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Colorectal cancer (CRC) is the second most common cause of cancer-related 
mortality worldwide and one of the most frequently diagnosed malignancies. 
Conventional CRC screening techniques—such as colonoscopy and pathologic 
biopsy—are invasive procedures that often cause patient discomfort and carry 
risks of complications. Recently, extracellular vesicles (EVs) have gained 
prominence as a promising area of investigation in oncology research. EVs are 
nanoscale, membrane-bound particles secreted by cells, which encapsulate and 
protect nucleic acids, proteins, and other biomolecules within their phospholipid 
bilayer structure. This protective characteristic renders EVs highly suitable as 
non-invasive diagnostic biomarkers for CRC, as well as efficient nanocarriers for 
targeted drug delivery vehicles. This review examines the functional roles, 
regulation mechanisms, and translational potential of EVs in CRC. Specifically, 
i t  investigates  how  EVs  drive  CRC  pathogenesis  through  tumour  
microenvironment remodeling, immune suppression, and metastatic 
dissemination. Additionally, the review examines relevant methodologies for EV 
sample collection, isolation, and detection, which are critical for translating EV-
based diagnostics and therapeutics into clinical practice. In conclusion, EVs 
represent a transformative approach in CRC research, offering non-invasive 
diagnostic tools and innovative therapeutic strategies. By integrating advanced 
methodologies and elucidating the regulatory mechanisms of EVs, this review 
provides valuable insights for advancing precision medicine in CRC, ultimately 
improving patient outcomes and reducing the global burden of this disease. 
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1 Introduction 

1.1 Colorectal cancer epidemiology and 
therapeutic challenges 

Colorectal cancer (CRC), a predominant gastrointestinal 
malignancy in the United States, ranks as the third most common 
cancer nationally in terms of both incidence and mortality when 
stratified by gender (1). In China, CRC is the second most frequently 
diagnosed cancer among men and the fourth leading cause of cancer-
related deaths. Among women, it ranks fourth in incidence and 
second in mortality (2). Although the overall incidence of CRC has 
declined by 1.8% annually over the past decade (2012–2021), rates 
continues to rise among adults under 50 years of age. Notably, 10– 
12% of new cases are classified as early-onset CRC, often lacking 
identifiable risk factors (3). Current treatment modalities for CRC 
encompass surgical resection, radiotherapy, chemotherapy, targeted 
therapy, and immunotherapy. Standard chemotherapeutic regimens 
typically incorporate 5-fluorouracil and oxaliplatin, whereas targeted 
approaches employ monoclonal antibodies (e.g., cetuximab) and 
anti-VEGF agents (e.g., bevacizumab) (4, 5). Despite these 
therapeutic advances, the emergence of drug resistance frequently 
results in suboptimal survival outcomes and diminished quality of life 
for CRC patients. 
1.2 Colorectal cancer pathogenesis: drivers 
and knowledge gaps 

The pathogenesis of CRC is driven by genetic mutations, 
aberrant gene expression, and altered methylation patterns, which 
collectively dysregulate critical signalling pathways to promote 
tumour growth and metastasis. Key mutations in TP53 and 
KRAS, for example, are strongly associated with CRC metastasis 
and serve as important prognostic indicators (6). Nevertheless, the 
exact mechanisms through which these driver gene alterations 
facilitate CRC progression remain incompletely characterised. 
1.3 Comparative analysis of colorectal 
cancer screening modalities: strengths and 
limitations of colonoscopy and fecal 
immunochemical test 

Colonoscopy and the fecal immunochemical test (FIT) are 
currently the two most widely used methods for colorectal cancer 
screening worldwide (7). 

According to clinical research data, colonoscopy, as the gold 
standard for CRC screening, is limited in clinical practice by its 
invasive nature (including anesthesia-related risks) and complication 
rates, with 16.4–36.18 cases of severe bleeding and 7.62–8.50 cases of 
intestinal perforation per 10,000 procedures, along with the associated 
burden of substantial healthcare costs.are invasive, expensive, and 
poorly suited for population-wide implementation (8). 
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The fecal immunochemical test (FIT) is a non-invasive, cost-
effective, and convenient screening method with high public 
acceptance, providing a novel option for colorectal cancer (CRC) 
detection (9). Recent cost-effectiveness studies comparing three 
CRC screening approaches in Asian populations demonstrate that 
FIT exhibits the most favorable incremental cost-effectiveness ratio 
(ICER) at USD 108,176, compared to USD 133,485 for the M3 fecal 
biomarker panel and USD 159,586 for colonoscopy. However, FIT 
shows the lowest CRC prevention rate (4.5%), significantly lower 
than the 50.2% prevention rate of the M3 biomarker and 51.3% of 
colonoscopy. Significant differences in compliance rates are also 
observed: FIT has the lowest adherence rate (60%), while 
colonoscopy and the M3 biomarker achieve near-perfect 
compliance rates of 98.9% and 99%, respectively. Comprehensive 
evaluation integrating cost-effectiveness, prevention rates, and 
compliance metrics reveals that although colonoscopy excels in 
prevention efficacy and adherence, the M3 biomarker emerges as a 
more cost-effective strategy by balancing economic and clinical 
outcomes, positioning it as a promising alternative for CRC 
screening (10). This underscores the pressing need for non
invasive biomarkers that would permit early, cost-effective, and 
reliable CRC detection. 

Liquid biopsy-based biomarkers-including extracellular DNA, 
circulating tumour cells, and extracellular vesicle (EV)-derived 
nucleic acids and proteins—represent promising alternatives for 
CRC diagnosis and monitoring (11–13). EVs have attracted 
particular interest owing to their remarkable stability, high 
abundance in bodily fluids, and capacity to encapsulate tumour-

specific molecular cargo. This review focuses specifically on EV 
biomarkers in CRC, examining their potential to transform clinical 
practice through improved early detection, prognosis evaluation, 
and treatment monitoring—ultimately leading to enhanced patient 
outcomes and quality of life. 
2 EVs introduction 

2.1 Definition of EVs 

In recent years, extracellular vesicles (EVs) have become a 
major focus of owing due to their considerable potential as both 
therapeutic targets and biomarkers in a wide range of diseases. 
Initially considered mere cellular waste disposal mechanisms, EVs 
are now understood to play a crucial role in intercellular 
communication. Their minimally invasive nature further 
enhances their suitability for applications in cancer screening and 
diagnostics. EVs are broadly classified into three subtypes based on 
their size and biogenesis: exosomes, microvesicles (MVs), and 
apoptotic bodies. These lipid bilayer-enclosed structures 
encapsulate a diverse molecular cargo, including DNA, mRNA, 
circular RNA (circRNA), microRNA (miRNA), long non-coding 
RNAs (lncRNAs), proteins, lipids, and metabolites. EVs are 
ubiquitously present in bodily fluids such as blood, urine, and 
cerebrospinal fluid, highlighting their diagnostic and therapeutic 
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potential (14, 15). Among these, exosomes have been the most 
extensively studied, followed by microvesicles. 
2.2 Classification of EVs 

