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Introduction: Few studies have tracked the genetic evolution of glioma

recurrence in patients after surgery. We conducted a systematic review

through an innovative sampling method, which made post-operative follow-

up possible. Tumor DNA from Tumor in situ fluid (TISF) was used to trace the

genetic landscape of gliomas at different stages of recurrence and evolution.

Methods:We recruited 60 patients with WHOII-III gliomas diagnosed more than

6 years ago. We performed whole exome sequencing (WES) of primary tumor

tissues and paired TISF to identify somatic mutations by personalized, tumor-

informative TISF-DNA testing. TISF and recurrent tumor tissues were collected at

simultaneous and 2-3 month routine visits. Patients were followed up for

clinical recurrence.

Results: In gliomas dominated by genomic alleles with low frequency (variant

allele fraction, VAF < 1%), imaging residues had higher VAF (p = 0.016), and

patients with postoperative recurrence also had higher VAF (p < 0.0001). Under

the pressure of treatment, multiple mutations gradually increased with tumor

evolution, and dominant high-frequency mutation gradually appeared. Samples

of relapsed TISF contained much more abundant clonal mutations. Sequencing

of relapsed tumor tissue and relapsed TISF samples showed high consistency in

mutation detection and estimation of allele frequency (p < 0.0001, VAF

correlation, R2 = 0.8737). In patients under continuous surveillance, the

tumors at different stages showed heterogeneity. We determined that TISF

may detect elevated Tumor DNA VAF prior to positive imaging findings and

effectively identify patients with pseudoprogression.

Discussion: TISF-DNA showed high consistency with tumor tissue, showing the

genetic landscape of glioma at different stages after surgery. It can even be used

to identify false progression during glioma treatment. Even in the absence of

imaging findings, glioma DNA recurrence should arouse clinical concern and

induce new research.
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Introduction

Glioma is the most common primary intracranial malignancy,

and there is no standard treatment for recurrence (1). Recent

advances have shown significant epigenetic and environmental

heterogeneity within gliomas, which are linked together to lead to

extreme phenotypic heterogeneity at the cellular level, providing

multiple therapeutic resistance mechanisms and complicating the

treatment of gliomas for recurrence (2).

Enhanced detection of minimal residual disease by targeted

sequencing of phased variants in circulating tumor DNA (3),

guiding adjuvant immunotherapy (4), tumor early relapse

detection (5), tracking the evolutionary dynamics and

heterogeneity of tumors (6), Positive ctDNA is considered as

possible evidence of early cancer molecular residual disease

(MRD) (7–10). The clinical correlation between ctDNA and

cancer is the direction of future clinical decision-making. Recent

studies evaluating ctDNA in different tumor types, including

gliomas, have shown that ctDNA and genetic profiles from tumor

or metastatic biopsy tissue samples have the same ability to track

changes in mutations and mutation patterns (11, 12). However,

there are currently limited studies on gliomas. Recent studies have

shown that circulating tumor DNA from the cerebrospinal fluid is

more representative than circulating tumor DNA from blood (13).

However, CSF-ctDNA is positive only when tumor load is high (14–

16), adjacent to cerebrospinal fluid, tumor progression, and glioma

genomic evolution information lost under therapeutic pressure.

TISF-DNA as a biomarker of glioma load is our latest discovery
Frontiers in Oncology 02
(17). It overcomes the shortcomings of tissue-based biomarkers and

enables rapid sampling and multiple continuous monitoring to

detect tumor heterogeneity on time. TISF-DNA was more sensitive

to low tumor load. At the same time, the TISF collection process

was even less invasive than lumbar puncture, and TISF was superior

to cerebrospinal fluid (CSF) even when gliomas were adjacent to

CSF systems (18). We found a higher positive rate of TISF-DNA in

the early postoperative period, and a higher concentration of

cfDNA than CSF, even in paired samples tested at the same time

(19). However, continuous monitoring is needed to understand the

evolution of postoperative glioma recurrence, and relevant studies

are still insufficient at present.

