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Objective: This study aimed to evaluate the effectiveness of deep-learning

models using transrectal ultrasound (TRUS) video clips in predicting

prostate cancer.

Methods:Wemanually segmented TRUS video clips from consecutive men who

underwent examination with EsaoteMyLab™ Class C ultrasonic diagnostic

machines between January 2021 and October 2022. The deep learning-

inflated 3D ConvNet (I3D) model was internally validated using split-sample

validation on the development set through cross-validation. The final

performance was evaluated on two external test sets using geographic

validation. We compared the results obtained from a ResNet 50 model, four

ML models, and the diagnosis provided by five senior sonologists.

Results: A total of 815 men (median age: 71 years; IQR: 67–77 years) were

included. The development set comprised 552 men (median age: 71 years; IQR:

67–77 years), the internal test set included 93men (median age: 71 years; IQR: 67–

77 years), external test set 1 consisted of 96men (median age: 70 years; IQR: 65–77

years), and external test set 2 had 74men (median age: 72 years; IQR: 68–78 years).

The I3D model achieved diagnostic classification AUCs greater than 0.86 in the

internal test set as well as in the independent external test sets 1 and 2. Moreover, it

demonstrated greater consistency in sensitivity, specificity, and accuracy
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compared to pathological diagnosis (kappa > 0.62, p < 0.05). It exhibited a

statistically significant superior ability to classify and predict prostate cancer

when compared to other AI models, and the diagnoses provided by

sonologists (p<0.05).

Conclusion: The I3D model, utilizing TRUS prostate video clips, proved to be

valuable for classifying and predicting prostate cancer.
KEYWORDS
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1 Introduction

Prostate Cancer (PCa) ranks as the second most common

cancer among men globally, as reported by the World Health

Organization (GLOBOCAN) database (1). Its incidence and

mortality rates are increasing, posing a significant threat to the

physical and mental health of the male population, and representing

a major public health concern.

PCa is a serious and potentially life-threatening illness that

often goes unnoticed until it has reached advanced stages. Early

detection and diagnosis are key to successful treatment outcomes.

Unfortunately, identifying the disease in its early stages can be quite

difficult, as the symptoms tend to be mild or even non-existent. The

primary methods for early PCa screening include measuring levels

of prostate-specific antigen (PSA) in human serum, conducting

digital rectal examinations, and performing transrectal ultrasound-

guided prostate biopsies. Even with these screening methods,

accurate diagnosis remains a challenge (2). Doctors often have to

rely on their own judgment, which can be subjective and lead to

inconsistent results. Furthermore, the physiological changes that

come with aging can affect the accuracy of diagnosis and the course

of treatment. Early identification of PCa is critical for successful

treatment, and further development of more accurate and non-

invasive diagnostic methods is crucial (3). With the incidence and

mortality rates of prostate cancer on the rise, it is more important

than ever to find ways to detect and diagnose the disease in its early

stages. This will, hopefully, lead to more successful treatment

outcomes and a better quality of life for those affected by PCa.

Recently, studies utilizing deep convolutional neural networks

(DCNNs) based on magnetic resonance imaging (MRI) and

pathological sections have been conducted in the field of prostate

cancer (PCa) (4–8), highlighting their potential value in PCa

detection and evaluation. TRUS, as an integral part of early
rectal ultrasound; PCa,

, magnetic resonance

ML, machine learning;

ep learning; AUC, area

tic curve; ROI, region
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screening, retains rich imaging and video data prior to biopsies,

without imposing additional psychological and economic burden

on patients. Recent studies (9) have demonstrated that combining

TRUS with traditional machine learning (ML) models, such as

support vector machines (SVM) or random forests (RF), can

enhance diagnostic capabilities to a certain extent. However, the

combination of TRUS video and 3D deep learning (DL) models for

evaluating prostate tumors remains unexplored.

DCNNs, which employ techniques such as convolution,

pooling, weight sharing, and network module stacking (10), have

the ability to automatically infer and map underlying convolutional

features, resulting in abstract high-level expression (4, 11, 12).

