
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Rengyun Liu,
The First Affiliated Hospital of Sun Yat-sen
University, China

REVIEWED BY

Li Li,
Harbin Medical University, China
Yixian Fan,
National Center for Child Health and
Development (NCCHD), Japan

*CORRESPONDENCE

Zhong Wang

wangzhong761@163.com

Lingchuan Guo

szglc@hotmail.com

†These authors have contributed equally to
this work

RECEIVED 23 February 2025
ACCEPTED 03 June 2025

PUBLISHED 18 June 2025

CITATION

Li W, Zhu Z, Li L, Wu X, Li J, Zhou Y, Gu L,
Vittal P, Chen Z, Wang Z and Guo L (2025)
Deciphering the impact of intra-tumoral
bacterial infiltration on multi-omics profiles in
low-grade gliomas.
Front. Oncol. 15:1582068.
doi: 10.3389/fonc.2025.1582068

COPYRIGHT

© 2025 Li, Zhu, Li, Wu, Li, Zhou, Gu, Vittal,
Chen, Wang and Guo. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 18 June 2025

DOI 10.3389/fonc.2025.1582068
Deciphering the impact of intra-
tumoral bacterial infiltration on
multi-omics profiles in low-
grade gliomas
Wenshu Li1†, Zixiang Zhu2,3†, Longyuan Li2†, Xin Wu2, Jiaxuan Li2,
Yi Zhou2, Lingwen Gu2, Pranathi Vittal3, Zhouqing Chen2,
Zhong Wang2* and Lingchuan Guo1*

1Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University,
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Background: Low-grade gliomas (LGGs) exhibit diverse bacterial infiltrations.

This study delves into the intricate relationship between microbial infiltration in

glioma samples and tumor multi-omics characteristics, aiming to elucidate its

impact on tumor behavior and patient prognosis.

Methods: We included low-grade glioma (LGG) samples from The Cancer

Genome Atlas (TCGA) as analysis cohort and used LGG tumor samples from

patients who underwent surgical treatment as validation cohort. For the TCGA

samples, utilizing advanced machine learning algorithms, this study identified

distinct patterns of bacterial infiltration within the LGG population and

constructed a prognostically relevant intra-tumoral bacteria risk model (PRIBR

Index). For the clinically derived samples, we performed 16S rRNA sequencing,

bulk RNA sequencing, and proteomics analysis. Subsequently, the samples were

stratified into high-risk and low-risk groups. We then explored clinical

information, tumor microenvironment, methylation status, and sensitivity to

targeted therapies between these groups to elucidate the impact of varying

bacterial infiltration levels on glioma behavior.

Results: A total of 32 common differentially expressed genes were identified

between the TCGA-LGG samples and the clinical samples when comparing the

high-risk and low-risk groups. The high-risk group demonstrated elevated

bacterial infiltration levels, which were associated with increased infiltration of

inflammatory factors. Patients in this group exhibited shorter survival periods,

potentially attributable to the heightened expression of negative immune

checkpoints. Predictive analysis for targeted drugs indicated that certain agents

might achieve a lower half maximal inhibitory concentration (IC50) in the low-

risk group compared to the high-risk group. Furthermore, while no significant

differences were observed in tumor mutation burden or copy number variation

between the two groups, the high-risk group showed increased methylation

levels across multiple pathways.
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Conclusion: These findings offer new insights into the biological characteristics

of gliomas and provide novel avenues for exploring new therapeutic approaches,

bringing fresh perspectives to the field of intra-tumoral bacteria.
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1 Introduction

Gliomas are the most common primary malignant tumors of the

central nervous system (CNS), which account for about 30% of all

CNS tumors and about 80% of malignant tumors (1, 2). Based on

clinical and molecular pathology, the 2021 World Health

Organization (WHO) Classification of Tumors of the Central

Nervous System (5th edition) has classified adult-type diffuse

gliomas into three types, including astrocytoma, IDH-mutant;

oligodendroglioma, IDH-mutant and 1p/19q-deleted; and

glioblastoma, IDH-wildtype (3). Low-grade gliomas (LGGs)

