 pixels, into smaller

512 × 512 pixel patches. Concurrently, patches with background areas

exceeding 80% white, as well as those containing blurry artifacts or pen

marks, were excluded from further analysis. All selected patches were

normalized using the Macenko method to standardize color variations

resulting from the staining procedures (20).
Frontiers in Oncology 04
After normalization, these patches were used as inputs for the DL

model. In cases where a slide produced more than 1,000 patches, a

random selection of 1,000 patches was utilized for subsequent

experiments to effectively manage computational resources.

Throughout all experiments, only patient-level labels were applied,

ensuring that all patches within the training sets inherited the labels

of their respective parent patients. This method maintained

consistency and integrity throughout the training process.
Patch-level prediction

Our DL framework employs a dual prediction strategy: patch-

level prediction and a multi-instance learning approach to integrate

features from the WSI. During the training phase, the patches were

assigned MSI labels based on the patient’s overall MSI status, which

functioned as the training labels.

Semi-supervised vs. fully-supervised: Two distinct patch

selection methodologies were analyzed: a semi-supervised approach

that utilizes the entire WSI and a supervised method that specifically

targets tumor regions. Although the modeling processes for both

methods are similar, the key difference lies in the selection of patches.
FIGURE 2

Flowchart of data collection and filtering for CRC patients from the two studies.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1580195
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wei et al. 10.3389/fonc.2025.1580195
Data augmentation: To harmonize the intensity distribution

across the RGB channels, Z-score normalization was applied to the

images, preparing the data for input into the model. During the

training phase, online data augmentation techniques, including

random cropping and horizontal and vertical flipping, were

employed. However, for testing patches, the processing was

limited to normalization only.

Model training: In this study, several renowned networks,

including ResNet18, ResNet50, and DenseNet121, were analyzed

to enhance the performance of traditional convolutional neural

network (CNN)-based models at the patch level. Comparative

evaluations were conducted on these models to identify the most

effective algorithm tailored to our specific objectives. The details of

the training process are outlined in Supplementary 1A.
Patient level prediction

Multi-Instance learning based feature fusion: Upon training

the DL model, the prediction phase began. During this phase, labels

and corresponding probabilities were assigned to all patches. These

patch probabilities were subsequently aggregated using a classifier

to extract features at the WSI level. Two unique methodologies were

developed to synthesize these patch probabilities, as detailed in

Supplementary 1B.
Fron
1. Patch likelihood histogram pipeline: This method employs

a histogram to illustrate the distribution of patch

likelihoods throughout a WSI. The histogram effectively

captures the entire spectrum of likelihoods, providing a

detailed depiction of the WSI.

2. Bag of words pipeline: By integrating histogram- and

vocabulary-based concepts, this method applies term

frequency-inverse document frequency (TF-IDF)

mapping to each patch. The resulting TF-IDF feature

vector encapsulates the characteristics of the WSI.
The two pipelines facilitate the effective integration of patch-

level predictions into comprehensive WSI-level features, making

them suitable for advanced analyses such as metastasis prediction

and survival analysis.

Feature selection: A total of 206 features were aggregated in this

study usingmulti-instance learning through two distinct processes, each

contributing 101 probability features and 2 predictive label features. To

refine this feature set, a correlation-based selection method was applied,

retaining only one feature from any pair with a Pearson’s correlation

coefficient exceeding 0.9. Consequently, our feature set was reduced to

two distinct features, which were subsequently used in the development

of two machine-learning algorithms: SVM and ExtraTrees.
Model building

Pathology model: Patch-level predictions, probability

histograms, and TF-IDF features were synthesized in this study to

construct detailed patient profiles. These comprehensive features
tiers in Oncology 05
served as the primary input for developing a specialized machine-

learning algorithm tailored for MSI.

Clinical model: Mirroring the pathology model, a machine

learning model for MSI analysis, which focuses on clinical

features, was used. The model generated predictions that were

particularly attuned to these clinical characteristics.

Combined model: To identify significant predictors, we

conducted both univariate and multivariate analyses on these

features. Features with a p-value of less than 0.05 from the

multivariate analysis were integrated into the pathology model,

resulting in a combined model. To enhance its clinical applicability

and improve its interpretability and usability in clinical settings, this

combined model was visualized using a nomogram.