In this study, we employ the Inflated 3D ConvNet (I3D)

approach on TRUS video clips. Unlike previously proposed 3D

convolutional algorithms that require segmentation during

training, I3D can process the entire video frame (13). It is

anticipated that this approach will provide the most effective

ultrasound classification model for prostate cancer. Additionally,

to the best of our knowledge, this is the largest-scale study to date

that combines transrectal ultrasound video and 3D DL models for

the evaluation of prostate tumors.
2 Materials and methods

This retrospective multicenter study was approved by the local

institutional review board, and informed consent was waived due to

its retrospective nature. The study was conducted in compliance

with national and international guidelines.
2.1 Study participants

Study participants comprised 1031 suspected prostate cancer

cases, with TRUS video clips collected between January 2021 and

October 2022. Among these, 701 cases were from Wenzhou

Medical University Affiliated Dong yang Hospital (Center 1), 63

cases from Yiwu Tianxiang Medical Oriental Hospital (Center 2),

149 cases from China Medical University Cancer Hospital (Center
frontiersin.org
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3), and 118 cases from The Quzhou Affiliated Hospital of Wenzhou

Medical University (Center 4). All biopsy procedures across

participating centers were performed under transrectal ultrasound

(TRUS) guidance using a standardized 12-core systematic sampling

protocol. No MRI-targeted biopsies were conducted in this study.

The research enrolled patients who underwent TRUS-guided

prostate biopsy at four medical institutions. Exclusion criteria

were as follows: a) previous treatment for prostate cancer, such as

radical prostatectomy, external-beam radiotherapy, brachytherapy,

focal therapy, or androgen-deprivation therapy, as well as

transurethral resection of the prostate or intravesical therapy; b) a

history of rectal resection; c) a lack of retained prostate TRUS video

data. For patients who had undergone multiple biopsy exams, only

the results from the first biopsy examination were included in the

analysis. Biopsy lesions were evaluated and classified based on the
Frontiers in Oncology 03
Gleason score. The enrollment of patients was conducted

sequentially, as illustrated in Figure 1.
2.2 Collection of TRUS video clips

All TRUS video clips pertaining to the prostate were collected at

our four medical centers using EsaoteMyLab™ Class C ultrasonic

diagnostic machines (Esaote, Genoa, Italy) equipped with a TRT33

transrectal biplanar probe (frequency range 3–13 MHZ). The TRUS

scans were performed by eight sonologists with more than five years

of TRUS experience. The procedure followed the following criteria:

Firstly, the sonologist explained the procedure to the patient,

obtained informed consent for the prostate biopsy, reassured the

patient, and ensured their understanding. Once confirmed, the
FIGURE 1

Flowchart (a, b) shows inclusion of patients into study. The data from Center 1 and Center 2 were randomly divided into a development set and an
internal test set. The data from Center 3 and Center 4 were used as external test sets 1 and 2, respectively. PCa, prostate cancer; TRUS, transrectal
ultrasonography.
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patient was positioned on the examination bed in the supine

lithotomy position. Secondly, the sonologist covered the TRT33

probe with a condom and inserted it into the rectum, adjusting the

probe depth. They then manipulated the probe by pushing, pulling,

and rotating it to facilitate a comprehensive view of the prostate

from various directions. Finally, they scanned the entire cross-

section of the prostate from top to bottom and saved video clips

lasting five to ten seconds. Subsequently, a prostate biopsy

was performed.

All original videos were acquired using the same model of

ultrasound diagnostic equipment (Esaote MyLab™ Class C, Esaote,

Genoa, Italy), with a native resolution of 608 × 800 pixels. To
Frontiers in Oncology 04
facilitate model training, we uniformly resized all frames to 256 ×

256 pixels. Each video clip had a duration of 5–10 seconds,

containing approximately 120–240 frames. However, since

adjacent frames exhibited minimal differences, using all frames

would have provided limited benefit for feature extraction while

significantly increasing computational overhead. Moreover, the

variable frame counts across different videos could have hindered

model convergence. To address these issues, we adopted a uniform

sampling strategy to standardize the input to 32 frames per video.