We conducted an observational study to monitor mutated genes

in gliomas at different stages offirst-line treatment using continuous

TISF-DNA testing and investigate its potential relevance to

clinical outcomes.
Materials and methods

Patients and sample collection

This prospective observational study was conducted on January

1, 2016, at the People’s Hospital of Henan Province on January 31,

2022. The primary tumor was resected and a fluid reservoir was

placed in the residual cavity after tumor resection for postoperative

TISF collection (17) (Figure 1). The primary tumor samples were

obtained by surgery, and the NCCN regimen was used to guide the
FIGURE 1

Primary tumor and TISF samples were obtained. The primary tumor samples were obtained from surgically removed tumor tissue. A reservoir sac
with a catheter is placed after the primary tumor is removed to form a residual cavity. The catheter ends in the tumor cavity, and the reservoir sac is
placed under the scalp. TISF samples were obtained at three postoperative time points: 0-35d, 36-120d, and after120d.
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treatment after surgery. TISF samples were collected at different

postoperative times: 0-35d, 36-120d, and more than 120d after

surgery (tumor progression according to RANO standard, T1

enhancement increased by ≥ 25%, T2/FLAIR increased, and new

lesions and clinical manifestations deteriorated). Tumor volumes of

all patients were determined before and after surgery by manual

segmentation of corresponding MRI images using a 3D slicer

(version 5.0.2). Contrast-enhanced T1WI and T2WI/T2-flair

images were the primary references for determining tumor

boundaries. During patchy enhancement, the high-intensity signal

on T2WI/T2Flair is used to delineate tumor boundaries. Total

resection rate of tumor = (preoperative tumor volume -

postoperative tumor volume)/preoperative tumor volume. A

removal rate less than 90% is considered residue. This process is

done by a single radiologist (Supplementary Table S1). Five patients

underwent a second surgical resection of the tumor after

radiographic recurrence was found. Fresh tumor tissue comes from

surgical resection, andHE staining specimens containmore than 70% of

tumor cells, which neuropathologists have confirmed. In addition,

matching blood samples from each patient were taken to filter for

mutations from normal DNA (Supplementary Table S2). A brain tumor

gene panel was designed to screen for tumor mutations (Supplementary

Table S3). Grade III-IV glioma patients were followed up every 4-6

weeks, and grade II glioma patients were followed up every 2-3 months.

All patients underwent MRI at each follow-up evaluation.
Targeted sequencing analysis of tumor-
associated DNA

All clinical TISF samples and tumor tissue samples were

detected by Next-generation sequencing. QIAamp DNA Tissue

and Blood Kit for Genomic DNA (Qiagen; Germantown, MD,

USA) extract. TISF sample and blood sample were centrifuged in an

EDTA tube at 1900 g for 10 min, and the precipitate particles were

frozen at −80°C. The supernatant was centrifuged at 16000 g for 10

min and transferred to −80°C for preservation. CfDNA was

extracted from TISF and blood supernatant using a Mag-MAX

CellFree DNA isolation kit (Thermo Fisher Scientific, Waltham,

MA, USA). Finally, all segregated DNA was quantified using the

Qubit 2.0 Fluorometer with the Qubit dsDNA HS Assay kit (Life

Technologies; Carlsbad, CA, USA).

The isolated DNA was cut into 150-200 bp fragments using

Covaris M220 Focused-ultrasonicator™ Instrument (Covaris;

Woburn, MA, USA). Following the manufacturer’s direction9,10 to

construct Fragmented DNA and ctDNA libraries with the KAPA

HTP Library Preparation Kit (Illumina platforms; KAPA Biosystems;

Wilmington, MA, USA). The DNA sequencing was based on a

novaseq high-throughput sequencing platform. After sequencing,

we adopted such criteria that a mutation had an allele fraction of ≥

0.1%, and a total of ≥ 4 reads were considered existing in liquid

samples. Known recurrent loci were further manually checked with

Integrative Genomics Viewer (IGV v2.3.34) in the target sample
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comparing to the normal blood DNA. Using the dbNSFP and the