Exosomes, which range from 40 to 160 nm in diameter, are 
formed through the inward budding of multivesicular bodies 
(MVBs) within cells. Following their formation, MVBs fuse with 
the plasma membrane, releasing exosomes into the extracellular 
space via exocytosis. Microvesicles (MVs), by contrast, are larger 
vesicles (100–1000 nm) formed through the direct outward budding 
of the plasma membrane. These vesicles mediate intercellular 
communication either through fusing with recipient cell 
membranes or via phagocytosis, thereby delivering their 
molecular cargo to target cells. Apoptotic bodies, the largest EVs 
(100–5000 nm), are produced during programmed cell death 
(apoptosis) (16, 17). They contain specialised signalling molecules 
and cellular debris that facilitate the efficient clearance of apoptotic 
cells while helping to prevent inflammatory responses. An overview 
of three extracellular vesicle subtypes—exosomes, microvesicles, 
and apoptotic bodies—highlighting their key characteristics is 
provided in Table 1. 
2.3 Characteristics of the double-layer 
membrane of EVs 

A defining characteristic of EVs is their phospholipid bilayer 
membrane, which protects their internal components (e.g., 
proteins, nucleic acids, and lipids) from enzymatic degradation in 
circulation, thereby preserving their structural integrity and 
biological activity. This remarkable stability not only enhances 
their biomarker potential but also renders them ideal candidates 
for drug delivery systems. In contrast to conventional serological 
markers, EVs can effectively encapsulate therapeutic agents, 
shielding them from degradation while facilitating cell-specific 
targeting (18). These unique properties establish EVs powerful 
tools for advancing precision medicine, particularly in oncological 
diagnostics and therapeutic applications. 
Frontiers in Oncology 03 
2.4 Biogenesis pathways and biochemical 
composition of exosomes 

Exosomes, a subtype of extracellular vesicles (EVs), are 
generated through a tightly regulated, cell-type-dependent 
biogenesis process responsive to environmental cues. While EV 
biogenesis and secretion mechanisms have been extensively 
reviewed elsewhere, the formation of exosomes specifically 
involves three sequential stages: biogenesis, trafficking, and release. 

The process initiates when specific domains of the plasma 
membrane undergo endocytic internalization, giving rise to early 
endosomes. These compartments subsequently mature into 
multivesicular bodies (MVBs) through endosomal membrane 
invagination. Ultimately, MVBs fuse with the plasma membrane 
to release exosomes (19, 20). Notably, proteins (e.g., CD9), RNAs 
(such as miRNAs), and other biomolecules critically regulate each 
stage of exosome biogenesis and trafficking (20). The detailed 
processes  of  the  biogenesis  pathways  and  biochemical  
composition of exosomes are graphically presented in Figure 1. 
2.5 Sources and isolation techniques for 
EVs 

Currently, the isolation of extracellular vesicles (EVs) primarily 
relies on techniques tailored to their biochemical and physical 
properties. Ultracentrifugation remains the gold standard for EV 
separation, supplemented by alternative methods such as density 
gradient centrifugation, size-exclusion chromatography, 
immunoprecipitation, optical trapping, and magnetic bead-based 
isolation (21, 22). Additionally, commercial kits designed for 
exosome-specific (a subtype of EVs) isolation are widely employed. 
A summary of these methods and their applications across sample 
types (e.g., plasma, urine, and cerebrospinal fluid) is provided in 
Table 2. However, the  field currently lacks a universally standardised 
protocol for EV isolation, owing primarily to the heterogeneous nature 
of EV subpopulations and the technical limitations of existing 
separation strategies. A major challenge involves minimising sample 
damage and contamination, issues that frequently arise due to the 
complex composition of biological matrices and the limitations of 
current isolation techniques. Consequently, there is a pressing need for 
innovative approaches to improve EV separation and purification, 
ensuring both reproducibility and high sample fidelity for downstream 
analyses like RNA sequencing or proteomics. 
3 The relationship between EVs and 
the intestinal microenvironment 

3.1 The intestinal microenvironment 

The intestinal microenvironment (IME) constitutes a complex 
biological and chemical ecosystem comprising intestinal microbiota, 
epithelial cells, immune cells, and secretory components. Among these 
components, the gut microbiota contributes to numerous protective, 
TABLE 1 Comparative analysis of three main extracellular vesicle 
subtypes: size, biogenetic origin, and functional characteristics. 

Vesicles 
Diameter 
Size(nm) 

Biogenetic 
Origin Functions 

Exosomes 40~160 Endosomes 
Cell communication, 

immunomodulation, and 
tumor development 

Microvesicles 100~1000 
Plasma 

membrane 
Signalling and 

pathological mediation 

Apoptotic 
bodies 

100~5000 
Plasma 

membrane 
Cell death signalling and 
removal of harmful cells 
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TABLE 2 Isolation techniques for extracellular vesicles from diverse biological samples. 

EV sources Isolation techniques References 

Serum Ultracentrifugation, size exclusion chromatography, OptiPrep™ density gradient centrifugation (23, 24) 

Plasma 

Ultracentrifugation1 

ExoQuickTM precipitation solution (System Biosciences) 
Total Exosome Isolation Kit (Invitrogen) 

Nickel-based isolation (NBI) 

(25) 

Feces Density gradient ultracentrifugation (26, 27) 

Urine Ultracentrifugation1, chemical precipitation, immunoprecipitation (28, 29) 

Saliva 
Norgen Saliva Exosome Purification Kit 

ExoQuick-TC ULTRA magnetic bead immunocapture assay 
(30) 

Cerebrospinal fluid 
Differential centrifugation1 

MagCapture Exosome Extraction Kit 
(31, 32) 

Breast milk (human) Ultracentrifugation, density gradient centrifugation, commercial precipitation kit, size exclusion chromatography (33) 

Seminal plasma Ultracentrifugation and size exclusion chromatography (34) 

Bile Ultracentrifugation (35) 

Colonic luminal fluid aspirates Ultracentrifugation (36) 
F
rontiers in Oncology 
04 
Various biological samples, including serum, plasma, feces, urine, saliva, cerebrospinal fluid, human breast milk, seminal plasma, bile, and colonic luminal fluid aspirate. This table summarizes 
representative methods and is not exhaustive. 1Common separation methods. 
FIGURE 1 

The biogenesis and secretion processes of extracellular vesicles. Inside the cell, nucleic acids and proteins originating from the nucleus and 
endoplasmic reticulum gradually participate in vesicle formation. The early endosome receives substances and develops into a late endosome, 
which then forms a multivesicular body. This multivesicular body has three potential fates: (1) fusion with a lysosome for content degradation, 
(2) interaction with an autophagosome, or (3) fusion with the cell membrane to release exosomes (40–160 nm) into the extracellular space. 
Additionally, the cell can release microvesicles (100–1000 nm) through plasma membrane budding. Exosome membranes are enriched with 
transmembrane proteins (CD63, CD81, CD9) and encapsulate diverse cargoes, including nucleic acids (miRNAs, circRNAs, lncRNAs), proteins (Alix, 
HSP70/90, and TSG101), metabolites, and immune regulators such as MHC-I and MHC-II, which mediate immune responses. These processes, 
regulated by factors such as Rab GTPases, play critical roles in intercellular communication and other physiological functions. 
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structural, and metabolic functions within the intestinal epithelium. It 
plays a crucial role in maintaining a balanced microenvironment that 
regulates inflammatory responses and preserves intestinal homeostasis. 
Disruption of this delicate equilibrium has been implicated in the 
pathogenesis of inflammatory bowel disease (IBD), colorectal cancer 
(CC), and various systemic disorders (37). Recent research has 
prioritised therapeutic approaches to restore IME homeostasis in 
IBD patients, with particular emphasis on bioengineered probiotics. 
These advanced microbial therapeutics are specifically designed to 
simultaneously modulate: (1) gut microbiota composition, (2) host 
immune responses, and (3) cellular redox balance, thereby representing 
a novel and promising treatment strategy (38). 