This number was empirically determined based on our preliminary

experiments. In practical applications, the sampling rate can be

adjusted according to the original video length.
FIGURE 2

Diagram (a) shows overview of the ML (ML) and DL (DL) classification process. Diagram (b) shows ResNet 50 and I3D workflow.
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2.3 Manual segmentation and image
registration

For manual segmentation, the 3D-slicer software (version 5.03)

was utilized. The region of interest (ROI) in all video clips was

selected as the entire prostrate, delineated by three sonologists, each

with over five years of TRUS diagnosis experience. To ensure

unbiased contouring, each case was anonymized by assigning a

randomized number, thereby preventing the sonologists from

accessing any relevant information prior to contouring.

Supplementary Figure E1 (available online) displays examples of

manual segmentation. Subsequently, the sonologists marked and

outlined the prostate shape, assigned positive/negative labels based

on the actual pathological conditions of the patients, and identified

video frames containing nodules for further processing. The

dataset’s video clips contained additional information besides the

patient’s prostate image. During data processing, irrelevant

information regions were removed through clipping, preserving

the original aspect ratio of the image. Additionally, the resolution of

the video clips was scaled to 256x256.
2.4 Ultrasonic diagnosis

The diagnosis of PCa or non-PCa for all patients in the test sets

was conducted by five sonologists each with over 15 years of

experience in ultrasonic diagnosis. The sonologists assessed the

ultrasound images and considered clinical data such as age, PSA

levels, and other relevant factors. Throughout the diagnostic process,

they were unaware of any information that could reveal the patient’s

identity or the results of pathological diagnosis. The final ultrasonic

diagnosis was determined through a voting system among the five

sonologists, with the majority decision being followed.
2.5 Construct models

In this study, the I3D model was selected as the framework for

classifying benign and malignant prostate lesions. The software

used to develop the I3D model was based on the Ubuntu 18.04

operating system and included pytorch1.8.1 and Python (version

3.8). The training sessions were conducted on an Intel Core I7-

7740X CPU operating at 4.30 GHz, paired with an NVIDIA

GeForce TITAN Xp GPU. To extend the ConvNet-2D network to

ConvNet-3D, a temporal dimension was added. ResNet 50 was

employed to extract image features, which were then fed into the

network’s output layer. The Softmax layer determined the network’s

confidence in predicting benign and malignant nodules. The model

utilized 32 frames of video sequences, with every other frame

selected for processing. During training, random frames were

selected, and data augmentation techniques were employed to

prevent overfitting. The augmented data was fed into the pre-

trained I3D model with a batch size of four. The model was

trained with an initial learning rate of 0.0001, a decay rate of
Frontiers in Oncology 05
0.000005 and optimized using AdamW with a weight decay of

0.001. The selected loss function was Cross Entropy.

To evaluate the performance of the I3D algorithm, it was

compared with the DL ResNet 50-2D and ML algorithms. In the

case of the ResNet 50-2d model, ResNet50 was utilized with a pre-

trained model from the ImageNet dataset. Each frame of the video

slice was treated as a separate input, with various enhancements

such as flip, rotation, cropping, contrast, light adjustments, and

Cutmix. The output was obtained through pooling and full link

layers, and the results were averaged across all frames of each video

sequence. The Softmax layer was employed for distinguishing

between benign and malignant cases. In our study, we adopted a

ResNet50-based I3D model as the backbone network. This

architecture consists of approximately 25 million trainable

parameters, comprising multiple residual blocks with 3D

convolutional layers, batch normalization, and ReLU activation

functions. By extending traditional 2D convolutional networks to

the temporal dimension, our I3D model effectively captures both

spatial and temporal information from video sequences.

