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Objective: This study aims to investigate the application value of fractional-order

calculus (FROC) and continuous-time random-walk (CTRW) derived multiple

parameters in distinguishing benign and malignant head and neck lesions and

compare their performance with conventional diffusion-weighted imaging (DWI).

Methods: A retrospective analysis was conducted on 70 pathologically confirmed

cases, including 23 benign lesions (BL) and 47 malignant lesions (ML). ML was

further classified into lymphoma subgroups (LS, 11 cases, 15 lesions) andmalignant

lesions subgroups excluding lymphoma (MLS, 36 cases). DWI scans with 12 b-

values were performed before treatment, and seven diffusion parameters—ADC,

DFROC, bFROC, mFROC, DCTRW, aCTRW, and bCTRW—were extracted from conventional

DWI, FROC, and CTRW diffusionmodels. Independent t-tests or U-tests were used

to compare parameter differences among BL, ML, LS, and MLS. Diagnostic

performance was evaluated using receiver operating characteristic (ROC) curves,

with area under the curve (AUC) compared via DeLong analysis. Pearson

correlation analysis was conducted to explore relationships between diffusion

parameters and Ki-67 expression in the MLS group.

Results: ADC, DFROC, mFROC, DCTRW, and aCTRW showed significant differences

between all groups, aCTRW demonstrated the highest diagnostic performance

(AUC). Significant correlations were found between Ki-67 expression and DFROC

(r = -0.367, p = 0.028), DCTRW (r = -0.376, p = 0.024), aCTRW (r = -0.418, p =

0.011), and bCTRW (r = 0.525, p = 0.001).

Conclusion: Multiple diffusion parameters derived from FROC and CTRW models

effectively differentiate between benign and malignant head and neck lesions,

reflecting tumor heterogeneity. Among them, aCTRW showed the best diagnostic

performance, making it a promising non-invasive imaging biomarker for quantitative

assessment and differential diagnosis of head and neck tumors, thereby improving

diagnostic accuracy.
KEYWORDS

head and neck lesions, fractional-order calculus, continuous-time random walk,
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Introduction

Head and neck tumors, both benign and malignant, represent a

diverse group of pathological entities. Accurate preoperative

differentiation is vital for guiding individualized treatment

strategies (1). Imaging serves as a cornerstone in the assessment

of head and neck tumors, with computed tomography (CT) and

magnetic resonance imaging (MRI) being the most frequently

employed non-invasive modalities. CT, owing to its high spatial

resolution, provides excellent visualization of anatomical structures

and is particularly advantageous for evaluating bone involvement.

However, its relatively poor soft-tissue contrast limits its capacity to

fully characterize tumor composition. Recent advancements,

including hyperspectral imaging and computer-aided diagnosis,

have enhanced soft-tissue differentiation by enabling material

decomposition and virtual monoenergetic imaging, offering

improved accuracy in the quantitative analysis of iodine

concentration (2). Nevertheless, the use of ionizing radiation in

CT poses concerns, especially for patients requiring serial follow-

up, thereby limiting its routine clinical use. In contrast, MRI offers

superior soft-tissue contrast and provides valuable information

regarding tumor localization and invasion of adjacent structures.

Despite these advantages, MRI interpretation remains highly

dependent on radiologist expertise and lacks standardized

quantitative diagnostic criteria (3).

The conventional apparent diffusion coefficient (ADC), which

quantitatively evaluates the microstructure of tumor tissues (4), has

been widely used to differentiate between benign and malignant

head and neck lesions (5, 6). This model assumes that the diffusion

of water molecules occurs in a homogeneous environment.

However, in tumor tissues with high structural heterogeneity,

where simple ADC values are unable to adequately describe the

tissue heterogeneity (7). Given the heterogeneity of biological

tissues, especially tumors that exhibit a high degree of structural

heterogeneity and complexity, it is widely accepted that water

molecule diffusion in such tissues does not follow a Gaussian

distribution (8). While some studies have reported significant

differences between benign and malignant groups (9), others

show considerable overlap between different types of tumors (10).

To address these limitations, non-Gaussian diffusion models

have been developed to better capture tissue microstructure and

heterogeneity. The fractional order calculus (FROC) model, based

on the Bloch-Torrey equation (11), generates three parameters that

describe the complex diffusion process in heterogeneous tumor
Abbreviations: FROC, Fractional order calculus; CTRW, Continuous-time

random walk; CT, Computed tomography; BL, Benign lesions; ML, Malignant

lesions; LS, Lymphoma subgroup; MLS, Malignant squamous cell carcinoma

lesions subgroup; ADC, Apparent diffusion coefficient; ROC, Receiver operating

characteristic; AUC, Area under the receiver operating characteristic curve; ICC,

Intraclass correlation coefficient; MRI, Magnetic resonance imaging; ROI, Region

of interest; RESOLVE, The readout segmentation of long variable echo trains; SS-

EPI, Single-shot echo-planar imagingCI, confidence interval; DWI, diffusion

weighted imaging; ADC, apparent diffusion coefficient; FROC, fractional order

calculus; CTRW, continuous-time random walk.
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tissues: diffusion coefficient (DFROC, mm²/ms), spatial fractional

order derivative (bFROC), and spatial parameter (mFROC, mm).