compose 6% of primary tumors of the CNS in adulthood (4), with

median survival times ranging from 5.6 to 13.3 years based on tumor

histopathologic features (5–7). Glioblastoma (GBM) is the most

prevalent high-grade glioma (HGG), which is among the deadliest

malignant solid tumors, exhibiting a median survival time of less than

2 years (8). Thus, the current status of glioma treatment and

prognosis is not deemed satisfactory. On one hand, although

surgery is currently recognized as the primary treatment option,

glioma cells are highly invasive and proliferative, making it difficult to

remove tumor cells completely by surgery (9, 10); on the other hand,

the blood-brain barrier (BBB) limits the efficacy of chemotherapeutics

and monoclonal antibody agents, including lomustine, carmustine,

and bevacizumab (11). Over the last few years, immune response-

based immunotherapies, including adoptive cell transfer (ACT) and

immune checkpoint blockade (ICB), have revolutionized the

effectiveness of treatments for patients with tumors (12). In

addition, the discovery of potential targets, including Alkylating

agent, Tyrosine kinase receptor pathway, BRAF mutation, NF1,

and IDH-mutation, also has offered more viable options for

targeted therapy of gliomas (13, 14). However, to date, no novel

therapeutic agent has received regulatory approval for glioma, and

immune checkpoint inhibitors—which have shown remarkable

efficacy in various cancers—have likewise failed to demonstrate

significant benefits in clinical trials for glioma (15, 16). As such,

glioma investigation and treatment have emerged as a popular

clinical challenge.

There is increasing evidence that the microbiome in the human

body is strongly associated with various tumors, including

hepatocellular carcinoma (17), pancreatic ductal adenocarcinoma

(18), breast cancer (19), and lung cancer (20). Numerous studies

have shown that the gut microbiome may play an indispensable role

in the pathogenesis and pathophysiology of tumors (21, 22). Recent
02
studies have shown intratumor microbes are also significantly

associated with tumorigenesis and prognosis. A large cohort study

of intratumor microbes in 2020 provided a comprehensive

characterization of the intratumor microbiome (23). Seven

common tumors were included in the study, and it is worth

mentioning that GBM was included. The presence of microbial

DNA in human tumors was confirmed by microbial 16S rDNA real-

time quantitative polymerase chain reaction (qPCR), and then

antibodies against microbial lipopolysaccharide (LPS) and

microbial 16S rRNA were exhibited that the microbiome was

mainly localized in cancer cells and immune cells. Besides,

immunofluorescence (IF) staining demonstrated that microbiome

was found in CD45+ immune cells, which suggested that they might

have an impact on the immune state of the tumor

microenvironment (23). In terms of the mechanisms triggering

tumorigenesis, intratumor microbes can directly cause DNA

damage besides metabolite pathways, leading to tumor formation

and progression (24). Furthermore, relevant studies have shown

that intratumor microbes metabolize chemotherapy drugs and lead

to chemotherapy resistance (25). Thus, intratumor microbes also

have a significant impact on cancer development and progression.

Nevertheless, limited research has emerged on intratumor

microbes and gliomas, which may be related to the common

belief that the brain is sterile. Recent studies on Alzheimer’s

disease had shown that microbes are also integral to the brain

tissue under non-inflammatory and non-traumatic conditions (26,

27). A 2023 immunology study by Roland Martin’s team found that

HLA molecules in glioblastoma present bacterial-specific peptides.

This peptide of microbial origin is recognized by tumor-infiltrating

lymphocytes (TILs), triggering a respond to tumor-derived target

peptides (28). However, the potential relationship linking microbes

within gliomas to tumor development is unclear. To investigate the

association between the two and the impact on the overall survival

of patients, we conduct this article to provide a theoretical basis for

the diagnosis and treatment of gliomas.
2 Methods

2.1 Data collection and standardization

The mRNA counts and TPM format transcriptome of LGG

samples are sourced from the TCGA database (TCGA-LGG,
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https://portal.gdc.cancer.gov/), along with downloaded genomics

and clinical information for analysis. Methylation b-values of

different pathway genes in different samples are obtained from

cBioPortal (www.cbioportal.org). The microbiome abundance

matrix of TCGA-LGG samples is sourced from Bacteria in

Cancer (BIC, http://bic.jhlab.tw/) (29), which utilizes TCGA

miRNA sequencing data to calculate the abundance of bacteria

within tumors by comparing reads not mapped to the human

genome against a bacterial reference. All data, except for

necessary removal of NA values or log transformation, have not

undergone any other modifications.
2.2 Collection of clinically sourced LGG
samples and 16S rRNA sequencing