The I3D algorithm followed the same training flow as

mentioned above, and the parameters of the model with the

highest accuracy were saved for testing. The Softmax layer was

employed for benign and malignant discrimination. The training

parameters and source code can be found online. https://

github.com/NatsumeTetsuya/I3D-in-PCa-Classfication.

To evaluate the performance of the I3D algorithm, it was

compared with ML algorithms. The pyradiomics library was used

to extract features from prostate video data, which were filtered using

the Lasoo regression algorithm and reduced to 17 dimensions

(Supplementary Figure E1, available online). Four ML models

(XGB, GBM, SVM, and RF) were trained using the selected

features. Further details regarding the construction of the ML

models’ construction can be found in Appendix E2 (available online).

The flowcharts of machine learning and deep learning are

presented in Figure 2.
2.6 Statistical analysis

Normal distribution was assessed using probability-probability

plots. Continuous variables were presented as mean ± SD, while

categorical variables were presented as the number of patients and

percentages. Paired sample t-tests were conducted to compare

continuous data. The sensitivity, specificity, negative predictive

value (NPV), and positive predictive value (PPV) of each cut-off

point were compared using Chi-square tests or Fisher’s exact

probability method. Agreement between the model and

pathological diagnosis was measured using Kappa analysis. Model

performance was evaluated and compared using AUC, and pairwise

comparisons of AUC values were conducted to determine

significant differences. Confidence intervals for ROC curves were

estimated using the Delong test. Statistical significance was defined

as p<0.05. Python and IBM SPSS Statistics 25.0 were utilized for

statistical analyses.
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3 Results

3.1 Baseline characteristics

Out of the 1031 men who presented to our institutions during

the inclusion period, 815 (median age: 71 years; IQR: 67–77 years)

met the inclusion and exclusion criteria. The study sample was

randomly divided into different subsets: a development set (n = 552

[85%]; median age: 71 years; IQR: 67–77 years), an internal test set

(n = 93 [15%]; median age: 71 years; IQR: 67–77 years), external test

set 1 (n = 96; median age: 70 years; IQR: 65–77 years) and external

test set 2 (n = 74; median age: 72 years; IQR: 68–78 years). Table 1

provides demographic data and patient characteristics.

In the internal training set, there were 48 (48/93, 52%) cases of

benign prostatic lesions and 45 (45/93, 48%) cases of prostate

cancer. The external test set 1 consisted of 48 (48/96, 50%) cases

of benign prostatic lesions and 48 (48/96, 50%) cases of prostate

cancer. In the external test set 2, there were 33 (33/74, 45%) patients

with benign prostate lesions and 41 (41/74, 55%) patients with

prostate cancer. The benign prostatic lesions included benign

prostatic hyperplasia (BPH), prostatitis, basal cell hyperplasia

(BCH), and low-grade intraepithelial neoplasia (LGIN), PCa was

classified into 6 to 10 points based on the Gleason score.
3.2 Model performance on the internal test
set and comparison with other models

In the internal test set, the I3D model demonstrated an AUC

of.91, sensitivity of 91% (41/45, 95%CI: 78%, 97%), specificity of
Frontiers in Oncology 06
85% (41/48, 95%CI: 72%, 94%), and overall accuracy of 88% (82/93,

95%CI: 80%, 93%). The agreement between I3D model assessment

and ground truth, as measured by the Kappa value, was.76. The F1

score for classifying the prostate lesions as malignant or benign

was 0.88.

Compared to Resnet 50 and the best ML model (SVM), the I3D

model performed significantly better (AUC of.91 vs.75 and.82). It

also outperformed the diagnosis of the sonographers (AUC of.60).