These parameters provide insights into diffusion dynamics

(DFROC), structural complexity (bFROC), and the diffusion

environment (mFROC). Similarly, the continuous-time random

walk (CTRW) is another interesting model (12) that provides two

parameters related to intra-voxel tissue structural heterogeneity:

temporal diffusion heterogeneity (aCTRW) and spatial diffusion

heterogeneity (bCTRW), thus providing a method for studying

changes in tumor structure. Additionally, the derived parameter,

DCTRW (mm²/ms), is similar to ADC, measures abnormal diffusion

processes, and is sensitive to tissue cellularity.

Previous studies have demonstrated the value of the FROC and

CTRW models in differentiating lesions of the nervous system,

breast, prostate, and bladder (11–22). However, no study to date has

delved into the application of high spatial resolution FROC and

CTRW diffusion in the differentiation of head and neck tumors.

Therefore, the purpose of this study was to evaluate the value of

these two non-Gaussian models for the differentiation of head and

neck tumors and analyze the relationship between each diffusion

parameter and Ki-67 expression in squamous cell carcinoma.
Materials and methods

Patients

This retrospective study, approved by our hospital’s medical

ethics committee, was designed with a waived consent process due

to its retrospective nature. From January 2022 to July 2024, 70

patients with pathologically confirmed head and neck tumors were

retrospectively analyzed. The inclusion criteria were as follows: (1)

MRI scans performed before or within three days of biopsy without

receiving relevant treatment, and without a history of head and neck

cancer; (2) All patients were diagnosed by tissue biopsy or

postoperative pathology and tested for Ki-67 marker expression;

(3) scans included multi-b-value diffusion sequences; (4) The

minimum short diameter of the lesion is > 1 cm. The exclusion

criteria were defined as follows: (1) inflammatory lesions or

lipomas; (2) underwent radiotherapy or chemotherapy before

MRI scan; (3) severe image artifacts or small lesions caused

difficulties in delineating the region of interest (ROI); (4)

Excessive areas of necrosis, hemorrhage, or cystic degeneration

are present within the lesion.

Immunohistochemical assessment of Ki-67 expression was

performed as follows. Tissue specimens were fixed in 10% neutral

buffered formalin for 18–36 hours, followed by dehydration and

paraffin embedding. Two consecutive 3-mm-thick sections were cut

from each paraffin block. One section was subjected to hematoxylin

and eosin staining for histopathological classification and tumor

grading. The other section underwent immunohistochemical

staining for Ki-67. After dewaxing and rehydration, antigen

retrieval was performed using ethylenediaminetetraacetic acid

buffer. The sections were then incubated with the primary

antibody at room temperature for 60 minutes, followed by
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incubation with the secondary antibody for 20 minutes.

Diaminobenzidine was used for chromogenic detection, and the

sections were subsequently counterstained with hematoxylin, blued,

dehydrated through graded alcohols, cleared in xylene, and

mounted with a coverslip. For quantification, five randomly

selected high-power fields (×400) were examined. Tumor cells

with brownish-yellow nuclear staining were considered Ki-67

positive. In each field, 200 tumor cells were counted, and the

proportion of positively stained cells was calculated. The average

of the five fields was used to determine the Ki-67 labeling index,

expressed as: Ki-67 labeling index (%) = (number of positively

stained cells/total number of tumor cells) × 100%.
MR acquisitions

MR imaging protocol
All MR examinations were performed using a 3.0T whole-body

scanner (MAGNETOM Vida, Siemens Healthcare, Erlangen,

Germany) equipped with a 20-channel head and neck phased-

array coil.

The routine imaging protocol included the following sequences:
Fron
1. Coronal T2-weighted imaging with fat saturation (T2WI-

FS): repetition time (TR) = 4110 ms; echo time (TE) = 94

ms; field of view (FOV) = 28cm × 28cm; slice thickness = 4

mm; inter-slice gap = 1 mm; matrix size = 320 × 224;

number of excitations (NEX) = 2; bandwidth = 401 Hz;

echo spacing = 9.42 ms.

2. Axial T1-weighted imaging (T1WI): TR = 468 ms; TE = 6.5

ms; FOV = 22cm × 22cm; slice thickness = 4 mm; inter-

slice gap = 1 mm; matrix = 320 × 224; NEX = 3; bandwidth

= 391 Hz; echo spacing = 6.53 ms.