The LGG samples included in this study were obtained from

patients who underwent surgical resection at the Department of

Neurosurgery, The First Affiliated Hospital of Soochow University,

between May 2023 and November 2023. Both patients and their

families were informed preoperatively that part of the tumor

samples might be used for scientific research, and written

informed consent was obtained. After tumor resection, the

samples were collected in sterile cryogenic vials (Bioteke, China)

under sterile conditions. The entire collection process was

conducted on a sterile workbench, after which the samples were

transferred to a -80°C freezer. The next day, the samples were

moved to long-term storage in liquid nitrogen. Once the

pathological diagnosis confirmed the tumors as LGG, the samples

were included in the study. For this research, the samples were sent

to GENEWIZ (Suzhou, China) for 16S rRNA sequencing. The V3

and V4 hypervariable regions of the prokaryotic 16S rRNA gene

were amplified using PCR primers designed by GENEWIZ (Suzhou,

China). The forward primer 338F (including the sequence

“ACTCCTACGGGAGGCAGCAG”) and the reverse primer 806R

(including the sequence “GGACTACHVGGGTWTCTAAT”—

with portions of the sequence withheld for confidentiality) were

employed for the amplification. Subsequently, index adapters were

attached to the PCR products via an additional PCR step to enable

next-generation sequencing (NGS). The resulting PCR product

library was validated on a 1.5% agarose gel, which confirmed a

target fragment of approximately 600 bp. For bioinformatics

processing, raw sequencing data were optimized using Cutadapt

(v1.9.1), Vsearch (v1.9.6), and Qiime (v1.9.1) through the following

steps: 1: Paired-end reads were aligned and merged based on

overlapping regions of at least 20 bp, with sequences containing

ambiguous bases (“N”) removed; 2: Adapter sequences were

trimmed, bases with quality scores below 20 at both ends were

removed, and sequences shorter than 200 bp were discarded; 3: The

merged and filtered sequences were compared against a database to

identify and remove chimeric sequences, yielding the final high-

quality dataset.
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2.3 LGG microbial characteristics and
establishment of machine learning
prognostic models

Using R software (version 4.3.2), we first included survival

information and microbial abundance of all LGG samples for

single-factor Cox regression analysis (survival package, version

3.5-7). Bacteria with p < 0.05 were selected for subsequent

multivariate Cox regression analysis (survival package, version

3.5-7), using p < 0.05 as the threshold. Subsequently, a

combination of 60 machine learning algorithms was employed to

establish survival-related models for the abundance of screened

bacteria and sample survival information in each sample, ranked by

the area under the ROC curve. The optimal combination was

selected to construct the LGG microbiota prognosis prediction

model. Validation was conducted using Kaplan-Meier (KM)

curves, time-dependent ROC curves, calibration curves, and

decision curves analysis. Finally, based on the abundance of

bacteria included in the model in each sample, a risk score was

calculated. Using the median score as the threshold, LGG samples

were divided into PRIBR Index.
2.4 Proteomic sequencing

For this research, the samples were sent to GENEWIZ (Suzhou,

China) for proteomic sequencing. Frozen tissue samples are

cryogenically ground and lysed to extract total proteins, which are

quantified by BCA. Proteins are reduced, alkylated, precipitated,

and then digested with trypsin. The resulting peptides are desalted

using SPE, separated via nano-LC, and analyzed by DIA on a Bruker

timsTOF Pro mass spectrometer. Finally, protein identification and

quantification are performed using Spectronaut Pulsar software.
2.5 Construct nomogram by incorporating
clinical characteristics

We collected clinical information from LGG samples and

constructed a nomogram model incorporating risk score, age,

gender, 1p/19q chromosomal co-deletion status, WHO grading,

and MGMT methylation status. This model aims to examine

whether the risk score can serve as an independent predictor for

prognosis, predicting the survival rates of glioma patients at 1, 3,

and 5 years. Validation was performed using time-dependent ROC

curves and decision curve analysis.
2.6 Analysis of mRNA expression difference
between high and low risk groups

We utilized the “DESeq2” package (version 3.58.1) to conduct

differential analysis of mRNA expression levels between the high
frontiersin.org
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and low-risk groups. We applied adjusted p-values < 0.05 and

absolute log fold change (LogFC) > 1 as filtering criteria.