Furthermore, dysregulation of the gut microenvironment is 
increasingly recognised as a contributor to systemic inflammation 
and extra-intestinal pathologies, including myocardial injury. Such 
disturbances may disrupt intestinal redox homeostasis and 
compromise epithelial barrier integrity, thereby promoting immune 
dysfunction and exacerbating systemic inflammatory cascades (39). 
Recent studies have demonstrated that faecal/intestinal microbiota 
transplantation (FMT/IMT)-the transfer of minimally processed 
faeces into a recipient’s gastrointestinal tract-can restore gut 
microbiota homeostasis and ameliorate disorders linked to microbial 
dysbiosis. As a potential therapy for recurrent Clostridioides difficile 
infection (rCDI), FMT/IMT has achieved a success rate of 
approximately 90% alongside improved overall patient survival (40). 
However, controversies persist regarding certain aspects, such as the 
optimal timing of administration, and standardised protocols remain to 
be established (41). Collectively, these findings highlight the pivotal role 
of the IME in systemic health and disease, offering novel insights into 
the therapeutic potential of restoring intestinal homeostasis to mitigate 
systemic inflammation and immune dysregulation. Future research 
should focus on developing precision-based strategies to translate these 
mechanisms into clinical applications. 
3.2 miRNAs derived from EVs regulate the 
intestinal microenvironment 

A growing body of evidence highlights the crucial role of 
extracellular  vesicles  (EVs)  in  facilitating  intercellular  
communication and maintaining intestinal homeostasis (42). 
Recent studies demonstrate that intestinal bacteria—including 
commensal, probiotic, and pathogenic strains—modulate the 
intestinal microenvironment (IME) and host health through 
bacterial extracellular vesicles (BEVs) (43). Furthermore, gut 
microbiota routinely produce outer membrane vesicles (OMVs), 
nanoscale vesicular structures originating from Gram-negative 
bacteria. Notably, BEVs and OMVs share remarkable similarities 
with mammalian exosomes in terms of size distribution, genetic 
content, and protein-lipid compositions (44, 45). These 
observations collectively emphasise the regulatory importance of 
BEVs, OMVs, and exosomes in maintaining intestinal equilibrium. 

Emerging research indicates that exosomal microRNAs derived 
from host cells can modulate gut microbial dynamics, providing 
novel diagnostic and prognostic biomarkers, as well as potential 
Frontiers in Oncology 05 
therapeutic targets for gut-related disorders (46). Probiotics, 
recognised for their beneficial role in intestinal health, mediate 
their effects by regulating mucosal immunity, maintaining 
microbial balance, and improving nutrient absorption (47). 
Notably, Clostridium butyricum has demonstrated protective 
properties in various models of intestinal inflammation. 
Extracellular vesicles derived from Clostridium butyricum 
(CbEVs) have been found to inhibit pro-inflammatory signalling 
pathways, including nuclear factor kappa-light-chain-enhancer of 
activated B cells (NF-kB) and mitogen-activated protein kinase 
(MAPK), while upregulating miR-199a-3p expression via 
interactions with MAP3K4 (48). These findings suggest that 
CbEVs and miR-199a-3p could serve as promising therapeutic 
agents or targets for inflammatory bowel disease (IBD). 

Beyond bacterial exosomes, plant-derived exosomal miRNAs 
and herbal exosomes have also exhibited anti-inflammatory 
properties in the gut. Dendrobium officinale polysaccharides 
(DOP), extracted from the medicinal plant Dendrobium 
officinale, exhibit multiple therapeutic effects including 
antioxidant, immunomodulatory, and gastrointestinal protective 
activities (49). Studies indicate that DOP enhances the release of 
miR-433-3p in small extracellular vesicles (sEVs), which may 
attenuate intestinal inflammatory responses (50). Furthermore, 
research in murine models has demonstrated that total body 
irradiation (TBI) induces intestinal mucosal barrier damage, 
microbia l  dysb ios i s ,  and  des tab i l i sa t ion  of  the  gut  
microenvironment. Notably, exosomal miRNA-142-5p— 
upregulated in donor mice—significantly reduced TBI-induced 
gastrointestinal toxicity and tissue damage (51). These findings 
suggest a potential therapeutic strategy for mitigating radiation-
induced gastrointestinal injury in exposed individuals. 

In summary, these findings highlight the multifaceted roles of 
EVs and EV-derived miRNAs in maintaining intestinal 
microenvironmental homeostasis, primarily achieved through 
modulation of signaling pathways, inflammatory responses, and 
immune activity. An overview of EV-derived miRNA functions in 
both homeostasis maintenance and pathological regulation is 
presented in Table 3. Building on these insights, future research 
should prioritize exploring the broader therapeutic potential of EVs, 
including their diverse molecular cargo and regulatory networks, to 
develop targeted therapies for gut-related pathologies and systemic 
inflammatory disorders. 
4 The role of new EV markers in 
colorectal cancer 

4.1 The regulatory role and clinical 
application potential of EV-derived miRNAs 
in the progression of colorectal cancer 

4.1.1 miRNA 
MicroRNAs (miRNAs), a class of non-coding single-stranded 

RNAs—approximately 22–25 nucleotides in length—are of 
particular interest due to their pivotal role in post-transcriptional 
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gene regulation. miRNAs function by binding to complementary 
sequences on target messenger RNAs (mRNAs), thereby 
modulating protein synthesis through either mRNA degradation 
or translational repression (53, 54). 

4.1.2 miRNAs derived from EVs as potential 
biomarkers for colorectal cancer 

In colorectal cancer (CRC), exosomal miRNAs have emerged as 
promising biomarkers due to their dysregulated expression during 
tumour progression (55). For instance, elevated levels of miR-17-5p, 
miR-181a-5p, miR-18a-5p, and miR-18b-5p are observed in plasma 
exosomes from colorectal cancer (CRC) patients, suggesting their 
potential as non-invasive diagnostic biomarkers (56). Additionally, 
reduced exosomal miR-150 expression has been associated with CRC 
liver metastases and correlated with significantly poorer overall 
survival (OS) time (33.3 months versus 43.3 months, P = 0.002), 
underscoring its prognostic value. Mechanistically, decreased miR

150 expression enhance the survival and invasive potential of CRC 
cells, further supporting its dual role as a prognostic marker and 
therapeutic target (57). Moreover, another study has found that 
specific exosomal miRNAs—including miR-19b, miR-21, miR-222, 
and miR-92a—demonstrate both diagnostic and prognostic value in 
early-stage CRC. Notably, miR-21 and miR-19b demonstrate 
superior diagnostic performance compared to the conventional 
biomarker carcinoembryonic antigen (CEA). miR-21 achieves an 
area under the curve (AUC) of 0.981, while miR-19b attains an AUC 
of 0.951—both significantly outperforming CEA (AUC = 0.906) in 
terms of sensitivity and specificity (58). Furthermore, EV-associated 
miRNAs such as miR-210, which shows elevated expression in CRC 
cells, correlate with patient survival outcomes. Mechanistic studies 
reveal that miR-210 modulates the XIST/NME1 pathway, thereby 
suppressing CRC tumorigenesis (59). 