3. Axial T2-weighted imaging with fat saturation (T2WI-FS):

TR = 4170 ms; TE = 96 ms; FOV = 22cm × 22cm; slice

thickness = 4 mm; inter-slice gap = 1 mm; matrix = 320 ×

224; NEX = 2; bandwidth = 381 Hz; echo spacing = 9.56 ms.

4. Diffusion-weighted imaging (DWI) was performed using a

readout-segmented echo-planar imaging sequence

(RESOLVE) with 12 b-values (0, 10, 20, 50, 100, 200, 400,

800, 1000, 1500, 2000, and 3000 s/mm²), with a single

excitation for each b-value. Imaging parameters were as

follows: TR = 5200 ms; TE = 70 ms; slice thickness = 4 mm;

inter-slice gap = 20% of slice thickness; FOV = 22cm ×

22cm; partial Fourier = 6/8; number of slices = 22; diffusion

mode = 3-scan trace; readout segments = 5; bandwidth =

930 Hz; echo spacing = 0.36 ms; acquisition time = 11 min

49 s.
Finally, contrast-enhanced axial, coronal, and sagittal T1-

weighted images were obtained after intravenous injection of 0.1

mmol/kg of gadolinium-DTPA (Gd-DTPA) via the median cubital

vein at a rate of 2 mL/s, followed by a 20 mL saline flush.
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Imaging analysis

The conventional DWI, FROC, and CTRW diffusion images

were processed using the Body DiffusionLab (BoDilab, Chengdu

ZhongYing Medical Technology Co., Ltd., Chengdu,CN) software

in the MR workstation.

For conventional DWI, the quantitative parameter ADC was

generated by fitting a mono-exponential model (Equation 1):

S(b)
S(0)

= exp( − b · ADC) (1)

The FROC model is given by Equation 2:

S(b)
S(0)

= exp½−Dm2(b−1)(gGdd )
2b (D −

2b − 1
2b + 1

d )� (2)

where S0 is the signal intensity without diffusion weighting, Gd

is the diffusion gradient amplitude, d is the diffusion gradient pulse

width and D is the gradient interval. The b (dimensionless; 0 < b ≤

1) parameter is the intra-voxel diffusion heterogeneity parameter,

and m (unit: mm) is a spatial constant to maintain the unit of

diffusion coefficient D (unit: mm2/ms). The multi-b-value diffusion

images were fitted pixelwise to the FROC diffusion model using the

Levenberg-Marquardt nonlinear fitting algorithm, in which D

(reflecting the intrinsic diffusion coefficient) was estimated using a

mono-exponential model and data were acquired at lower b-values

(≤ 1000 s/mm2). After determining the DFROC, b and m were

obtained by performing pixel-wise nonlinear fitting using all

b-values.

The CTRW model was fitted using Equation 3:

S(b)
S(0)

= Ea ½( − bD)b � (3)

where D is the anomalous diffusion coefficient, a and b are

parameters related to temporal and spatial diffusion heterogeneity,

respectively, and Ea is the Mittag-Leffler function. DCTRW was first

estimated through the nonlinear fitting of diffusion images with b-

values less than 1000 ms/mm2, then a and b were determined

simultaneously from all diffusion-weighted images (b-values = 0–

3000 s/mm2).

Two observers with 5 and 15 years of experience in diagnosing

head and neck tumor diagnosis independently evaluated all

parameters in a double-blind manner, transcending potential bias.

Using dynamic contrast-enhanced or T2WI images as reference, the

DWI images with the best lesion signal intensity contrast were

selected to manually delineate the ROIs, while avoiding necrotic

areas, air, major blood vessels, and adjacent anatomical structures.

The software automatically transferred the delineated ROIs to the

parameter maps and obtained the calculation results. The mean

values of the two observers’measurements were taken as final values

for all parameters and the interclass correlation coefficients between

the two observers were calculated. The same observer repeated the

measurements after one week to calculate the intraclass

correlation coefficients.
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Statistical analysis

Quantitative parameters were tested for normality and

parameters were expressed as mean ± standard deviation (�x ± S).