Visualization was performed using the ggplot2 package

(version 3.4.4).
2.7 Enrichment analysis

We employed the R, utilizing the org.Hs.eg.db package (version

3.1.0) for gene annotation from the GO database, and the KEGG

REST API (https://www.kegg.jp/kegg/rest/keggapi.html) for gene

annotation from the KEGG database. Enrichment analysis was

conducted using the clusterProfiler package (version 3.14.3), with

a minimum gene set of 5 and a maximum gene set of 5000.

Visualization was performed for the top ten pathways with a P

value < 0.05.
2.8 Analysis of tumor microenvironment

We applied the ESTIMATE method and the EPIC method to

calculate the tumor microenvironment components of LGG

samples, quantifying the infiltration abundance of each type of

cell. ESTIMATE is an algorithm that leverages mRNA sequencing

data to predict cell types, enabling the assessment of tumor cell

purity, stromal fraction, and overall immune cell infiltration in

samples (30). In contrast, EPIC estimates the composition of cell

types using a reference gene expression matrix, focusing on the

proportions of various immune cell types within the sample and

evaluating their absolute scores (31). Subsequently, we utilized the R

“pheatmap” package (version 1.0.12) to visualize the tumor

microenvironment components between the two groups.
2.9 Tumor mutation burden and copy
number variation

We organized the Masked Somatic Mutation files and Copy

Number Variation (CNV) files obtained from the TCGA database

for LGG samples. We employed the R software package maftools

(version 2.18.0) to visualize the tumor mutation burden (TMB).

Furthermore, we utilized the GISTIC2.0 functionality on the

GenePattern website (https://cloud.genepattern.org/) for Copy

Number Variation analysis. Subsequently, we used the R software

package maftools (version 2.18.0) to visualize TMB and CNV.
2.10 Drug sensitivity analysis

We downloaded the tumor drug sensitivity v2 dataset (GDSC2,

pSet name: GDSC_2020 (v28.2)) using the “pharmacoGx” package.

This package allows for efficient annotation of cell lines, drug

compounds, and molecular features, facilitating comparison and

integration of different drug genomics datasets. The “OncoPredict”

package is utilized for predicting drug responses in cancer patients.
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The calcPhenotype function predicts the half-maximal inhibitory

concentration (IC50) of drugs in glioma patients by fitting a ridge

model, with the training set consisting of tissue gene expression

profiles and cancer cell line IC50 values for GDSC2 and LGG drugs,

and the test set comprising RNA-seq profiles of TCGA glioma

patients. We employed the Wilcoxon signed-rank test to analyze

differences in predicted IC50 between low- and high-risk groups,

using p < 0.05 as the significance threshold.
3 Results

3.1 A variety of bacteria can be identified in
low-grade gliomas, and the abundance of
multiple bacteria is correlated with patient
survival

The results obtained from the BIC database revealed that in

TCGA-LGG samples, the most abundant bacterial phylum is

Proteobacteria (Figure 1A). Within the Proteobacteria phylum,

Pseudomonas, belonging to the Pseudomonadaceae family, ranked

first in abundance across the samples and was detectable in most

tumor samples (Figure 1B). After conducting 16S rRNA sequencing

on the clinically sourced LGG samples, we found that the microbial

phyla Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes—

previously identified as the top five in abundance in TCGA—were

also detectable in our clinical samples, we visualized the sequence

counts of the top 30 most abundant bacterial phyla (Figure 1C).

Similar to the TCGA-derived samples, Proteobacteria were present in

our clinical samples in high proportions (Figure 1D). However, one

notable difference is that the proportion of Proteobacteria in our

samples was exceedingly high. Given that Proteobacteria are a

common bacterial phylum, we had to consider the possibility of

sample contamination. After excluding Proteobacteria, the most

abundant identified bacterial phylum in our samples was

Firmicutes (Figure 1E).

It’s puzzling that multiple bacterial infiltrations were detected in

nearly all samples. Typically, the intracranial environment is

considered absolutely sterile, a fundamental principle upheld

during neurosurgical procedures (32). Despite rigorous

environmental disinfection, opening the dura mater during

surgery inevitably exposes brain tissue to airborne bacteria.