4.1.3 Possible regulatory roles of EV-derived 
miRNAs in the progression of colorectal cancer 

Small extracellular vesicles (sEVs), a subset of EVs ranging from 
30 to 150 nm in size, exhibit superior diagnostic utility compared to 
free plasma miRNAs due to their enhanced stability against RNase 
A degradation. This characteristic renders sEVs particularly 
valuable for the early detection of colon cancer (60). Furthermore, 
Frontiers in Oncology 06
EV-derived miRNAs have been demonstrated to modulate key 
tumour characteristics, including proliferation, invasion and 
metastasis, through regulating of target genes and signalling 
pathways. For instance, miR-224-5p overexpression in EVs 
derived from colorectal cancer-associated fibroblasts (CAFs) 
promotes CRC cell proliferation, migration and apoptosis 
resistance by targeting the sodium bicarbonate cotransporter 1 
(SLC4A4) (61). Conversely, reduced levels of miR-193a-5p in 
plasma EVs from CRC patients suppress migration and invasion 
through regulating of cut-like homeobox 1 (CUX1) and intersectin 
1 (ITSN1) (62). These findings demonstrate the dual regulatory 
roles of EV-derived miRNAs in CRC, which may function either as 
oncogenic drivers or tumour suppressors depending on their 
specific targets and cellular context. Their capacity to modulate 
tumour behaviour through complex molecular networks 
underscores their potential as diagnostic biomarkers, prognostic 
indicators, and therapeutic targets). Based on these findings, to 
integrate existing research and clarify the functional characteristics 
and mechanistic details of each miRNA, key information on 
relevant miRNAs is organized below (Table 4). 
4.2 The regulatory role and clinical 
application potential of EV-derived 
circRNAs in the progression of colorectal 
cancer4.2.1 Circular RNA 

Circular RNAs (circRNAs) constitute a class of endogenous 
RNAs produced through back-splicing events, forming covalently 
closed-loop structure devoid of 5’ and 3’ termini. This distinctive 
configuration confers exceptional stability, making circRNAs 
resistant to exonuclease-mediated degradation relative to their 
linear counterparts (79). Growing evidence indicates that 
dysregulated circRNA expression in colorectal cancer (CRC) cells 
facilitates tumour progression by suppressing tumour suppressor 
genes, thereby promoting tumour initiation, invasion, and 
metastasis (80). Moreover, circRNAs encapsulated within 
extracellular vesicles (EVs) are emerging as valuable biomarkers 
for the diagnosis, prognosis, and therapeutic monitoring of 
gastrointestinal cancers (81). 
TABLE 3 Functions of EV-derived miRNAs in intestinal homeostasis and pathological regulation. 

Types Expression Functions References 

miR-199a-3p Up Improves intestinal barrier integrity and inhibits inflammatory responses in mice with colitis; (48) 

miR-433-3p Up 
Prevents accumulation of inflammatory factors induced by intestinal macrophage hyperactivity and restores 

intestinal microenvironmental homeostasis; 
(50) 

miR-142-5p Up Enhanced protection against radiation enteritis; (51) 

miR-181b-5p Up 
Promoting the polarization of M2 macrophages in the intestine, secreting anti-inflammatory factors, and 

alleviating intestinal inflammatory conditions; 
(52) 

miR-200b-3p Up 
Regulates the composition of the flora, increases the abundance of probiotics in the inflammatory flora, and 

improves the flora structure; 
(52) 
 

These functions include maintaining barrier integrity, anti-inflammation, protection against radiation-induced enteritis, M2 macrophage polarization, immune regulation, and intestinal 
microbiota modulation. Specific miRNAs are shown in the table. 
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TABLE 4 Overview of EV-derived miRNAs related to colorectal cancer: expression patterns, detection methods, sources, functions, and mechanisms. 

miRNAs Expression Methods Sources Functions Mechanisms References 

HCT-116/SW-480/Caco-2/ Proliferation/ 
miR-224-5p Up qRT-PCR LoVo/T84/NCM-460/ migration/ Targets SLC4A4 gene (61) 

CAFs cells invasion/apoptosis 

miR-193a-5p Down qRT-PCR 
HCT-8/SW-480/CCC-HIE-2 

cells/plasma (human) 
Proliferation/ 

migration/invasion 
Targets CUX1 and ITSN1 genes (62) 

miR-25 Up qRT-PCR 
HCT-116/SW-480/SW-620/ 

LOVO/NCM-460 cell 
proliferation/ 

migration/invasion 
Inhibits SIRT6 and mediates Lin28b/ 

NRP-1 axis 
(63) 

miR-27b-3p Up qRT-PCR 
DLD-1/SW-620/HT-29/HCT
116/SW-480/NCM-460 cells 

Metastasis/ 
vascular 

permeability 

Targets STAT3/hnRNPA1/miR-27b-3p 
signaling cascade 

(64) 

miR-221-3p Up qRT-PCR 
HCT-116/Caco-2 cells/ 

serum (human) 
Metastasis/ 
angiogenesis 

Targets SOCS3 regulating STAT3/ 
VEGFR-2 axis 

(65) 

miRNA-222 Up qRT-PCR 
SW-480/HCT-116/293T/NCM

460/MSC cells 
Invasion/ 

immune escape 
Targets ATF3, inhibit AKT1 

transcription, mediate AKT pathway 
(66) 

DLD-1/HT-29/H Proliferation/ 
miR-183-5p Up qRT-PCR CT-116/NCI-H508/HMEC-1 migration/ Targets FOXO1 gene (67) 

cells/nude mouse serum angiogenesis 

miR-34a-5p Down qRT-PCR 
HCT-116/SW-480/LoVo/HEK

293 cells 

Proliferation/ 
migration/ 

invasion/apoptosis 

Targets miR-34a-5p/c-MYC/DNMT3a/ 
PTEN axis 

(68) 

miR-200 Up qRT-PCR 
DLD-1/HCT-116/SW-620/SW

480 cells 
Differentiation Targets miR-200/ZEB1 axis (69) 

HCT-116/SW480/SNU-C1/SW
miR-106b-3p Up qRT-PCR 1116/LoVo/KM12SM/NCM- Metastasis Targets DLC-1 (70) 

460 cells/serum (human) 

miR-203a-3p Up qRT-PCR Plasma (human) Metastasis 
Targets PTEN/AKT/PI3K and 

CXCL12/CXCR4/NF-kB pathway 
(71) 

miR-25-3p/ 
miR-130b-3p/ 
miR-425-5p 

Up qRT-PCR 
HCT-116/SW-620/RAW264.7/ 

THP-1 cells 
Metastasis Activates CXCL12/CXCR4 axis (72) 

Proliferation/ 

miR-15a Up qRT-PCR LoVo/HCT-116/adMSCs cells 
migration/invasion/ 

metastasis/ 
Targets KDM4B/HOXC4/PD-L1 axis (73) 

apoptosis 

miR-146a-5p Up qRT-PCR serum (human) Metastasis Activates CXCL12/CXCR7 axis (74) 

miR-155-5p Up qRT-PCR serum (human) Transfer Activates CXCL12/CXCR7 axis (74) 