SPSS v.23.0 (IBM Corp, Armonk, NY), GraphPad Prism v.8.0

(GraphPad Software, San Diego, CA), and MedCalv.15.11.4

(MedCalc Software, Mariakerke, Belgium) was used for data

analysis. Differences in the parameters between each group were

analyzed by independent samples t-tests or U-tests. Receiver

operating characteristic (ROC) curves were employed to analyze

the diagnostic performance of each parameter in predicting benign

and malignant lesions. The DeLong test was performed to compare

the area under the curve (AUC) between the two groups. The

relationship between each diffusion parameter and Ki-67 in the

MLS group was analyzed by Pearson’s correlation analysis. Inter-

observer agreement was defined by the intraclass and interclass

correlation coefficients within the 95% confidence interval. Two-

tailed P ≤ 0.05 indicates the difference was statistically significant.
Results

1. Lesion Grouping: Among the 70 patients with head and neck

tumors finally enrolled in the study, 23 had benign lesions (BL),

including 11 cases of pleomorphic adenomas, 2 cases of

hemangiomas, 2 cases of inverted papillomas, 2 cases of nasal

polyps, 3 cases of lymphoid hyperplasia, 1 case of basal cell

adenoma and 2 cases of schwannomas; 47 patients had malignant

lesions (ML), ML was further divided into the lymphoma subgroup

(LS) (11 cases of lymphomas with 15 lesions) and malignant lesion

subgroup excluding lymphoma (MLS) (36 cases of squamous cell

carcinoma). The patient enrollment process is shown in Figure 1;

patient clinical information is presented in Table 1; examples of

multi-parameter imaging and measurements of the lesions are

shown in Figure 2 and 3.

2. Inter-observer agreement of parameters: The interclass

correlation coefficients (95% CI) of the quantitative parameters

DFROC, bFROC, mFROC, DCTRW, aCTRW, and bCTRW for inter-observer

reproducibility ranged from 0.801 to 0.950, while the intraclass

correlation coefficients (95% CI) for intra-observer reproducibility

ranged from 0.885 to 0.959. These results indicate that the

parameters had good inter- and intra-observer reproducibility

and consistency (Table 2).

3. Parameter Differences between Groups: Among the BL, ML,

LS, and MLS groups, all differences were statistically significant for

ADC, DFROC, mFROC, DCTRW, and aCTRW. The differences in bFROC
were statistically significant for BL vs. ML, BL vs. LS, and BL vs.

MLS; whereas the differences in bCTRW were not statistically

significant between the groups (Tables 3, 4, Figure 4).

4. Diagnostic performance and comparisons of parameters

between BL vs. ML, LS and MLS, and LS vs. MLS are

summarized in Table 5. ROC curve analysis showed that aCTRW

had the best performance in differentiating between BL vs. ML

(AUC = 0.947), while the diagnostic performance of ADC, DFROC,
Frontiers in Oncology 04
DCTRW and aCTRW differed significantly from that of bFROC (p =

0.024, 0.018, 0.031, and 0.006, respectively) (Figure 5A).
For BL vs. LS, aCTRW again exhibited the best diagnostic

efficacy (AUC = 0.997), with ADC, DFROC, DCTRW, and

aCTRW outperforming bFROC (p = 0.024, 0.018, 0.018, and

0.008, respectively; Figure 5).

In differentiating BL from MLS, aCTRW achieved the best

performance (AUC = 0.929), and its diagnostic ability,

along with that of ADC and DFROC, was significantly

higher than that of bFROC (p = 0.031, 0.025, and 0.009,

respectively; Figure 5).
For LS vs. MLS, ADC demonstrated the highest diagnostic

performance (AUC = 0.953). Its performance was significantly

superior to DFROC, DCTRW, and aCTRW (p = 0.008, 0.011, and

0.015, respectively; Figure 5).

Table 5 provides a detailed summary of these diagnostic

comparisons.

5. Correlation with Ki-67 Expression: The correlation between

each diffusion parameter and Ki-67 expression level in 36 cases with

head and neck squamous cell carcinoma was further analyzed. The

results showed that the correlation coefficients r of Ki-67 with

DFROC, DCTRW, aCTRW and bCTRW were -0.367 (p = 0.028), -0.376

(p = 0.024), -0.418 (p = 0.011) and 0.525(p = 0.001), respectively.

While the correlation coefficients r of Ki-67 with ADC, bFROC and

mFROC were -0.276 (p = 0.103), 0.252 (p = 0.139), and 0.144 (p =

0.402), respectively (Figure 6).
Discussion

In this study, we examined the clinical value of FROC, CTRW,

and conventional DWI diffusion parameters for benign and

malignant lesions of the head and neck. Our findings revealed
FIGURE 1

Flowchart of enrolled cases.
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that: Multi-parameters derived from the FROC and CTRW

diffusion models can be used to differentiate between benign and

malignant lesions of the head and neck and provide indicators that

reflect tissue heterogeneity. Moreover, some of the diffusion

parameters correlated with the expression level of Ki-67 in the

pathological findings.