The p-value of the Delong test was less than 0.05, indicating

statistical significance.
3.3 Model performance on the external
test set and comparison with other models

In the external test set 1, the I3D model achieved an AUC of.87,

with a sensitivity, specificity, and accuracy of 83% (40/48, 95%CI:

69%, 92%); In test set 2, the AUC was.86, with a sensitivity of 81%

(33/41, 95%CI: 64%, 92%), specificity of 82% (27/33, 95%CI: 64%,

92%), and accuracy of 81% (60/74, 95%CI: 71%, 88%). The

agreement between the I3D model assessment and ground truth,

as measured by the Kappa values, was 0.67 and 0.62, respectively.

The F1 scores for classifying prostate lesions as malignant or benign

were both 0.83.

In both external test sets, the I3D model outperformed Resnet

50 and the best ML model (GBM) (AUC: 0.87 vs 0.75 and 0.82; 0.86

vs 0.71 and 0.66). The p-values of the Delong test were less than

0.05, indicating statistical significance. The I3D model also

performed significantly better than the diagnosis of the

sonographers (AUC: 0.61 and 0.61). The p-values of the Delong
TABLE 1 Patient characteristics.

Characteristic
Development set

(n=552)
Internal test set

(n=93)
External test set 1

(n=96)
External test set 2

(n=74)

Median age (y)* 71 (67-77) 71 (67-77) 70 (65-77) 72 (68-78)

Median PSA (ng/mL)* 8.4 (5.5-28.0) 8.8 (6.1-17.1) 9.4 (5.8-28.0) 9.2 (5.4-27.0)

Benign subtypes 289 (52) 48 (52) 48 (50) 33 (45)

BPH 244 (44) 43 (46) 41 (43) 22 (30)

BPH & prostatitis 33 (6) 3 (3) 5 (5) 9 (12)

BPH & BCH 4 (0.7) 2 (2) 2 (2) 2 (3)

BPH & LGIN 8 (1.4) 0 0 0

Maximum Gleason score 263 (48) 45 (48) 48 (50) 41 (55)

GS6 111 (20) 15 (16) 11 (12) 12 (16)

GS7 94 (17) 17 (18) 18 (19) 10 (14)

GS8 37 (7) 6 (7) 13 (14) 16 (22)

GS9 17 (3) 6 (7) 6 (6) 3 (4)

GS10 4 (0.7) 1 (1) 0 0
For the training and validation sets, 90% and 10% of patients from the development set were included, respectively. The internal test set was randomly selected from Center 1. External test sets 1
and 2 were obtained from two other centers to provide geographic validation. Malignant lesions included Gleason scores 6-10, while benign lesions included benign prostatic hyperplasia (BPH),
prostatitis, basal cell hyperplasia (BCH), and low-grade intraepithelial neoplasia (LGIN).
*Data in parentheses are the interquartile range.
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test were less than 0.05, demonstrating statistical significance.

Detailed information on the Delong can be found in Appendix

E3 and Supplementary Table E1.

Table 2 presents the classification performance of the best ML

model, ResNet 50 model, I3D model, and ultrasound doctors’

diagnosis in the test sets.

Further details are available in Supplementary Table E2.

Figure 3 displays the ROC curves of all models in the

internal test.

Figure 4 shows the confusion matrices and violin plots used for

the I3D model to discriminate between benign and malignant

tumors in the test set.

The confusion matrices and violin plots used for other models

can be found in Supplementary Figures E3, E4.

Figure 5 displays heatmap examples derived from TRUS videos

of four patients in External Test Set 2.
3.4 mpMRI-Negative Cases of PCa

For patients with suspected prostate cancer, we recommend

undergoing an mpMRI examination before prostate biopsy. We

reviewed a total of 90 MRI results from the internal test set (88/94),

70 results from the external test set 1 (73/96), and 50 results from

the external test set 2 (52/74). mpMRI were acquired with 3.0T

scanners (Siemens Magnetom Vida, Siemens, Erlangen, Germany,

and Ingenia CX, Philips Healthcare, Best, Netherlands.). The

mpMRI examination sequence includes T1WI, T2WI, DWI,

ADC, and DCE-MRI.
Frontiers in Oncology 07
There were 4 cases in our test sets with no lesions detected on