Targets SOCS3 activates IL-6/STAT3, 
miR-181a-5p Up qPCR serum (human) Metastasis leading to CCL20/CCR6/ERK1/2/Elk-1/ (75) 

miR-181a-5p feedback loop 

miR-361-3p Up qRT-PCR 
HCT-116/HT-29 cells/ 

serum (human) 
Proliferation 

Targets TRAF3 to activate the non-
canonical NF-kB pathway 

(76) 

let-7a miRNA Up qPCR 
SW-48/SW-480/HT-29/SW
620/FHC cells/serum (human) 

Proliferation/ 
migration/invasion 

Targets let-7a-SNAP23 axis (77) 

miR-200c-3p Down qPCR Serum (human) 
Migration/ 

invasion/apoptosis 
Targets ZEB-1 (78) 
F
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These data provide valuable reference for subsequent research and clinical applications in colorectal cancer. 
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4.2.2 CircRNAs derived from EVs as potential 
biomarkers for colorectal cancer 

For example, hsa_circ_0003270 (circGAPVD1)—a circRNA 
involved in the circGAPVD1-miRNA-mRNA regulatory network 
shows significant  upregulation in plasma EVs  from  CRC patients  and  
correlates with TNM staging, demonstrating its potential as both a 
diagnostic and prognostic marker (82). CircRNAs function as 
competitive endogenous RNAs (ceRNAs) or “miRNA sponges” by 
containing conserved miRNA binding sites that sequester miRNAs and 
thereby regulate downstream target gene expression. A prominent 
example is circPACRGL, which is abundant in CRC cell-derived 
exosomes. This circPACRGL sponges miR-142-3p and miR-506-3p, 
resulting in increased transforming growth factor-b1 (TGF-b1) 
expression. This process enhances CRC cell proliferation, migration 
and invasion, while simultaneously inducing neutrophil polarisation 
from an anti-tumour (N1) to a pro-tumour (N2) phenotype (83). 
These findings highlight the multifaceted roles of EV-derived circRNAs 
in  CRC pathogenesis and  their promise as robust biomarkers for early 
detection, risk stratification and therapeutic targeting. Through 
miRNA sponging and other regulatory mechanisms, circRNAs 
emerge as pivotal regulators of gene expression networks in cancer 
biology. To clearly illustrate the intrinsic connections among these 
research findings, this article summarizes EV-derived circRNAs in 
CRC cell lines and clinical samples in terms of expression patterns, 
regulatory mechanisms, and other aspects in Table 5. 
4.3 The regulatory role and clinical 
application potential of EV-derived 
lncRNAs in the progression of colorectal 
cancer 

4.3.1 Long non-coding RNA 
Long non-coding RNAs (lncRNAs) represent a class of RNA 

molecules exceeding 200 nucleotides in length that lack protein
Frontiers in Oncology 08
coding capacity due to the absence of open reading frames. 
Substantial evidence has established that lncRNAs are frequently 
dysregulated in multiple malignancies, including colorectal cancer 
(CRC), where they play pivotal roles in tumorigenesis, progression, 
and metastasis (89). Growing research indicates these molecules 
show considerable potential as biomarkers for CRC diagnosis, 
prognosis and treatment response assessment. 

4.3.2 LncRNAs derived from EVs as potential 
biomarkers for colorectal cancer 

For example, the lncRNA HOTAIR (HOX transcript antisense 
RNA) contributes significantly to CRC progression, demonstrating an 
inverse correlation between its elevated expression levels and both 
overall survival (OS) and relapse-free survival (RFS) in CRC patients 
(90). This relationship establishes HOTAIR as a promising prognostic 
indicator, where high expression levels predict unfavourable clinical 
outcomes. Furthermore, lncRNAs actively modulate the tumour 
microenvironment to influence CRC progression and metastasis. A 
particularly significant example is the lncRNA CRNDE-h, which 
shows marked upregulated in serum exosomes from CRC patients 
and exhibits strong associations with both regional lymph node 
involvement and distant metastases. Demonstrating a sensitivity of 
70.3%, specificity of 94.4%, and an area under the ROC curve of 0.892, 
CRNDE-h surpasses conventional biomarkers including 
carcinoembryonic antigen (CEA) (AUC: 0.688; sensitivity: 37.16%; 
specificity: 88.75%) in diagnostic performance (91). 

In contrast, several lncRNAs demonstrate reduced expression in 
CRC, providing additional prognostic value. Specifically, the lncRNAs 
H19, HOTTIP and HULC show significant downregulation in serum 
exosomes from CRC patients. Of particular note, diminished 
HOTTIP expression in serum-derived exosomes has emerged as a 
potential predictive biomarker for CRC, further highlighting the 
diagnostic and prognostic utility of lncRNAs (92). 

Based on the above studies, this article summarizes the expression 
patterns, regulatory mechanisms, and other aspects of different EV
TABLE 5 Summarizes data on six upregulated and one downregulated EV-derived circRNAs, including their detection methods, biological sources, 
functions in CRC progression, and associated regulatory mechanisms. 

circRNAs Expression Methods Sources Functions Mechanisms References 

hsa_circ_0003270 
(circGAPVD1) 

Up qRT-qPCR Plasma (human) TNM staging/metastasis 
circGAPVD1-miRNA

mRNA regulatory network 
(82) 

circPACRGL Up qRT-PCR HCT-116/SW-480 cells 
Proliferation/migration/ 
invasion/differentiation 

Targets miR-142-3p/miR
506-3p-TGF-b1 axis 

(83) 

circ-133 Up RT-qPCR 
HCT-116/SW-480 cells/ 

plasma (human) 
Migration Targets GEF-H1/RhoA axis (84) 

circ_0005615 Up qRT-PCR serum (human) 
Proliferation/migration/ 

invasion/apoptosis 
Targets miR-873-5p/ 

FOSL2 pathway 
(85) 

circ_CCDC66 Up qPCR 
THP-1/HEK-293T/CD8+T/SW

480/HCT-116/FHC cells 
Immune escape/ 
growth/migration 

circRNA CCDC66/ 
microRNA-342-3p/ 

MTDH axis 
(86) 

hsa_circ_0001739 Up qRT-PCR 
SW-480/SW-620/HCT-8/ 

HIEC cells 
metastasis 

Regulates miR-218-5p/ 
FTO-m6A/MYC axis 

(87) 

circLPAR1 Down qRT-PCR Plasma (human) 
Proliferation/ 

migration/invasion 
Regulates circLPAR1/ 
METTL3-eIF3h/BRD4 

(88) 
 

These circRNAs play critical roles in the initiation and development of colorectal cancer. 
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derived lncRNAs in colorectal cancer progression, as shown in Table 6. 
These observations underscore the dual regulatory function of 
lncRNAs in CRC, which can act as either oncogenic drivers or 
tumour suppressors, with their expression patterns offering clinically 
relevant insights into tumour behaviour and patient outcomes. 
 

4.4 The regulatory role and clinical 
application potential of EV-derived 
Proteins in the progression of colorectal 
cancer 

4.4.1 Proteins 
Extracellular vesicles (EVs) contain a diverse repertoire of proteins, 

many of which play significant roles in oncogenesis and tumour 
progression. Prominent examples include heat shock protein 90 
(HSP90), annexin A1/2 (ANXA1/2), and lactate dehydrogenase A 
(LDHA), proteins that demonstrate characteristic dysregulation or 
mutational profiles across multiple malignancies (97). Specifically in 
colorectal cancer (CRC), the proteins cargo of small extracellular 
vesicles (sEVs) has shown particular promise as biomarkers for both 
early detection and disease monitoring (98). 