DWI is a powerful tool for exploring biological microstructures,

with the ability to elucidate the cell number, extracellular matrix,

vascular distribution, and microstructure of tumor tissues. ADC is

derived from a mono-exponential diffusion model, which assumes

that the diffusion-driven displacement of water molecules follows a

Gaussian distribution. Our study found that ADC showed good

diagnostic performance in the differential diagnosis of benign and

malignant lesions of the head and neck, which is consistent with

previous studies (5, 6). However, it oversimplifies the anomalous

diffusion process in complex biological tissues and fails to recognize

the heterogeneity of intra-voxel structures. As the complexity of

tissue structure increases, this assumption becomes increasingly

invalid (13). Unlike the mono-exponential diffusion model, the

FROC model recognizes this heterogeneity of diffusion through its
Frontiers in Oncology 05
three parameters, namely, DFROC, bFROC, and mFROC. DFROC is

obtained by fitting the FROC model with multiple b-values less

than 1000, which better reflects the true diffusion process in tissues.

In this study, DFROC showed good diagnostic performance for BL

vs. ML, LS and MLS, and LS vs. MLS, which is similar to the

findings in breast cancer (14). Previous studies have shown that

bFROC values are negatively correlated with increased intra-voxel

heterogeneity (11, 15), which is due to the higher tissue

heterogeneity of ML, leading to lower bFROC values. Our findings

indicated that BL had a greater bFROC value than ML, and

differences in bFROC values were also observed between BL vs. LS

and BL vs. MLS. mFROC is regarded as a measure of the mean free

path of diffusion, with which it is negatively correlated (16).

Malignant tumors present higher mFROC values as the abnormal

proliferation of tumor cells can restrict the free diffusion of water

molecules. Studies have shown that malignant breast lesions and

high-grade bladder tumors exhibit higher mFROC values (14, 16). In

this study, the mFROC value of BL was lower, which is in agreement

with the results of previous studies. Lymphomas are tumors

characterized by high cell density and low microvascularity, with

histopathological features that include cellular hyperplasia, larger

and irregular nuclei, limited extracellular space, and cellular

compartments composed of lymphoma cells and fine fibers. As

such, they exhibit more pronounced diffusion restriction and

shorter diffusion mean free paths, which in turn manifests as

lower DFROC and higher mFROC. Hence, lymphomas are often

grouped separately for further evaluation (23). This was verified

by our findings and is also consistent with previous studies

demonstrating the lower ADC values of lymphomas (24, 25).

The CTRWmodel is another advanced diffusionMRI technique

that describes non-Gaussian behavior (17–19). The model

introduces two new parameters, aCTRW and bCTRW, which denote

temporal and spatial diffusion heterogeneity, respectively. In a

homogeneous medium, aCTRW and bCTRW are close to 1, whereas

the presence of tissue heterogeneity causes them to decrease.

Smaller aCTRW values indicate that the water molecules are

diffusing through a more temporal ly inhomogeneous

environment (i.e., the time taken for water molecules to move is

variable), while larger bCTRW values indicate a more spatially

homogeneous environment (i.e., the water molecules diffuse in

more uniform step sizes for each movement) (18, 19). In this

study, BL was shown to have relatively high aCTRW, with

differences in aCTRW values found among the BL, LS, and MLS

groups. Furthermore, aCTRW had the highest diagnostic

performance for BL vs. ML, LS, and MLS, and for LS vs. MLS,

which was similar to high-grade gliomas with relatively high aCTRW

values (15). Theoretically, bCTRW values should be negatively

correlated with tissue heterogeneity, but the bCTRW values in this

study did not show significant differences between BL vs. ML, LS

and MLS, and LS vs. MLS. This, on the one hand, may be due to the

limited sample size, which led to the failure to achieve statistically

significant differences. On the other hand, it may be because the

different diffusion parameters reflect different aspects of tissue
TABLE 1 Patient and pathological characteristics of benign and
malignant lesions.

Characteristics
Benign
Group (23)

Malignant
Group (47)

p

Demographics

Male/female 12/11 27/20 0.307

Age (y) 56.2 ± 19.2 60.9 ± 14.0 0.547

Pathological results
and location

Pleomorphic
Adenoma

Squamous cell
carcinoma (36)

Parotid Gland (11) Nasopharynx (20)

Lymphoid
Hyperplasia

Paranasal sinus (8)

Nasopharynx (3) Tongue (4)

Hemangioma Palate (4)

Tongue (1) Lymphoma (11)

Palate (1) Paranasal sinus (4)

Basal
Cell Adenoma

Nasopharynx (3)

Parotid Gland (1) Neck (3)

Inverted Papilloma

Sinus (2)

Nasal Polyp

Sinus (2)

Schwannoma

Parapharyngeal
Space (2)
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heterogeneity. For example, in studies involving vessels

encapsulating tumor clusters in hepatocellular carcinoma and

different subtypes of breast lesions (20, 21), only aCTRW showed

differences, whereas the bCTRW did not. In contrast, in another

study that assessed whether the muscle of bladder cancer was

invaded or not (22), only bCTRW showed a difference, and aCTRW

values did not differ between the two. This suggests that aCTRW and

bCTRW can characterize changes in different properties of water

molecule diffusion within the lesion. Thus, we can speculate that the

diffusion heterogeneity of water molecules in the head and neck

lesions included in this study may manifest more significantly as

temporal differences. However, the specific mechanism involved

remains unclear and awaits further investigation in future studies.