prostate mpMRI, one case (GS6) is from the internal test set, while

two cases (GS6, 7) are from the external test set 1, and one case

(GS6) are from the external test set 2. However, not all patients may

be willing to undergo an MRI examination, and we respect the

patient’s preferences and wishes. Among them, three cases were

diagnosed as prostate cancer by the I3D model, while one case was

diagnosed as a benign lesion. Table 3 shows the details of MRI-

Negative Cases of PCa.
4 Discussion

In this retrospective, multicenter, observational cohort study of

851 patients, we found that the I3D model based on TRUS video

clips had superior diagnostic performance compared to the Resnet

DL model, ML models, and experienced sonographers in classifying

PCa. It demonstrated high accuracy even in cases where no obvious

masses were detected on mpMRI examinations. These findings

suggest that the I3D model can serve as a reliable predictive

model for diagnosing PCa.

The selection of participants in a study is a crucial determinant

of its representativeness and applicability. Our study identified

patients who had undergone TRUS-guided biopsy as the

inclusion criteria. This comprised individuals with elevated PSA

levels, benign prostatic hyperplasia necessitating pre-operative

pathology and suspicious nodules identified by MRI (14–16). By

broadening the inclusion criteria, this study’s results have become

more representative and applicable compared to previous
TABLE 2 Performance of models for classification of PCa in the test sets.

Sets and Models Sensitivity [95%CI](%) Specificity [95%CI] (%) Accuracy [95%CI] (%) F1 score kappa

Internal test

SVM 80(36/45)[65, 90] 75(36/48)[60, 86] 77((72/93)[68, 85] .77 .55

ResNet50 47(21/45)[32, 62] 94(45/48)[82, 98] 71(66/93)[61, 79] .61 .41

I3d 91(41/45)[78, 97] 85(41/48)[72, 94] 88(82/93)[80, 93] .88 .76

Doctors 71(32/45)[55, 83] 48(23/48)[34, 63] 59(55/93)[49, 69] .19

External test 1

GBM 92(44/48)[79, 97] 56(27/48)[41, 70] 74(71/96)[64, 82] .78 .48

ResNet50 52(25/48)[37, 67] 81(39/48)[67, 91] 67(64/96)[57, 75] .61 .33

I3d 83(40/48)[69, 92] 83(40/48)[69, 92] 83(80/96)[69, 92] .83 .67

Doctors 67(32/48)[51, 79] 56(27/48)[41, 70] 61(59/96)[51, 71] .23

External test 2

GBM 51(21/41)[35, 67] 88(29/33)[71, 96] 68(50/74)[56, 77] .64 .37

ResNet50 63(26/41)[47, 77] 76(25/33)[57, 88] 69(51/74)[58, 78] .69 .38

I3d 81(33/41)[65, 91] 82(27/33)[64, 92] 81(60/74)[71, 88] .83 .62

Doctors 61(25/41)[45, 75] 61(20/33)[42, 77] 61(45/74)[49, 71] .21
The data for sensitivity, specificity, and accuracy are expressed as percentages, with the corresponding proportions indicated in parentheses. All data enclosed in brackets represent 95% CIs.
The highest evaluation metric values of models across all test sets are highlighted in bold in the table.
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FIGURE 3

ROC of all models in the internal test, External test 1, and External test 2 sets. Graph (a) shows areas under the receiver operating characteristic
(ROC) curve; the AUC values of the I3D model were superior to those of the other models. Graph (b) shows the ROC curve (95%CI, blue area), the
optimal threshold, True Positive Rate (TPR) and True Negative Rate (TNR) of the I3D model in the three test sets.
FIGURE 4