4.4.2 Proteins derived from EVs as potential 
biomarkers for colorectal cancer 

A landmark proteomic study identified six CRC-specific sEV 
proteins that effectively discriminate between early-stage CRC, 
advanced CRC, and healthy controls: glutamate-cysteine ligase 
modulatory subunit (GCLM), Kell blood group complex subunit 
(KEL), apolipoprotein F (APOF), complement factor B (CFB), 
phosphodiesterase 5A (PDE5A), and 5’-aminoimidazole-4

carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase 
(ATIC) (99). Furthermore, membrane-bundle proteins family 
members, which show significant enrichment in EVs, exhibit 
strong correlations with CRC prognosis, reinforcing their dual 
diagnostic and prognostic value (100, 101). Notably, four annexin 
family members (e.g., A3, A4, A5, and A11) demonstrate 
significantly higher sensitivity (> 75%) than the conventional 
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biomarker CEA (sensitivity: 38.8%) in early colorectal cancer 
(CRC) detection, highlighting their potential as novel non
invasive diagnostic tools for clinical applications (102). 

Non-invasive screening approaches, particularly faecal- and 
blood-based assays, represent the current gold standard for CRC 
detection (103). Of particular significance, fecal-derived EVs (fEVs) 
from CRC patients elevated expression of specific proteins

biomarkers, including the transmembrane glycoproteins A33 (also 
known as GPA33) and CD147 (basigin). ROC analysis revealed that 
both CD147 (AUC = 0.903) and A33 (AUC = 0.904) effectively 
discriminated CRC patients from healthy controls. The combined 
assessment of CD147 and A33 enhanced diagnostic performance, 
yielding an improved AUC of 0.913. Notably, CD147, A33, and 
their combination each demonstrated 89% clinical sensitivity, 
substantially outperforming carcinoembryonic antigen (CEA; 
sensitivity = 40%). These findings establish fEV proteins as highly 
promising non-invasive biomarkers for CRC diagnosis and 
prognosis (104). However, implementation challenges persist, 
including logistical and technical hurdles in faecal sample 
collection/processing, along with the substantial costs associated 
with large-scale sample handling and transportation (105). 

The protein components of extracellular vesicles demonstrate 
unique potential as novel biomarkers for precision medicine in 
CRC. To further elucidate their mechanisms and clinical 
applications, this review synthesizes recent data on EV-derived 
proteins associated with CRC pathological progression (see 
Table 7), providing valuable references for early diagnosis and 
mechanistic exploration. 
4.5 Common mutant genes in colorectal 
cancer are involved in the secretion 
regulation, composition, and metastasis-
mediated biological effects of extracellular 
vesicles 

Accumulating evidence highlights the pivotal role of genetic 
mutations in colorectal cancer (CRC) pathogenesis, where 
TABLE 6 Shows the expression patterns, detection method, biological sources, functions, and molecular mechanisms of EV-derived lncRNAs in 
colorectal cancer cell lines and clinical samples. 

lncRNAs Expression Method Sources Functions Mechanism References 

lncRNA 
AC159540.1 

Up qRT-PCR SW-480/SW-620/HCT-8/HIEC cells Metastasis 
Regulates 

miR-218-5p/FTO-m6A/ 
MYC axis 

(87) 

lncRNA 
SNHG3 

Up qRT-PCR CAFs/NFs/HCT-116 cells Proliferation 
Targets miR-34b-5p/ 
HuR/HOXC6 axis 

(93) 

lncRNA 91H Up qRT-PCR HCT-8/HCT-116/FHC cells/serum (human) 
Migration/ 
invasion 

Modulates 
HNRNPK expression 

(94) 

lncRNA 
HOTTIP 

Up qRT-PCR 
HCT-116/SW-620/FHC/LoVo/HT-29/SW-480/SW

1116/Caco-2 cells/plasma (human) 
Drug-resistant 

Regulates 
HOTTIP/miR-214/ 
KPNA3 network 

(95) 

lncRNA 
UCA1 

Down qRT-PCR HCT-116/Caco-2 cells/serum (human) Metastasis 
Regulates 

ceRNA network 
(96) 
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alterations in key oncogenes and tumour suppressor genes driving 
tumour initiation, progression and metastasis (111). Six principal 
driver genes—adenomatous polyposis coli (APC), v-Raf murine 
sarcoma viral oncogene homolog B1 (BRAF), phosphoinositide
4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), 
SMAD family member 4 (SMAD4), KRAS, and TP53—represent 
potential biomarkers for CRC metastasis and therapeutic targets 
(112). Notably, KRAS emerges as one of the most commonly 
mutated  oncogenes  in  CRC,  with  mutations  detected  
approximately 40% of cases, underscoring its fundamental role in 
CRC biology (113). 

Recent studies have demonstrated that exosomes carrying KRAS 
mutations play a pivotal role in promoting tumour progression by 
facilitating neutrophil aggregation and the formation of neutrophil 
extracellular traps (NETs). These exosomes transfer mutant KRAS to 
recipient cells, resulting in elevated interleukin-8 (IL-8) levels, which 
subsequently drive neutrophil recruitment and NET formation. This 
cascade of events accelerates the metastatic spread of CRC and 
exacerbates disease severity (114). In addition to KRAS, recent 
studies have also revealed the critical functions of APC and 
transforming growth factor b receptor 2 (TGFBR2, a key component 
of the TGF-b signaling pathway) in regulating the properties of EVs 
and indicated that TP53 mutations are associated with EV-mediated 
biological effects in the tumor microenvironment (Table 8). These 
findings highlight the profound highlight of exosomal genetic material 
on cancer biology and its ability to remodel the tumour 
microenvironment. Exosomes mediate intercellular communication 
and transfer oncogenic cargo, such as mutant KRAS, underscoring 
their potential as both biomarkers and therapeutic targets in CRC. By 
modulating immune responses and promoting metastatic niches, 
exosomes contribute to the aggressive behaviour of CRC, presenting 
new opportunities for therapeutic intervention. 
4.6 DNA derived from EVs as potential 
biomarkers for colorectal cancer 

Tumour-derived exosomes contain double-stranded DNA 
(dsDNA), which serves as a potential biomarker by reflecting the 
mutational profile of the originating cancer cells (118). In colorectal 
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cancer (CRC), circulating tumour DNA (ctDNA), predominantly 
released from tumour tissues, has emerged as a powerful tool for 
precision medicine, enabling the detection of tumour-specific 
mutations and guiding therapeutic decisions (119). Comparative 
analyses of DNA from ctDNA and small extracellular vesicle DNA 
(sEV DNA) in patients with metastatic colorectal cancer (mCRC) 
have revealed concordant mutations in key driver genes such as 
KRAS and BRAF. Notably, DNase I treatment significantly reduced 
sEV DNA levels, with only 10% of the original DNA remaining, 
underscoring the potential of sEV DNA as a reliable source for 
identifying KRAS and BRAF mutations in mCRC (120). 
Furthermore,  extracel lular  vesicle  DNA  (evDNA)  has  
demonstrated a 6.67% higher sensitivity than circulating free 
DNA (cfDNA) in detecting KRAS G12D and G13D mutations in 
the plasma of CRC patients. This enhanced sensitivity suggests that 
evDNA could complement existing methodologies for mutation 
analysis and treatment monitoring in CRC, offering a more 
comprehensive approach to assessing tumour dynamics (121). 