Exome Aggregation Consortium (ExAC) database to exclude either

benign mutations with pp2_hdiv score < 0.452 or polymorphic

nonsynonymous mutations sites. In the end, all detected mutations

were annotated for genes using ANNOVAR, Oncotator and Vep.
Statistical analysis

Graph drawing was completed in GraphPad Prism(Version

8.0C), heat maps were generated by TBtools, and statistical tests

were performed by SPSS (Version 23.0; Armonk, NY, IBM Corp),

Fisher’s exact test for categorical variables, Wilcoxon test, and

Mann-Whitney(rank-sum) test or Kruskal-Wallis test for

continuous variables.
Results

Patient baseline characteristics

We isolated TISF-DNA from 60 patients with primary glioma of

the brain central nervous system. (Supplementary Table S1). The

mean age was 51.5 years (range 21-78 years), and the tumor grade

wasWHO grade II-IV. Most of the tumors were located in the frontal

lobe (n = 19) and temporal lobe (n = 10), temporoparietal lobe (n =

8), cerebellum (n = 2), thalamus (n = 1), and some in both lobes (n =

12), while the remaining tumors were located in the parietal lobe (n =

8). The genome of the primary tumor (n = 54) represents the

characteristics of glioma before surgery. 0-35d after surgery (n =

20) represents the genomic characteristics of minimal residual disease

in the tumor lumen early after surgical resection. 36-120d after

surgery (n = 19) represents the genomic characteristics of glioma

undergoing chemotherapy (low grade) and chemoradiotherapy (high

grade). 120d after surgery (n = 38) represents genomic characteristics

of further chemotherapy during treatment. Radiographic tumor

recurrence was found in 26 patients at the time of sampling.
Genomic landscapes of glioma at various
stages under first-line treatment

In general, the altered genes are different at different stages of

the treatment process, but there is some similarity. For the primary

tumor (Figure 2A), The most frequently altered genes were TP53

(44%), IDH1 (39%), PTEN (24%), CIC (17%), EGFR (17%), NF1

(13%). At the stage of 0-35d after surgery (Figure 2B), The most

frequently altered genes were NF1 (45%), SETD2 (45%), CIC (40%),

TP53 (40%), BRCA2 (30%), GNAS (30%). After treatment 36-120

days after surgery (Figure 2C), The most frequently altered genes

were NF1 (53%), TP53 (53%), TSC2 (47%), PTCH1 (42%), BRCA1

(37%), FAT1 (37%). 120d after surgery (Figure 2D), The most
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frequently altered genes were TP53 (37%), SETD2 (39%), IDH1

(26%), NF1 (26%), NOTCH1 (26%), RELA (24%). For radiographic

recurrence (Figure 2E), the mutation rates were TP53 (58%), NF1

(38%), SETD2 (38%), EGFR (35%), FAT1 (31%), PTEN (31%).

Interestingly, during the whole treatment process, TP53 and NF1

continued to have high frequently altered, and EGFR, PTEN and

SETD2 also had high frequently altered. They may be the driving

mutations retained when tumors recur. Gliomas at different stages
Frontiers in Oncology 04
were highly heterogeneous during postoperative treatment, with

only 15.75% shared mutation rate and 84.25% private mutation rate

(Figure 2F). Fourteen patients were sampled and monitored

continuously. Among the genes with high mutation frequency,

only EGFR (n = 1, 14.3%), IDH (n = 2, 22.2%) and TP53 (n = 1,

11.1%) were present in all monitored samples (Figures 2G1-G8).

Mutations present in primary tumors were also found in TISF-DNA,

such as CIC (n = 2, 20.0%), FAT1 (n = 2, 20.0%), NF1 (n = 3, 33.3%),
FIGURE 2

Mutational characteristics for alterations detected by deep sequencing of the TISF-DNA and tumor tissue DNA. (A-E) They were primary tumor tissue
samples, TISF samples within 0-35 days after surgery, TISF samples 36-120 days after surgery, TISF samples 120 days after surgery, and TISF samples
of recurrent tumors, including missense variant, Inframe deletion, and deletion. Frameshift variant, splice acceptor variant, stop gained, Multiple
variant, frameshift variant, splice donor variant, start lost, splice variant, nonsense variant. (F) Shared and private mutation characteristics in glioma
map loci at different stages. (G1-G8) TISF samples were obtained from 14 consecutive patients. TISF samples were obtained from 14 consecutive
patients. The number of patients with high frequency altered genes CIC, EGFR, FAT1, IDH, NF1, NOTCH1, SETD2, and TP53 in each test was shown.
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FIGURE 3