The CTRW model also has an important derived parameter,

DCTRW, which is similar to ADC (17, 21) and serves as a measure

of tissue cell density. In this study, BL showed higher DCTRW, which

was due to the higher cell density of ML leading to lower

DCTRW values.

Single-shot echo-planar imaging is commonly used for signal

acquisition in DWI scans. Despite its fast-scanning speed, it is

prone to geometric distortion and image blurring. It is also

restricted by the high degree of heterogeneity present in the

components of the head and neck region, is very sensitive to

magnetic susceptibility artifacts at tissue interfaces, and is limited
Frontiers in Oncology 06
by its maximum resolution (26). The RESOLVE diffusion technique

can shorten the echo gap by acquiring signals in the gradient

direction in segments, thereby reducing the geometric distortion

and T2* blurring of DWI to improve the anatomical accuracy of

images. This technique has gradually been adopted for the

evaluation of head and neck tumors (27, 28). Therefore, in this

study, image acquisition was performed using RESOLVE to reduce

distortions and artifacts in DWI images (28), and hence obtain

more stable data. The results showed that the ICC of the diffusion

parameters obtained ranged from 0.801 to 0.959, which showed

very good agreement. Further comparative analysis of ROC curves

showed that aCTRW had the best diagnostic performance for BL vs.

ML, LS, and MLS; aCTRW did not differ from ADC, DFROC, mFROC,
and DCTRW, but differed from bFROC. ADC showed better

diagnostic performance for LS vs. MLS. These findings suggest

that the FROC and CTRW models can provide more diffusion

parameters for the assessment of head and neck tumors.

Ki-67 is a nuclear antigen expressed by proliferating cells and is

confined to the G1 to M phases of the cell cycle. It is involved in cell

mitosis, and its positive expression is closely related to cell

proliferation activity. Thus, it is widely used to assess the

proliferation activity of tumor cells and can serve as an important

indicator for determining the local recurrence, lymph node

metastasis, distant metastasis, and poor prognosis of malignant
FIGURE 2

A patient with pleomorphic adenoma of the left parotid gland. (A) shows the T2-weighted fat-saturation image, and (B–H) display the diffusion-weighted
image (DWI), fractional anisotropy (FROC), and color maps of the CTRW model parameters, respectively. The measured values are as follows:
ADC=1.510mm2/ms (2B), DFROC=1.203mm2/ms (C), bFROC=0.888 (D), mFROC=3.021mm (E), DCTRW=1.412mm2/ms (F), aCTRW=0.971 (G) and bCTRW=0.891 (H).
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tumors (29, 30). In general, ADC values are negatively correlated with

Ki-67 (31, 32), but results may vary across different lesions. For

example, a study of nasopharyngeal carcinoma confirmed that there

was no correlation between ADC and Ki-67 (33), which is similar to

the absence of correlation between ADC and Ki-67 found in this

study. Further analysis of the relationship of FROC and CTRW

parameters with Ki-67 parameters revealed that Ki-67 showed a low

to moderate correlation with DFROC, DCTRW, aCTRW, and bCTRW,
with correlation coefficients r of -0.367, -0.376, -0.418, and 0.525,

respectively; bFROC and mFROC were not correlated with Ki-67. This

was due to the increased number of intratumoral cells with high Ki-

67 expression and decreased extracellular space, which resulted in
Frontiers in Oncology 07
lower DFROC and DCTRW values. The aCTRW and bCTRW parameters,

which are indicators of tissue heterogeneity, showed a higher

correlation with Ki-67, which suggests that non-Gaussian diffusion

models can provide more reference information for the clinical

treatment of tumors. Although the differences in AUC values

among the diffusion-derived parameters were relatively small,

aCTRW consistently exhibited superior diagnostic performance

across all classification tasks. This consistent superiority suggests

that aCTRW may serve as a robust imaging biomarker. Its moderate

correlation with Ki-67 further supports its potential to reflect tumor

proliferative activity, highlighting its clinical value in non-invasive

tumor characterization. Interestingly, a previous study investigating

cervical cancer demonstrated that bCTRW was an independent

predictor of the Ki-67 proliferation index, significantly improving

the predictive accuracy of the combined model (34). This finding

implies that bCTRW may be related to tumor cell proliferation or

microstructural remodeling. Taken together, these results suggest that

non-Gaussian diffusion models could offer additional biological

insights into tumor characterization and potentially support clinical

decision-making. Nevertheless, the current evidence remains limited,

and further well-designed studies are warranted to validate these

findings and clarify the underlying mechanisms. However, limited

research has been conducted on the association between the two, and

further investigations are needed.