Furthermore, a study analysing plasma samples from mCRC 
and CRC patients demonstrated a positive correlation between 
disease progression and plasma exosome levels. The copy number 
and mutation abundance score of KRAS in exosomal DNA were 
significantly elevated compared to healthy controls. Following 
primary tumour resection, a marked reduction was observed in 
both the copy number and mutation abundance score of KRAS 
G12V/D variants within metastatic lesions. Notably, plasma 
exosomal wild-type and mutant KRAS median copy numbers 
(125/ml and 37/ml respectively) were identified as predictive 
biomarkers for OS. These findings underscore the clinical utility 
of plasma exosome quantification and their genetic cargo in the 
prognostic assessment of mCRC (122). 

Although the above research achievements have brought hope 
for the clinical application of EV-DNA, its isolation and extraction 
remain a crucial challenge in practical implementation. Current 
methods, including commercial kits, face limitations such as low 
yield, contamination susceptibility, compromised DNA integrity, 
lack of standardized methods, and methodological variability (123, 
124). To mitigate surface-associated DNA contamination, most 
studies employ pre-treatments with nucleases (e.g., DNase I, 
Exonuclease I) (125). These technical bottlenecks restrict both the 
TABLE 7 Summarizes the characteristics of EV-derived proteins closely associated with the pathological progression of colorectal cancer, covering 
four aspects: 1) expression patterns; 2) detection methods; 3) biological sources, and 4) functional roles. 

Proteins Expression Methods Sources Functions References 

CD147/A33 Up ELISA/TMT-LC-MS Feces (human) Diagnostic/Prognostic (104) 

CD59 Up AIMS/LC-MS/MS HT-29/SW-480/Colo-205/SW-620 cells/Plasma (human) Metastasis (106) 

Tetraspanin 9 Up AIMS/LC-MS/MS HT-29/SW-480/Colo-205/SW-620 cells/Plasma (human) Metastasis/TNM staging (106) 

SPARC Up ELISA/MS/MS SW-480/HCT-116 cells/Plasma (human) Metastasis (107) 

LRG1 Up ELISA/TMT-LC-MS SW-480/HCT-116 cells/Serum (human) Metastasis (107) 

CPNE3 Up ELISA Plasma (human) Diagnostic/Prognostic (108) 

CAPS1 Up LC-MS HT-29/SW-480/FHC/293T cells Migration (109) 

S100A9 Up ELISA CT-26/SW-480 cells/Plasma (human, mouse) Regeneration (110) 
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advancement of EV-DNA research and its clinical translation, 
necessitating innovative solutions. 

Despite these challenges, emerging strategies demonstrate 
promise. The integration of ctDNA and sEV DNA analyses offers 
a powerful approach for characterising the mutational landscape of 
CRC, significantly improving both diagnostic precision and 
prognostic evaluation. These liquid biopsy techniques facilitate: 
non-invasive monitoring of tumour evolution; early identification 
of resistance mechanisms; real-time assessment of therapeutic 
response. By combining the complementary combining of ctDNA 
and evDNA, clinicians can: gain deeper insights into tumour 
heterogeneity; develop more personalised treatment strategies; 
ultimately enhance patient outcomes. 

Extracellular vesicles (EVs) have established themselves as crucial 
mediators in CRC pathophysiology, orchestrating fundamental 
processes including angiogenesis, immune evasion, metastasis 
dissemination, and therapeutic resistance. This section elucidates the 
dual functional capacity of EVs and their molecular cargo, serving 
simultaneously as: diagnostic and prognostic biomarkers; targeted 
therapeutic delivery systems in CRC management (Figure 2). 
5 Potential of novel EV-derived 
biomarkers in colorectal cancer for 
diagnosis, drug resistance mediation, 
and treatment 

5.1 The potential of EV-derived miRNAs as 
drug carriers for CRC 

Building upon the established roles of EV-miRNAs as diagnostic 
biomarkers (Section 4.1.1) and their regulatory functions in tumour 
progression (Section 4.1.2), the enhanced stability of exosomal bilayer 
membrane structures (Section 2.3) enables targeted therapeutic delivery. 
Specifically, this structural robustness: (1) Protects encapsulated cargo 
(e.g., miRNAs) from enzymatic degradation during circulation, (2) 
Facilitates precise delivery to tumour sites through membrane integrity 
maintenance. For example, leveraging this stability, EV-encapsulated 
miR-1915-3p enhances chemosensitivity in oxaliplatin-resistant CRC 
cells by ensuring intact miRNA delivery to resistant cells (126). 
Similarly, EV-mediated co-delivery of miR-21 and 5-FU capitalizes 
on membrane stability to synchronize chemotherapeutic agent and 
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gene regulator delivery, effectively overcoming 5-FU resistance in 
CRC (127). 
5.2 Emerging roles of EV-derived circRNAs 
in CRC: dual utility as diagnostic markers 
and therapeutic targets 

According to the content of Section 4.2.2, circular RNAs 
(circRNAs) have emerged as key regulators in CRC pathogenesis, 
demonstrating dual utility as both diagnostic and prognostic 
biomarkers. Notably, hsa_circ_0004771 shows elevated expression 
in serum samples from CRC patients, with levels decreasing 
significantly following surgical resection, highlighting its potential 
as a diagnostic marker (128). Beyond their biomarker potential, 
circRNAs actively contribute to tumour progression through 
exosomal pathways. CircSKA3 (hsa_circ_0000467), for instance, 
drives epithelial-mesenchymal transition (EMT) and metastasis by 
stabilising the SLUG protein (129). Furthermore, specific circRNAs 
such as hsa_circ_0004085, which shows upregulation in CRC 
patients with Fusobacterium nucleatum infection, can be 
effectively encapsulated within synthetic exosome-like vesicles. 
This innovative delivery system presents a promising strategy for 
targeted therapy and overcoming chemoresistance in CRC (130). 
5.3 EV-derived lncRNAs in CRC: dual-role 
biomarkers bridging diagnosis and 
therapeutic resistance 

According to the content of Section 4.3.2, long non-coding RNAs 
(lncRNAs) enriched in extracellular vesicles (EVs) from CRC patients 
have emerged as clinically valuable biomarkers. A prominent example 
is lncRNA XIST, which shows significant upregulation in serum EVs of 
CRC patients and demonstrates positive correlation with established 
CRC biomarkers including CEA (r = 0.806), CA242 (r = 0.627), CA199 
(r = 0.254) and CA153 (r = 0.706) (all P < 0.05). These characteristics 
position XIST as a promising dual-purpose biomarker for both 
diagnosis and prognosis (131). Beyond diagnostic applications, EV-
associated lncRNAs play a critical role in mediating therapeutic 
resistance. Notably, elevated levels of EV-derived lncRNA UCA1 
correlate with cetuximab resistance in CRC patients. This transfer 
mechanism underscores UCA1’s potential as a predictive biomarker 
TABLE 8 Shows that in colorectal cancer: 1) mutant APC regulates extracellular vesicle (EV) secretion, while mutant TGFBR2 modulates EV 
composition; EV-mediated transfer of mutant KRAS and TP53 drives functional impacts on tumor progression. 