The upper graphs display the confusion matrices, while the lower graphs show the violin plots for the I3D model’s classification of benign and
malignant tumors in the internal test set, the external test set 1, and the external test set 2.
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investigations that only included patients with nodules diagnosed

by MRI. Our test sets yielded a fascinating finding whereby despite

four PCa cases with no tumor detected by MRI, the I3D model

correctly diagnosed three individuals. Together with the broadening

of the inclusion criteria, this has enhanced the representativeness

and generalizability of this study’s findings. It is important to

emphasize that the PI-RADS scoring system for mpMRI is

inherently a probabilistic tool rather than a definitive diagnostic
Frontiers in Oncology 09
standard. The value of our model does not lie in judging the

‘accuracy’ of MRI but rather in providing additional reference for

PI-RADS category 3 cases, and serving as a complementary test for

clinically suspicious yet MRI-negative cases. This multiparametric

decision-making approach aligns more closely with the principles of

modern precision medicine. Although the model detected 3 out of 4

MRI-negative cancers, the limited sample size means this result

requires validation in prospective large-scale studies. We
FIGURE 5

Images depict heatmap examples from TRUS videos of four patients in the external test set 2. In positive cases (c, d), the I3D model exhibited a relatively
focused heatmap indicating the presence of prostate cancer. However, in negative cases (a, b), the attention was more diffuse, and there was no distinct
focus area observed. (a) a 66-year-old man with a prostate-specific antigen level of 4.52 ng/mL and a biopsy pathology result indicating benign prostatic
hyperplasia, (b) a 70-year-old man with a prostate-specific antigen level of 6.56 ng/m and a biopsy pathology result indicating benign prostatic
hyperplasia, (c) a 74-year-old man with prostate-specific antigen level of 6.8 ng/mL and a biopsy pathology result indicating Gleason grade group 7, (d)
a 78-year-old man with a prostate-specific antigen level of 17.81 ng/mL and a biopsy pathology result indicating Gleason grade group 6.
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recommend that future research incorporate multiple parameters

such as PSA density and clinical indicators to establish a combined

predictive model.

In our study, we employed prostate TRUS videos to create a

deep learning model that improved the model’s accuracy and

precision. Instead of relying only on images and delineating

nodules (17, 18), we delineated all frames of the videos to

generate mask files for the prostate tissue. By using video clips

and delineating each frame comprehensively, we were able to

evaluate prostate tissue characteristics more comprehensively.

Consequently, these methodological innovations have rendered

this study more reliable and innovative, offering novel insights

and approaches in the field of PCa diagnosis. Compared with the

MRI deep learning model (AUC 0.832) reported by Liu Zheng et al.

(19), our TRUS video model achieved comparable performance.

The advantages of TRUS lie in its high accessibility, low cost, and no

need for additional examinations, making it particularly suitable for

primary screening. However, it must be emphasized that MRI still

holds irreplaceable value in localization and staging, and the two

modalities should be considered complementary rather than

competitive. A study conducted by Sun et al. utilized 832 prostate

TRUS videos to construct a 3D convolutional neural network model

(20). In terms of predicting clinically significant PCa, the internal

validation cohort achieved an AUC of 0.89, sensitivity of 0.63, and

specificity of 0.94, the external validation cohort achieved an AUC

of 0.85, sensitivity of 0.81, and specificity of 0.78. However, their

model incorporated clinical parameters (total PSA, free PSA, PAS

density, family history, and previous negative biopsies) to enhance

diagnostic performance. They trained a logistic regression classifier

using the output probability of imaging predictors based on key

clinical parameters and the 2D P-Net and 3D P-Net models,

resulting in a clinical nomogram. In contrast, our model is solely

based on TRUS video data and its diagnostic performance in

predicting PCa is shown in Table 2.

In this study, we used a 3D DL model to analyze TRUS prostate

videos and differentiate between benign and malignant prostate

tumors. To our knowledge, this is the first study to combine

ultrasound videos with 3D DL models to differentiate prostate

tumors. In order to better compare the accuracy of different

methods for TRUS, we compared the identification results of 3D

DL model, traditional ML models, and radiologists. Among them,
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we used the I3d model for 3D DL (13). And it extend the 2D

convolutional layers to 3D, allowing for the capture of both

temporal and spatial information in videos (21–23). The results

demonstrate high performance in diagnosing PCa using the I3D

model, as evidenced by its sensitivity, specificity, and AUC. These

findings support the hypothesis that the 3D DL model can extract

valuable diagnostic information from TRUS prostate video clips.