There are several limitations to this study. First, this is a single-

center study with a small sample size. The value of non-Gaussian
FIGURE 3

A patient with squamous cell carcinoma of the left maxillary sinus. (A) shows the T2-weighted fat-saturation image, and (B–H) display the pseudo-
color maps of DWI, FROC, and CTRW model parameters, respectively. The measured values are as follows: ADC=0.963mm2/ms (B),
DFROC=0.903mm2/ms (C), bFROC=0.780 (D), mFROC=3.505mm (E), DCTRW=1.219mm2/ms (F), aCTRW=0.795 (G) and bCTRW=0.875 (3H).
TABLE 2 Reproducibility of DWI parameters.

Parameters Intra (95%CI) Inter (95%CI)

ADC (mm2/ms) 0.885 (0.817-0.928) 0.913 (0.862-0.945)

DFROC (mm2/ms) 0.958 (0.933-0.973) 0.939 (0.902-0.961)

bFROC 0.912 (0.860-0.945) 0.801 (0.685-0.875)

mFROC (mm) 0.923 (0.875-0.953) 0.848 (0.759-0.904)

DCTRW (mm2/ms) 0.910 (0.857-0.943) 0.928 (0.886-0.955)

aCTRW 0.902 (0.844-0.938) 0.906 (0.850-0.941)

bCTRW 0.959 (0.934-0.975) 0.950 (0.918-0.969)
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FROC and CTRW models for benign and malignant lesions of the

head and neck region requires further exploration through multi-

center studies with larger sample sizes. Second, no direct correlation

analysis was performed between the MR images and the tissue

sections. Although there were significant differences in several

diffusion parameters between BL vs. ML, LS and MLS, and

between LS v. MLS, we were unable to determine the histological

basis for the changes in each individual parameter (e.g. associations

with cell size, distribution, cytoplasmic ratio, or degree of necrosis
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in tumor tissues). Therefore, the correlation between each

parameter and histological features is an area for future research.

Third, the sample size for each tumor subtype is relatively small,

and there is a diverse range of pathological types included,

particularly in the benign lesion group. This potential bias in case

selection may affect the final thresholds, limiting our ability to

explore the correlation of various parameters with the Ki-67 index

within smaller malignant subgroups. Future studies will require

larger cohorts to clarify the diagnostic capabilities of the two non-
TABLE 3 Differences in parameters between benign and malignant head and neck lesions.

ADC (mm2/ms) DFROC (mm2/ms) bFROC mFROC (mm) DCTRW (mm2/ms) aCTRW bCTRW

BL 1.185 ± 0.309 1.105 ± 0.275 0.860 ± 0.067 3.026 ± 0.369 1.324(1.085-1.489) 0.940(0.897-0.975) 0.856(0.817-0.917)

ML 0.658 ± 0.129 0.550(0.487-0.721) 0.809 ± 0.038 3.422 ± 0.195 0.703(0.623-0.898) 0.702(0.636-0.833) 0.889(0.852-0.925)

T/Z -5.903 -5.819 -3.523 -4.653 -5.819 -6.023 -1.473

p <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.141
BL, Benign lesion; ML, malignant lesions.
TABLE 4 Difference in each parameter between benign and malignant subgroups.

Parameters BL LS MLS
p

BL-LS BL-MLS LS-MLS

ADC (mm2/ms) 1.185 ± 0.309 0.530 ± 0.057 0.711 ± 0.112 <0.001 <0.001 <0.001

DFROC (mm2/ms) 1.105 ± 0.275 0.497 ± 0.031 0.602(0.533-0.767) <0.001 <0.001 <0.001

bFROC 0.860 ± 0.067 0.795 ± 0.043 0.815 ± 0.034 0.002 0.001 0.086

mFROC (mm) 3.026 ± 0.369 3.588 ± 0.202 3.384(3.301-3.457) <0.001 <0.001 <0.001

DCTRW (mm2/ms) 1.324(1.085-1.489) 0.623 ± 0.053 0.745(0.674-0.945) <0.001 <0.001 <0.001

aCTRW 0.940(0.897-0.975) 0.641 ± 0.061 0.747(0.691-0.855) <0.001 <0.001 <0.001

bCTRW 0.864 ± 0.067 0.899 ± 0.045 0.886(0.846-0.919) 0.086 0.349 0.260
BL, Benign lesion; LS, Lymphoma Subgroup; MLS, malignant lesion subgroup excluding lymphoma; ADC, apparent diffusion coefficient; FROC, fractional order calculus; CTRW, continuous-
time random walk.
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Box plots of DWI, FROC, and CTRW diffusion model parameters between benign and malignant lesions (A); box plots of differences in DWI, FROC
diffusion model parameters between BL, LS, and MLS (B); box plots of differences in CTRW diffusion model parameters between BL, LS, and MLS (C).
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benign lesion; ML, malignant lesion; LS, lymphoma subgroup; MLS, malignant lesions excluding lymphoma subgroup.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1581637
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Hua et al. 10.3389/fonc.2025.1581637
TABLE 5 ROC results of each parameter in differential diagnosis of head and neck lesions.