Allele variation frequency in the genome at different stages of first-line treatment for glioma. (A-E) They were primary tumor tissue samples, TISF
samples within 0-35 days after surgery, TISF samples 36-120 days after surgery, TISF samples 120 days after surgery, and TISF samples of recurrent
tumors, VAF distribution of different mutated genes, and low-frequency mutation (VAF<1%) ratio shows. (F) Allele Variation frequency of genes in all
periods is integrated. High heat represents high VAF; the closer it is to the periphery, the closer it is to the recurrence time, and the center
represents the primary tumor sample. (G) Allele Variation frequency of mutated genes in different periods increased with tumor evolution, showing
significant statistical differences. (H) Allele Variation frequency in TISF samples of patients with postoperative imaging residue compared with patients
with complete imaging resection and patients with recurrence compared with patients without recurrence was significantly different.
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https://doi.org/10.3389/fonc.2025.1581173
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yu et al. 10.3389/fonc.2025.1581173
NOTCH1 (n = 2, 25.0%) and SETD2 (n = 2, 33.3%). However, more

interestingly, mutations were found in TISF but not in the primary

tumor in many patients, such as CIC (n = 7, 70.0%), EGFR (n = 5,

71.4%), FAT1 (n = 8, 80.0%), IDH (n = 2, 22.2%), NF1 (n = 6, 66.7%),

NOTCH1 (n = 6, 75.0%), SETD2 (n = 4, 66.7%), TP53 (n = 3, 33.3%).
Genomic VAF changes under first-line
treatment

We found that the primary tumor tissue had such a high VAF

(Figure 3A) that 97.37% of the mutation had a VAF value greater

than 1%, and only 2.27% of the low-frequency mutation. However,

in the early stage after tumor resection (within 35d), 87.84% of the

low-frequency mutation had a VAF value of less than 1%

(Figure 3B). Furthermore, only 12.16% of the mutation with a

VAF value greater than 1%. With further postoperative treatment

(36-120 days), mutations with VAF greater than 1% increased

slightly (Figure 3C) to 14.29% 120 days after surgery, and

mutations with VAF greater than 1% were significantly increased,
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accounting for 30.42% (Figure 3D). In TISF samples from

patients with recurrence, mutations with VAF greater than 1%

were found to be slightly higher overall, accounting for 30.84%

(Figures 3E, G, p < 0.0001). In addition, we also found that

patients with higher VAF within 35 days after surgery may be

associated with postoperative residual. Imaging showed that

patients with significant residual VAF were more extensive than

those with complete radiographic resection (Figure 3H, p = 0.016).

In contrast, patients with radiographic recurrence during

postoperative treatment had higher VAF than those without

recurrence (Figure 3H, p < 0.0001, p < 0.0001).
Changes in specific gene types in glioma
under first-line treatment

In TISF-DNA, we found mismatch repair (MMR) genes (MSH2,

MSH3, MSH6, MLH1, MLH3, PMS1, PMS2), and temozolomide-

related high mutations [the accumulation of G: C>A: T: transitions at

non-CPg sites in hypermutated gliomas after exposure to alkylating
FIGURE 4

Mutations at different time points – multiple mutations, MMR-related mutations, temozolomide-related mutations, and VAF greater than 5%.
(A, B) A1-A5 is from the data of each mutation site, and B1-B5 is from the data of each mutation patient. corresponding to the primary tumor tissue specimens,
TISF specimens within 0-35 days after surgery, TISF specimens 36-120 days after surgery, TISF specimens 120 days after surgery, and TISF specimens of recurrent
tumors. (C, D)Multiple mutations and MMR increased with tumor recurrence. VAF decreased significantly after tumor excision and increased with tumor recurrence.
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Agents (20, 21)]. In general, Multiple mutations, MMR-related

mutation, and gene mutation with VAF > 5% increased gradually

in gene mutation with postoperative treatment and tumor

progression after glioma resection, and the proportion of patients

also increased gradually (Figures 4A1-5, B1-5). All patients were

treated with temozolomide (alkylating agent) chemotherapy after

surgery. Interestingly, as chemotherapy progressed, we did not find

an increase in the mutation frequency of temozolomide-related high

mutations, nor did we find an increase in the number of patients with

temozolomide-related high mutations (Figure 4C, D). Therefore,

MMR and Multiple mutations may be associated with glioma

recurrence after treatment, which is consistent with previous studies.
Frontiers in Oncology 07
Genomic characterization of glioma
patients was continuously monitored