Metrics: To evaluate the discriminative capabilities of all models

in classifying the three types of pathologies, both macro- and micro-

AUC metrics were used. These metrics provide a comprehensive

assessment of the effectiveness of the algorithmic models in

distinguishing between different pathology types.
Exploring biologic functions

The mRNA sequencing data (TCGA-COAD, n = 429) was

extracted from the TCGA database, and the MSI status of the

relevant patients was identified from the original research article

(18, 19). Differential analysis between MSS/MSI-L and MSI-H

groups was conducted using the “limma” package, with a preset

threshold of |log2FC| > 1 and a p-value < 0.05. The “clusterprofiler”

package was utilized for GO and KEGG enrichment analysis on

DEGs. Furthermore, GSEA on all genes was performed to visualize

the primary activation pathways of the three enrichment analyses.

To delve deeper into the molecular mechanisms, the PPI network of

DEGs was constructed using Cytoscape software, and the

CytohHubba plugin was employed to select the top 10 core

proteins based on their degree values within the PPI network.
Statistical analysis

The Shapiro–Wilk test was used to assess the normality of the

clinical feature distribution within these cohorts, followed by t-tests

or Chi-squared () tests, as appropriate, for a more in-depth analysis of

the clinical features. The analysis was conducted using Python

version 3.7.12, which incorporates a suite of specialized packages

including Pandas 1.2.4 for data manipulation, NumPy 1.20.2 for

numerical operations, PyTorch 1.8.0 for deep learning tasks, Onekey

3.1.3 for streamlined processing, OpenSlide 1.2.0 for handling whole

slide images, SciPy 1.7.3 for scientific computing, Scikit-learn 1.0.2 for

machine learning algorithms, and Slideflow 2.1.0 for pathology image

analysis. All tests were two-sided, and p < 0.05 indicated

statistical significance.

Results

To optimize the model’s hyperparameters, a 5-fold cross-

validation approach, in conjunction with the GridSearch
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algorithm, was applied to 70% of the dataset designated as the

training set. After identifying the optimal hyperparameters, the

entire training set was utilized to train the final model.
Clinical features

Univariable and multivariable analyses: To identify significant

clinical predictors of MSI, we conducted a univariate analysis on all

clinical features, calculating the odds ratio (OR) and associated p-value

for each feature. Features such as age, gender, tumor site, histological

grade, and type, as well as N, M, and TNM stage, were statistically

significant (p < 0.05). Consequently, gender, tumor site, histological

grade, and histological type were selected for inclusion in the combined

model through multivariable analysis. The baseline characteristics of

the patients in the two cohorts are presented in Table 1. Univariable

andmultivariable analyses of the clinical features for predictingMSI are

presented in Table 2. Univariable and multivariable analyses of the OR

for the clinical features are shown in Figure 3.
Patch level prediction

Patch level efficiency
Here, we illustrate the process using a fully supervised approach

as an example. During the validation phase, the ResNet18 model

demonstrated a moderate ability to differentiate between classes,

achieving an AUC of 0.763. Additionally, ResNet18 outperformed

all other models in the test cohort. Although its AUC was lower

during the training phase (AUC = 0.945), ResNet18 was selected for

further analysis due to its relative robustness and effectiveness in the

validation phase, outperforming both ResNet50 and DenseNet121.

The detailed performance metrics, including accuracy and AUC, are

summarized in Table 3.

A detailed description of the semi-supervised methods is listed

in Supplementary 1C.
Grad-CAM visualization

The Grad-CAM method allows for the generation of activation

maps without altering the existing model architecture or

necessitating additional training. As depicted in Figure 4, Grad-

CAM is utilized to visualize the activations within the final

convolutional layer, which is responsible for predicting the MSI.

By making this layer transparent, Grad-CAM emphasizes the areas

of the input image that are most significant in the model’s decision-

making process. This technique provides valuable insights into the

model’s reasoning behind its predictions, without requiring

complex changes to the architecture or retraining.
Patient level prediction

Our study incorporated data from 682 patients, each

characterized by binary outcomes (0 or 1), with the objective of
Frontiers in Oncology 06
predicting these outcomes using features aggregated through multi-

instance learning. A total of 206 features were compiled using this

approach. To streamline this feature set, we applied a correlation-

based selection technique, retaining only one feature from each pair

with a Pearson correlation coefficient exceeding 0.9. The refined

feature set was subsequently used in various machine-learning

models for further analysis. To effectively visualize these features,

we employed a t-distributed stochastic neighbor-embedding (t-

SNE) algorithm. The results of the visualization process are

depicted in Figure 5.