Parameters AUC Thresholds YI
Sensitivity

(%)
Specificity

(%)
AUC Thresholds YI

Sensitivity
(%)

Specificity
(%)

BL vs. ML BL vs. LS

ADC (mm2/ms) 0.940 0.967 0.826 100.00 82.61 0.971 0.670 0.955 100.00 95.45

DFROC

(mm2/ms)
0.931 0.745 0.759 80.39 95.45 0.977 0.654 0.955 100.00 95.45

bFROC 0.761 0.858 0.532 94.12 59.09 0.795 0.858 0.591 100.00 59.09

mFROC (mm) 0.845 3.369 0.589 72.55 86.36 0.912 3.391 0.766 85.71 90.91

DCTRW

(mm2/ms)
0.931 0.963 0.746 88.24 86.36 0.981 0.758 0.955 100.00 95.45

aCTRW 0.947 0.885 0.766 90.2 86.36 0.997 0.776 0.955 100.00 95.45

BL vs. MLS LS vs. MLS

ADC (mm2/ms) 0.928 0.967 0.826 100.00 82.61 0.953 0.608 0.794 93.33 86.11

DFROC

(mm2/ms)
0.917 0.907 0.711 97.22 73.91 0.825 0.537 0.683 93.33 75.00

bFROC 0.756 0.865 0.537 97.22 56.52 /

mFROC (mm) 0.821 3.164 0.569 91.67 65.22 0.831 3.530 0.733 73.33 100.00

DCTRW

(mm2/ms)
0.915 0.989 0.715 88.89 82.61 0.818 0.717 0.583 100.00 58.33

aCTRW 0.929 0.885 0.731 86.11 86.96 0.85 0.693 0.617 86.67 75.00
F
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BL, Benign lesion; LS, Lymphoma Subgroup; MLS, malignant lesion subgroup excluding lymphoma; ADC, apparent diffusion coefficient; FROC, fractional order calculus; CTRW, continuous-
time random walk.
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ROC curves of DWI, FROC, and CTRW diffusion model parameters in the diagnosis of benign and malignant (A), BL vs. LS (B), BL vs. MLS (C) and LS
vs. MLS (D). DWI, diffusion-weighted imaging; ADC, apparent diffusion coefficient; FROC, fractional-order calculus; CTRW, continuous-time random
walk; BL, benign lesions; ML, malignant lesions; LS, lymphoma subgroup; MLS, malignant lesions excluding lymphoma subgroup.
0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

Ki
-6

7

DFROC(μm2/ms)

r=-0.367.P=0.028

0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

Ki
-6

7

DCTRW(μm2/ms)

r=-0.376.P=0.024

0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

Ki
-6

7

αCTRW

r=-0.418.P=0.011

0.70 0.75 0.80 0.85 0.90 0.95 1.00
0.0

0.2

0.4

0.6

0.8

Ki
-6

7

r=0.525.P=0.001

βCTRW

A B C D

FIGURE 6

Scatterplot of correlation coefficients between DFROC (A), DCTRW (B), aCTRW (C) and bCTRW (D) and Ki-67. FROC, fractional-order calculus; CTRW,
continuous-time random walk.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1581637
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Hua et al. 10.3389/fonc.2025.1581637
Gaussian models in subgroups and their relationship with Ki-67.

Fourth, additional non-Gaussian models, such as diffusion kurtosis

imaging and intravoxel incoherent motion imaging, were not

included for comparative analysis, which restricts our ability to

explore the interrelationships among different diffusion parameters.

Fifth, although this study utilized RESOLVE scanning as a

replacement for single-shot echo-planar imaging for the

acquisition of diffusion signals, the relatively longer acquisition

time may introduce some motion artifacts. Therefore, future studies

could use, for example, multi-slice simultaneous acquisition

techniques to shorten the signal acquisition time, further improve

the stability of the data, and increase the inter-observer agreement

of quantitative parameters.

In conclusion, non-invasive, non-Gaussian FROC- and CTRW-

based diffusion models are not only able to differentiate between

malignant and benign tumors in the head and neck but can also

provide additional information related to the heterogeneity of

tumor tissues. Moreover, multiple diffusion parameters derived

from these models were correlated with the level of Ki-67 positive

expression in tumor histopathology. Therefore, the FROC and

CTRW diffusion models and their derived parameters, especially

aCTRW, are promising imaging tools and biomarkers for the

differential diagnosis of lesions in the head and neck region.
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