TISF samples from 14 patients in this study were obtained by

continuous monitoring, TISF-1 (postoperative 35 days), TISF-2

(postoperative 36-120 days), and TISF-3 (postoperative 120 days),

and they were divided into two groups: non-recurrence group (n =

4) and recurrence group (n = 10). Similar to the above conclusions,

low-frequency distribution was observed in both groups at the early

stage after glioma resection (Figures 5A, B). However, increased

frequency of some genes in TISF-3 was observed in the recurrence

group while not in the non-recurrence group. With the
FIGURE 5

Characteristics of genetic mutations at different times in 14 patients from continuous TISF samples. (A) Genomic landscape of 10 recurrent patients
at follow-up. Color heat represented VAF values, which were elevated at the mutated locus at recurrence. Hypermutation was found when patient
NO.31 recurred. (B) Genomic landscape of mutations in 4 patients without recurrence at follow-up. The mutation locus VAF was not elevated at the
time of recurrence. (C) There were differences in mutation sites at different periods in all recurrent patients during continuous testing. There are only
five sites throughout the relapse process: IDH1p Arg132His, TP53p. Arg273Cys, PIK3Cap. Gln546Lys, HIST1H3Cp. Lys37Met, BRAFp. Val600Glu. TISF
samples contain much more private mutations. (D, E) The proportion of shared mutations and private mutations among different test samples. TISF
samples contained much more private mutations, and shared mutations accounted for only a small proportion, which was consistent with the
previous results.
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postoperative progression of glioma, there were more private

mutations in TISF-DNA than in the primary tissue (Figure 5C),

with a maximum of 156 mutations in TISF-3 Mutations shared

between TISF and primary tissue decreased gradually, with the

highest in TISF-1 and decreased with tumor progression

(Figure 5D). A lower proportion of mutations shared between

TISF-1 and TISF-3 was also found in TISF-DNA samples
Frontiers in Oncology 08
(Figure 5E). This suggests that the minimal residual disease in the

early postoperative stage may be closer to the primary tumor; there

is significant heterogeneity between recurrent and primary tumors.

Five patients underwent a second surgical resection after recurrence,

and 129 gene loci mutations were detected in the recurrent TISF but not

in the recurrent tissue (Figure 6A), and only 32 loci were detected in the

recurrent tissue. There were only 17 identical mutation loci in the
FIGURE 6

Characteristics and clinical relevance of VAF gene mutations among TISF samples. (A) There were many mutated sites in the TISF of recurrent
tumors, including most of the recurrent tissues (81.8%) and only 8.6% identical to the primary tumor tissue. (B) In the five patients who underwent
the second operation, there was no significant correlation between the shared mutant VAF between the primary tumor tissue and the recurrent
tumor tissue, which reflected the differences in the tumor recurrence driver genes. (C) Similarly, no significant association was found between
primary tumor tissue and recurrent tumor TISF samples for shared mutant VAF. (D) In the TISF samples of recurrent tumor tissue and recurrent
tumor, the VAF of shared mutation was highly consistent and positively correlated. (E) Allele variation frequency increase in TISF was found in 3
patients with glioma after surgery before positive imaging examination, which may indicate recurrence of tumor DNA level. (F) Five patients
underwent a second operation, and pathology confirmed pseudotumor progression in patients 9 and 30, with lower VAF values for the mutated
gene in their relapsed tissues and relapsed TISF. Patients 31, 26, and 25 had pathologically confirmed tumor recurrence and had higher VAF values
for the mutated gene in their recurrent tissues and recurrent TISF. (G) We derive the evolutionary cell model of recurrent glioma under the pressure
of first-line therapy. Size and heat represent the VAF value of the mutant gene. With tumor recurrence, mutated genes gradually evolved from low-
frequency VAF to dominant driver genes, and VAF gradually increased until tumor recurrence was found on imaging.
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primary and recurrent tumor, with a consistency rate of only 30.36%.