Metrics: Here, we similarly illustrate the process using a fully

supervised approach as an example. In the context of multi-instance

learning, the ExtraTrees model demonstrated superior performance

with an AUC of 0.928 in the validation cohort. This performance

notably exceeded that of the SVM model, which had an AUC of

0.876. Although both the ExtraTrees and SVM models experienced

a decline in their validation performance, the AUC remained

relatively higher for ExtraTrees than for SVM (0.811 vs. 0.789) in

the test cohort. The metrics for the training, validation, and test

cohorts for predicting MSI using the fully-supervised pathomics

model are presented in Table 4.

Information on semi-supervised methods is provided in

Supplementary 1D.

To further explain the pathological prediction model, we

conducted an analysis of feature importance in multi-instance

learning under both fully-supervised and semi-supervised

approaches, as depicted in Figure 6.
Signature comparison

In our analysis, the best-performing models were selected from

the validation cohort for both the clinical and pathological

frameworks. For the pathological model (fully-supervised),

ExtraTrees was selected due to its superior performance, whereas,

given its effectiveness, SVM was chosen for the pathological model

(semi-supervised) and the clinical model. Additional details of the

clinical model are provided in Supplementary 1E.

Furthermore, the combined model was included in this

comparison to evaluate its performance relative to the individual

clinical and pathological models. The “combined” model

demonstrated superior performance across different cohorts,

achieving the highest AUC of 0.996 in the training cohort and an

AUC of 0.949 in the validation cohort, indicating exceptional

predictive accuracy. Although there was a slight decrease in the

test cohort, the “combined”model still maintained a robust AUC of

0.862, significantly outperforming the standalone “Clinical,”

“PathSemi,” and “PathFull” models in the same setting (refer to

Table 5, Figure 7).

The “combined” model has proven to be a comprehensive and

reliable predictive tool. Its strong performance across training,

validation, and test cohorts highlights its robustness for clinical

use, offering greater generalizability and reliability than single-

source models due to the integration of diverse data sources and

learning strategies.
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TABLE 1 Baseline clinical characteristics of patients in the two cohorts.

Feature_name TCGA set (n=559) Dongyang set(n=123) Pvalue

Training
set(n=391)

Internal validation
set(n=168)

External testing
set(n=123)

age 66.94 ± 12.70 65.03 ± 13.08 63.24 ± 13.58 0.118

gender 0.279

male 212(54.22) 82(48.81) 66(53.66)

female 179(45.78) 86(51.19) 57(46.34)

tumor_site 0.016

right 187(47.83) 61(36.31) 60(48.78)

left 204(52.17) 107(63.69) 63(51.22)

histological_grade 0.546

G1 19(4.86) 5(2.98) 4(3.25)

G2 281(71.87) 126(75.00) 89(72.36)

G3 91(23.27) 37(22.02) 30(24.39)

histological_type 0.044

adenocarcinoma 321(82.10) 150(89.29) 101(82.11)

special
type adenocarcinoma

70(17.90) 18(10.71) 22(17.89)

T 0.241

1 14(3.58) 5(2.98) 1(0.81)

2 68(17.39) 23(13.69) 5(4.07)

3 270(69.05) 114(67.86) 38(30.89)

4 39(9.97) 26(15.48) 79(64.23)

N 0.177

0 231(59.08) 85(50.60) 65(52.85)

1 91(23.27) 48(28.57) 28(22.76)

2 69(17.65) 35(20.83) 30(24.39)

M 0.687

0 335(85.68) 141(83.93) 107(86.99)

1 56(14.32) 27(16.07) 16(13.01)

stage 0.243

I 74(18.93) 23(13.69) 4(3.25)

II 150(38.36) 59(35.12) 61(49.59)

III 111(28.39) 59(35.12) 42(34.15)

IV 56(14.32) 27(16.07) 16(13.01)

vascular_invasion 1

no 311(79.54) 133(79.17) 90(73.17)

yes 80(20.46) 35(20.83) 33(26.83)
F
rontiers in Oncology
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TABLE 2 Univariate and multivariate analyses of clinical features for MSI prediction.