Furthermore, the evaluation of the 3D DL model is based solely on

TRUS video clip data and has shown comparable performance to

multiparametric MRI in previous studies (24–26).

ML and DL algorithms serve as powerful tools for analyzing the

vast amount of available image data. They allow us to uncover

complex underlying biological mechanisms and have the potential

to enable personalized precision cancer diagnosis and treatment

planning. These algorithms have demonstrated comparable

accuracy to human experts (27–29), or have reduced

interobserver variability (30, 31), or physician workload in

various applications (32), including disease classification, image

segmentation, outcome prediction, automatic treatment planning,

motion trajectories, and image enhancement.

Our study has several limitations that should be acknowledged:

a) The TRUS video clips utilized in our study were collected

exclusively from ultrasound instruments of the same brand across

the four centers. In future research, we will consider incorporating

video clips captured by assorted brands of ultrasound instruments.

b) Currently, our research is focused solely on gray-scale ultrasound

image data. To further improve the classification performance of

PCa, we intend to explore the integration of multi-modal data, such

as contrast-enhanced ultrasound, clinical information, and MRI in

constructing a DCNN model. c) DL modeling typically involves a

black-box development process, where the algorithm learns from

vast amounts of data points and produces outputs by associating

specific data features. The process is largely self-directed by AI and

can be challenging for data scientists, programmers, and users to

interpret. d) The use of biopsy results as the gold standard in this

study has certain limitations. Due to the sampling constraints of

biopsies (particularly for MRI-negative lesions), false-negative

results may occur. To mitigate this potential bias, all included

cases underwent a standardized 12-core systematic biopsy

protocol. For clinically suspicious cases with initial negative

biopsies (e.g., those with persistently elevated PSA levels or
TABLE 3 The details of mpMRI-negative cases of PCa.

Cases Group Age PSA Pathology mpMRI I3D

1 Internal test set 79 16.24
Right peripheral zone with prostate adenocarcinoma, (Gleason
score: 3 + 3 = 6, WHO/ISUP grade group 1).

BPH B

2 External test set 1 83 6.83
Right central zone and right peripheral zone with prostate
adenocarcinoma (Gleason score: 3 + 4 = 7, WHO/ISUP grade
group 2).

BPH M

3 External test set 1 68 14.38
Left central zone with prostate adeno-carcinoma (Gleason score
3 + 3 = 6, WHO/ISUP grade group 1).

BPH M

4 External test set 2 84 3.48
Right peripheral zone prostate adeno-carcinoma (Gleason score:
3 + 3 = 6, WHO/ISUP grade group 1)

BPH M
fro
The pathological results of biopsy for case 3 showed a Gleason score of 7, while the results for other cases showed a Gleason score of 6. The mpMRI diagnosis did not find any obvious masses, only
indicating benign prostatic hyperplasia (BPH). The diagnosis of I3D models for case 3 showed benign (B) and the diagnoses for other cases showed malignant (M).
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positive MRI findings), repeat biopsies were recommended.

Nevertheless, this limitation may affect the accuracy of model

evaluation. In our future work, we aim to expand the dataset

through collaboration with multiple centers to validate the

generalizability of our model across diverse providers and patient

populations. Additionally, we plan to strengthen our findings by

conducting prospective studies.
5 Conclusions

Our proposed DL I3D model demonstrates promising

feasibility in predicting PCa. Compared to the diagnosis of

sonographers and ML models utilizing individual feature groups,

the DL model based on TRUS prostate video clips significantly

improves predictive classification performance. The proposed

model has the potential to aid in identifying patients at higher

risk of PCa and may contribute to reducing the number of

unnecessary prostate biopsies.
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