There was no significant correlation between the frequency of mutations

in the genes consistent with the primary and recurrent tissues

(Figure 6B, P = 0.5912, R2 = 0.01468). There was no significant

correlation between the frequency of mutations shared between TISF

samples from 26 recurrent patients and their tissues (Figure 6C, P =

0.8987, R2 = 0.0004102). However, a positive correlation was found

between the frequency of shared mutations in relapsed tissues and

relapsed TISF (Figure 6D, P < 0.0001, R2 = 0.8737).
Clinical relevance of genomic changes in
glioma

Based on the results of this study, we summarized the correlation

between genomic changes after glioma surgery and clinical practice.

We found that the elevation of VAF predates radiographic findings

(Figure 6E, Patient 24, patient 31, and patient 34), indicating that

tumorDNA relapsemay be present when radiographic findings are not

positive and is an ultra-early manifestation of relapse. We performed a

second tumor resection for six patients with radiological manifestations

of recurrence, and only three patients were found to have pathological

manifestations of tumor recurrence, with Multiple mutations and high

VAF values in their recurrent TISF. Two patients presented with

extensive inflammatory and necrotic tissue, and no mutations were

detected in their TISF (Figure 6F). Finally, we summarize the

evolutionary model of first-line therapy in glioma cases (Figure 6G),

in which tumor-driving genes are removed along with surgical excision

of the primary tumor. There are many low-frequency mutations in the

residual disease stage after surgery. After the treatment, the VAF of

mutation increased under the pressure of the treatment, at which time

the imaging may not show a positive result. As the tumor evolves

further, tumor recurrence driver genes emerge, leading to tumor

growth and imaging recurrence. These results indicate that early

molecular recurrence of glioma may be effectively detected by TISF-

DNA, providing a possibility for early clinical diagnosis and treatment

of recurrence.
Discussion

Although tumor biopsy remains the gold standard for glioma

diagnosis, liquid biopsy-based on TISF-DNA overcomes many of

the limitations of tumor biopsy and has clinical advantages over

circulating tumor DNA derived from blood and cerebrospinal fluid

(19). The biopsy is sampled locally at a single metastatic site, which

may introduce sampling bias (22). Biopsies can be painful and cause

anxiety, and biopsies carry the risk of bleeding or infection. CSF-

ctDNA is a suitable method, but it is almost difficult to detect in the

early stage after tumor resection. Positive CSF-ctDNA often

requires certain conditions, including large tumor load, tumor

progression, and tumor diffusion into the ventricular system or

subarachnoid space (14–16). This makes it impossible to detect

genomic changes at the early stage of glioma evolution, let alone
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detect tumor recurrence at the tumor DNA level earlier than

imaging, making early postoperative targeted therapy more difficult.

Our analysis of glioma driver gene heterogeneity and recurrence

provides essential insights into the genomic state at all stages of

glioma first-line treatment. First, in the first-line treatment context,

the genetic mutations of the tumor genome differ at different stages

(Figure 2A-D). In the early stage after surgical resection, the gene

status was dominated by low-VAF mutations, and no high-VAF

mutations appeared at this time. As the treatment progresses, tumor

Multiple mutations increase, and VAF increase (Figure 4C, D). In

addition, we observed that mutations detected in recurrent tumor

tissue samples were in good agreement with matched TISF samples

(Figure 6D), demonstrating the reliability of TISF-DNA in detecting

tumor DNA variation during systemic treatment of gliomas.

Our study also found that TISF-DNA found increased tumor DNA

VAF levels, but there was no positive imaging performance at this time

(Figure 6E). At this time, the tumor had DNA level recurrence, which

relevant studies have confirmed, and we found this for the first time in

glioma (10, 23–25). In addition, the TISF of patients with recurrence

showed high-frequency mutations similar to that of the recurrent

tumor tissue. In contrast , the TISF of patients with

pseudoprogression showed low-frequency mutations, and tissue test

was negative, but they all showed positive findings on imaging. This

indicates that TISF-DNA can identify pseudoprogression of glioma in

clinical practice, thus providing therapeutic guidance for physicians.

Nevertheless, no similar study has been done.
Conclusions

Our results show the state of the genome and the course of relapse

at different stages under pressure from the first-line treatment of glioma.

We determined that continuous TISF can be used to track postoperative

residual disease, tumor relapse, and pseudoprogression of gliomas. It

can dynamically provide guidance for the clinical management of

glioma patients, promote the development of glioma-related research.
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