Feature name

Univariable Analysis Multivariable Analysis

OR OR lower
95%CI

OR upper
95%CI

p_value OR OR lower
95%CI

OR upper
95%CI

p_value

age 1.003 1.001 1.005 <0.05* 1.001 0.999 1.003 0.401

gender 1.099 1.034 1.169 <0.05* 1.090 1.033 1.151 <0.05*

tumor_site 0.751 0.710 0.795 <0.05* 0.782 0.740 0.827 <0.05*

histological_grade 1.185 1.115 1.259 <0.05* 1.134 1.070 1.201 <0.05*

histological_type 1.270 1.175 1.372 <0.05* 1.146 1.065 1.234 <0.05*

T 0.995 0.947 1.045 0.859

N 0.930 0.894 0.968 <0.05* 0.943 0.891 0.997 0.083

M 0.882 0.808 0.963 <0.05* 1.027 0.918 1.148 0.698

stage 0.947 0.918 0.978 <0.05* 0.973 0.919 1.031 0.438

vascular_invasion 0.971 0.899 1.047 0.521
F
rontiers in Oncology
 08
 fro
* Indicates P less than 0.05, which is statistically significant.
FIGURE 3

Odds Ratios of Clinical Features in Univariable Analyses (above) and Multivariable Analyses (below).
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TABLE 3 Metrics for training, validation, and test cohorts in MSI prediction at the patch level using fully-supervised methods.

ModelName Cohort Acc AUC 95% CI Sensitivity Specificity PPV NPV

resnet18 train 0.869 0.945 0.9447-0.9455 0.854 0.872 0.623 0.960

resnet18 val 0.702 0.763 0.7616-0.7652 0.691 0.703 0.232 0.946

resnet18 test 0.596 0.646 0.6447-0.6479 0.668 0.580 0.259 0.888

resnet50 train 0.902 0.970 0.9693-0.9698 0.898 0.903 0.697 0.973

resnet50 val 0.633 0.717 0.7150-0.7189 0.718 0.622 0.198 0.944

resnet50 test 0.590 0.643 0.6416-0.6449 0.633 0.580 0.249 0.878

densenet121 train 0.895 0.963 0.9629-0.9635 0.882 0.898 0.681 0.968

densenet121 val 0.657 0.725 0.7226-0.7266 0.664 0.656 0.201 0.938

densenet121 test 0.694 0.638 0.6366-0.6398 0.487 0.740 0.291 0.868
F
rontiers in Oncolo
gy
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FIGURE 4

Visualizations for a single patient, comprising a tile image and its corresponding heat map. In the heat maps, regions highlighted in red signify areas
of higher weight, as indicated by the color bar on the right side of the figure.
FIGURE 5

Visualization of patient-level features using t-distributed stochastic neighbor-embedding (t-SNE) after Pearson’s correlation analysis, comparing
fully-supervised (left) with semi-supervised (right). 0: MSS/MSI-L; 1: MSI-H.
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TABLE 4 Metrics for the training, validation, and test cohorts in MSI prediction using the fully-supervised pathomics model.

model_name Cohort Accuracy AUC 95% CI Sensitivity Specificity PPV NPV

SVM train 0.964 0.906 0.841 - 0.970 0.889 0.979 0.889 0.979

SVM val 0.804 0.876 0.777 - 0.975 0.769 0.806 0.250 0.977

SVM test 0.626 0.789 0.701 - 0.878 0.889 0.581 0.267 0.968

ExtraTrees train 0.982 0.995 0.988 - 1.000 0.937 0.991 0.952 0.988

ExtraTrees val 0.875 0.928 0.883 - 0.973 0.846 0.877 0.367 0.986

ExtraTrees test 0.789 0.811 0.733 - 0.890 0.556 0.829 0.357 0.916
F
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FIGURE 6

Analysis of feature importance in multi-instance learning under fully-supervised (above) and semi-supervised (below) approaches.
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TABLE 5 Performance of MSI Prediction Using Individual and Combined Models.