Genes Extracellular Vesicle Sources Functional Impacts References 

KRAS 
DKs-8/DKO-1 cells/APC-WT/APC-KRASG12D type 

mouse serum 
IL-8 activation/neutrophil recruitment/NETs formation (114) 

Apc 
HCT-116/SW-620/HT-29/SW-1222/ATCC-1459 cells/ 

Human organoids 
Hypoxia activates Wnt, boosts EV secretion, and enhances organoid 

colony formation 
(115) 

TGFBR2 HCT-116 cell Altered miRNA profile of EVs and parental MSI CRC cells (116) 

TP53 HCT-116/HT-29/CCD-18Co/WI-38 cells Promotion of fibroblast proliferation and CRC growth (117) 
This table covers EV biological sources. 
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for treatment response and resistance development. However, the 
molecular mechanisms underlying these phenomena remain to be 
further elucidated (132). 
5.4 EV-associated mRNAs: promising non
invasive diagnostic biomarkers for CRC 

Messenger RNAs (mRNAs) encapsulated within EVs 
demonstrate significant diagnostic potential for CRC. A panel of 
eight EV-associated mRNA biomarkers—MYC, VEGF, CDX2, 
CK19, EpCAM, CEA, CD133, and CD24—that show markedly 
elevated expression in CRC-derived EVs. Among these, VEGF and 
CD133 exhibit exceptional diagnostic performance, demonstrating 
both 100% sensitivity and 93% accuracy, thereby representing 
robust non-invasive biomarkers for CRC detection (133). 
5.5 EV-derived proteins: promising 
diagnostic and prognostic biomarkers for 
CRC 

According to the content of Section 4.4.2, proteins cargo within 
plasma-derived EVs has emerged as a valuable source of diagnostic 
and prognostic biomarkers for CRC. Notably, increased expression 
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of ORM1 (a-1 acid glycoprotein 1) in plasma EVs demonstrates 
significant correlation with reduced overall survival, establishing its 
clinical utility as a prognostic marker (134). Other proteins, 
including HSPG2, TUBA4A, ITGB3, and TLN1, demonstrate 
altered expression patterns in CRC patients, indicating their 
potential utility as prognostic biomarkers (135). 
5.6 EV cytokines: promising target and 
marker for CRC 

Cytokines encapsulated within tumour-derived EVs, including 
tumour necrosis factor-a (TNF-a), play critical roles in CRC 
progression. TNF-a facilitates CRC development by targeting 
SNAP23, which subsequently enhances TNF-a secretion in EVs. 
This TNF-a/SNAP23 signalling axis represents both a potential 
therapeutic target and diagnostic marker for CRC (136). 
6 Emerging EV-based biomarkers and 
future directions 

In addition, emerging biomarkers including circulating tumour 
DNA (ctDNA), EV-associated nucleic acids, gut microbial alterations 
FIGURE 2 

Mechanisms of biological functions related to EV-derived components, including miRNAs, circRNAs, lncRNAs, and proteins in colorectal cancer. The 
figure covers eight major aspects of their functions, including: 1) involvement in diagnosis and prognosis; 2) regulation of differentiation and immune 
escape; 3) induction of drug resistance and regeneration; 4) promotion of proliferation, migration, and invasion; 5) modulation of apoptosis; 6) TNM 
staging; 7) angiogenesis and permeability; and 8) metastasis and therapy. These EV-derived components can further interact through various 
molecular mechanisms, thereby influencing the biological processes of CRC cells. These insights provide valuable references for targeting tumor 
cell-related biological behaviors in CRC treatment. In each box, the font color legend is reported as follows: red represents upregulated genes, and 
blue represents downregulated genes. 
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and specific protein markers show promising diagnostic and 
monitoring potential in CRC (137). EV-based biomarkers provide 
distinct advantages over conventional biomarkers such as 
carcinoembryonic antigen (CEA) and circulating microRNAs, 
including non-invasive sampling, capacity for real-time monitoring, 
and superior stability and specificity (138). Nevertheless, while 
accumulating evidence supports the clinical utility of EV-derived 
molecules in CRC, few clinical trials have systematically assessed 
their diagnostic performance. Comprehensive clinical validation 
remains imperative to establish their reliability and effectiveness in 
routine clinical practice. In summary, EVs and their molecular 
constituents constitute a robust platform for CRC diagnosis, 
prognosis and therapeutic development. 
7 Conclusion and perspectives 

Colorectal cancer (CRC) demonstrates increasing global 
prevalence, particularly among younger demographic groups, 
highlighting the pressing requirement for improved early detection 
and therapeutic approaches. The frequently non-specific early  clinical  
manifestations of CRC commonly result in diagnosis at advanced 
disease stages, substantially diminishing patient prognosis and 
survival outcomes. This clinical challenge has established the 
discovery of novel biomarkers for early detection and intervention 
as a paramount research priority in CRC management. 

Extracellular vesicles (EVs) are detectable in diverse biological 
fluids and encapsulate numerous biomolecules, including proteins 
and nucleic acids. These EV-associated components play pivotal role 
in CRC pathogenesis through regulation of critical processes 
including angiogenesis, cellular proliferation and migration activity. 
Such functional properties render EV-derived biomolecules 
particularly promising candidates for CRC diagnosis and prognostic 
assessment. Among various sample types, plasma-derived EVs have 
attracted the most extensive research focus due to: the non-invasive 
nature of plasma collection; their inherent stability and abundant; 
their direct relevance to CRC pathology. Nevertheless, plasma 
presents technical challenges for EV isolation and analysis, 
primarily due to interference from soluble proteins and aggregates, 
which may compromise the precision of biomarker detection. 

Current methodologies for detecting microRNAs (miRNAs) in 
exosomes derived from serum, plasma and cell lines primarily employ 
quantitative reverse transcription polymerase chain reaction (qRT-
PCR). Similarly, identification of trace RNA in exosomes f samples 
from these sources predominantly relies on qRT-PCR. However, the 
low abundance of these nucleic acids in exosomes frequently restricts 
the sensitivity of conventional detection approaches. To overcome 
these limitations, digital PCR (dPCR) has emerged as an increasingly 
utilised technique offering exceptional sensitivity for nucleic acid 
quantification at single-molecule resolution. Through sample 
partitioning into numerous microscopic reaction chambers, dPCR 
facilitates precise nucleic acids quantification in exosomes, thereby 
addressing the constraints of traditional PCR for low-abundance 
targets. Although dPCR has not yet achieved widespread adoption 
in exosome research, its capacity to improve nucleic acid detection 
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accuracy positions it as a promising methodology for advancing EV-
based diagnostic applications. 

Despite significant progress in EV isolation methodologies, 
persistent challenges remain in efficiently isolating and 
characterisation tumour-derived EVs. Establishing standardised 
protocols and robust quality control measures represents a critical 
requirement to enhance yield, purity and reproducibility in EV 
research. Such standardisation will accelerate the clinical translation 
of EV-based diagnostic and therapeutic approaches, ultimately 
improving the effectiveness of CRC detection and treatment strategies. 

In summary, EVs represent constitute a promising for CRC 
biomarker discovery, providing valuable insights into tumour 
biology and revealing potential therapeutic targets. The 
implementation of advanced technologies such as dPCR, coupled 
with the development of standardised isolation protocols, will prove 
essential for addressing current limitations and realising the 
complete potential of EVs in CRC diagnostics and personalised 
medicine. Future investigations should prioritise: (1) validation of 
EV-derived biomarkers in large-scale clinical cohorts, and (2) 
exploration of their clinical utility in guiding therapeutic decision-
making—ultimately enhancing outcomes for CRC patients. 
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