Signature Cohort Accuracy AUC 95% CI Sensitivity Specificity PPV NPV

Clinical train 0.373 0.811 0.7534 - 0.8688 0.968 0.259 0.201 0.977

PathSemi train 0.974 0.981 0.9670 - 0.9943 0.984 0.973 0.873 0.997

PathFull train 0.974 0.995 0.9876 - 1.0000 0.952 0.979 0.896 0.991

Combined train 0.987 0.996 0.9903 - 1.0000 0.952 0.994 0.968 0.991

Clinical val 0.435 0.806 0.6679 - 0.9450 0.923 0.394 0.113 0.984

PathSemi val 0.917 0.786 0.6642 - 0.9080 0.231 0.974 0.429 0.938

PathFull val 0.905 0.928 0.8829 - 0.9732 0.385 0.948 0.385 0.948

Combined val 0.940 0.949 0.9010 - 0.9977 0.385 0.987 0.714 0.950

Clinical test 0.447 0.803 0.7028 - 0.9025 1.000 0.352 0.209 1.000

PathSemi test 0.821 0.737 0.6263 - 0.8467 0.000 0.962 0.000 0.849

PathFull test 0.862 0.811 0.7328 - 0.8900 0.111 0.990 0.667 0.867

Combined test 0.870 0.862 0.7668 - 0.9575 0.111 1.000 1.000 0.868
F
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FIGURE 7

Variations in Area Under the Receiver Operating Characteristic Curve (AUROC) across all cohorts.
FIGURE 8

Decision curves for various signatures across all cohorts.
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FIGURE 9

Nomogram prediction model for MSI status.
FIGURE 10

GO/KEGG enrichment analysis correlated with MSI status using RNA sequencing data from the TCGA dataset.
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Calibration curve: The Hosmer–Lemeshow (HL) test statistic is

a key metric for evaluating the calibration of predictive models,

reflecting how well predicted probabilities align with actual

outcomes. Typically, a higher HL test statistic indicates better

calibration, meaning that the model’s predictions are more closely

aligned with the observed results. In our analysis, the nomogram

model demonstrated excellent calibration performance across all

cohorts, with HL test statistics of 0.498, 0.425, and 0.193 for the

training, validation, and test cohorts, respectively.
Clinical use

Decision curve analysis (DCA): Figure 8 displays the DCA

curves for the training, validation, and testing sets. The outcomes

highlight the significant advantages of our fusion model in terms of

predicted probabilities. In comparison to other models, our fusion

model exhibited a greater potential for achieving net benefit.

Furthermore, a nomogram was created to improve clinical

applicability, as depicted in Figure 9.
Biologic functions associated with MSI
status

GO analysis results indicated that the DEGs were primarily

enriched in biological processes (BP) related to humoral immune

response and regulation of lymphocyte activation, cellular

components (CC) such as the apical plasma membrane and MHC

protein, as well as molecular functions (MF) including cytokine

activity and peptidase inhibitor activity (Figure 10). KEGG and

GSEA pathway analyses revealed that these genes were

predominantly enriched in signaling pathways associated with

rheumatoid arthritis, inflammatory bowel disease, and systemic
Frontiers in Oncology 13
lupus erythematosus(Figures 10, 11). Upon examining a predicted

PPI network, the top 10 hub genes, including IFNG, CD8A, IL1B,

and CCL5, were identified. These genes are pivotal within the

network (Figure 11).
Discussion

MSI is a tumor molecular phenotype resulting from the loss of

function in MMR proteins due to deleterious germline mutations,

epigenetic inactivation, or somatic biallelic mutations (21). Seminal

studies such as Keynote177 have demonstrated that, compared to

chemotherapy, Immune Checkpoint Inhibitors (ICIs) can lead to

better outcomes in patients with dMMR/MSI-H CRC and that this

molecular subtype is closely linked to prognosis (22–24). Recent

research has expanded the scope of MSI testing to include treatment

decision-making and prognosis across various cancer types (25–27).

Although universal screening of CRC patients for MSI status is now

recommended, it presents challenges, such as increased workload

for pathologists, delays in therapeutic decisions, significant cost

increases, and the inability to perform testing in the absence of

tissue samples (10). DL offers the potential to streamline MSI testing

and expedite decision-making by oncologists in clinical practice. A

hybrid model that can be used in clinical practice to predict MSI

status was proposed in this study. The primary objectives of our

study were: (a) to assess the differences in predictive performance

between semi-supervised and fully-supervised DL methods using

pathological images; (b) to build and verify a hybrid model to

predict MSI based on pathological images and clinical features; and

(c) to conduct a pilot study to identify MSI-associated differentially

expressed genes.

Given the critical importance of MSI, researchers have explored

the use of DL models to predict MSI status from pathological

images. Cao et al. demonstrated that a pathomics-based DL model
FIGURE 11

GSEA enrichment and PPI network analysis correlated with MSI status based on RNA sequencing data from the TCGA dataSet.
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could effectively predict MSI from histopathological images,

indicating its generalizability to new patient cohorts (9).

Schrammen et al. proposed a slide-level assessment model that

uses a single neural network to detect tumors and predict genetic

changes directly from standard pathology slides, with AUC of 0.909

for predicting MSI. This approach reduces labor costs by

automating the exclusion of normal and uninformative tissue

regions (28). Subsequently, Chang et al. developed a method that

integrated the CNN model INSIGHT with the self-attention model

WiseMSI to predict MSI in CRC (17). Despite achieving an AUC of

approximately 0.95 through extensive training with a large sample

size, the model did not incorporate the individual clinical

characteristics of the patients.

Despite the application of various DL techniques to predict MSI

status, which has led to continuous enhancements in the AUC, no

research has yet compared semi-supervised and fully-supervised DL

methodologies. Consequently, this study conducted a comparative

analysis of different DL approaches for pathological omics, and

subsequently integrated clinical-specific omics to develop a hybrid

model. The findings suggest that fully-supervised pathological

models are more effective in predicting MSI, hinting at a potential

correlation between MSI status and specific tumor tissue

characteristics. Although the study utilized a small sample size, it

achieved an AUC of nearly 0.95 in the internal validation cohort

and 0.86 in the external test cohort. Recently, French researchers

have developed MSIntit, a clinically approved pre-screening tool

based on AI for detecting MSI from slides stained with H&E, with a

sensitivity of 0.96–0.98 and a specificity of 0.47–0.46 (10). This tool

could serve as an optimal screening method, potentially excluding

nearly half of the non-MSI-H population and reducing clinical

expenses. However, its clinical utility is somewhat restricted due to

its non-diagnostic nature.

MSI-H CRC presents with distinct clinical characteristics.

Gelsomino F reported a correlation between MSI-H CRC and

proximal location, predominantly early stage diagnosis

(particularly stage II), poor differentiation, mucinous histology,

and BRAF mutations (29). Nakayama concluded that patients

with sporadic MSI-H are older, have right-sided colon tumors

that are poorly differentiated or mucinous, and exhibit worse

overall survival compared to those with Lynch Syndrome (30).

Our findings indicated that MSI-H is common among women with

poorly differentiated adenocarcinoma in the right colon,

particularly those with special types, such as mucinous

adenocarcinoma, which corroborated the previous findings.

Furthermore, MSI-related DEGs were commonly associated with

signaling pathways implicated in rheumatoid arthritis, inflammatory

bowel disease, and systemic lupus erythematosus. Treatment with

ICIs has been effective in autoimmune vasculitis, necessitating further

investigation into the underlying mechanisms (31). Subsequently, 10

hub genes were identified, including IFNG, CD8A, IL1B, and CCL5.

The expression of IFNG, a marker of effector function, is increased in

MSI-H gastric cancer than in MSS gastric cancer (32). IL1B, a gene
Frontiers in Oncology 14
involved in the COX-2/PGE2 pathway, is associated with immune-

related adverse events (irAEs) following immune checkpoint

blockade (33). These insights provide new directions for

immunotherapy and the management of irAEs in CRC.

This study encompassed two cohorts with an acceptable sample

size; however, it lacked validation data from multiple centers with

larger sample sizes. Consequently, further optimization using

multicenter datasets with larger sample sizes across all stages is

essential to enhance accuracy and generalizability. Moreover, the

exploration of differential genes in this study did not include

subsequent validation experiments (such as IHC or knockdown).

Future research is needed to further confirm their value.
Conclusion

In summary, a fully-supervised pathological model

outperformed a semi-supervised pathological model in predicting

MSI. Furthermore, a hybrid model was developed that employs

deep learning algorithms to integrate pathological features with

clinical data. This model exhibits exceptionally strong predictive

capabilities by leveraging the complementary strengths of both data

types to enhance overall accuracy.
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