Neurosurgeons commonly employ prophylactic antibiotics to

prevent intracranial infections, yet the risk remains significantly

high (33). Therefore, the presence of bacteria in primary

intracranial tumors may confound most neurosurgeons. Indeed,

previous studies have demonstrated that bacteria can penetrate the

blood-brain barrier through mechanisms involving cellular

invasion or infecting phagocytic cells (34, 35). Building upon this

foundation, numerous studies have explored targeted drug delivery

using Trojan horse mechanisms that exploit bacterial traversal of

the blood-brain barrier (36, 37). Based on this theoretical

framework, we endeavor to analyze whether microbial presence

within tumors may offer potential benefits in the treatment of LGG.

Survival-associated single-factor COX analysis identified the
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FIGURE 1

Relative abundance of different microbial communities in TCGA-LGG samples using stacked bar charts. Relative abundance was obtained by
summing the readings of species that passed all the screens and belonged to the same phylum/genus. (A) Bacterial phylum-level composition of
TCGA-LGG patient samples. The top five genus names are listed in the legend: Pseudomonas, Paenibacillus, Acinetobacter, Actinoplanes, and
Bacillus. (B) Genus-level composition of bacteria in the Proteobacteria phylum in TCGA-LGG patient samples. The top five genus names are listed in
the legend: Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, and Cyanobacteria. (C) Heatmap showing the infiltration of the top 30 most
abundant bacterial phyla in clinically sourced LGG samples based on 16S rRNA sequencing, with gradient colors indicating the sequence counts of
each taxon after z-score normalization. (D) Proportional infiltration of the top ten most abundant bacterial phyla in clinically sourced LGG samples
based on 16S rRNA sequencing. (E) Proportional infiltration of the top ten most abundant bacterial phyla in clinically sourced LGG samples based on
16S rRNA sequencing, after excluding Proteobacteria and unclassified bacterial phyla.
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abundance of 55 bacterial genera out of 1618 genera correlated with

patient survival (Supplementary Table S1). Subsequent multivariate

Cox analysis further narrowed down the list to 33 bacterial genera,

of which 8 belonged to the Proteobacteria phylum (Oceanimonas,

Shewanella, Burkholderia, Rahnella, Brucella, Edwardsiella,

Pelagibacterium, Acidovorax) (Supplementary Table S2).
3.2 The LGG microbial-related prognosis
model was constructed by selecting the
optimal machine learning model

We utilized 60 different combinations of machine learning

algorithms and constructed an LGG microbiota-related
Frontiers in Oncology 06
prognostic model using the 33 bacterial genera selected from the

previous multivariate COX analysis. By calculating the area under

the ROC curve for each model and sorting them, the RSF+Lasso

algorithm, CoxBoost+RSF algorithm, and RSF algorithm applied

individually exhibited the highest ROC curve areas, approximately

0.90 (Figure 2A). Ultimately, we chose to construct the model using

the top-ranked RSF+Lasso algorithm, which incorporated the

abundance of all 33 bacterial genera (Figures 2B, C). Using time-

dependent ROC analysis, we confirmed that our model remains

accurate at the 1-, 2-, and 3-year time points (AUC > 0.80) (Figure

2D). Examination of the model revealed that the high-risk group

had shorter survival time, a higher number of deaths (Figure 2E),

and the PRIBR Index calculated based on this model demonstrated

satisfactory accuracy in predicting the 1-year, 2-year, and 3-year
FIGURE 2

Construction of LGG microbial-related prognosis models and evaluation of model accuracy. (A) Stacked bar charts obtained by sorting the areas
under the ROC curves of LGG microbiota-related prognostic models constructed by combinations of 60 different machine learning algorithms, with
the dark red bars corresponding to the three algorithms employed with the highest ROC curve areas: the RSF+Lasso algorithm, the CoxBoost+RSF
algorithm, and the RSF algorithm, with gradient colors representing the C-index values. (B) The RSF+Lasso algorithm coefficient profiles of 33
bacterial genera in TCGA-LGG dataset (C) The log (lambda) sequence plot of the 33 bacterial genera using RSF+Lasso algorithm regression. (D) The
time-dependent ROC analysis of the RSF+Lasso algorithm risk score in TCGA-LGG. (E) Kaplan-Meier for groups with high-risk or low-risk scores.
(F) Clinical outcome distribution and PRIBR Index distribution of LGG patients. (G) The calibration plot for predicting the 1-year, 2-year, and 3-year
survival time.
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survival of glioma patients (Figures 2F, G). After incorporating

patient age, gender, 1p/19q chromosomal co-deletion status,

MGMT methylation status, and WHO grading (Supplementary

Figure S1), we constructed a nomogram to evaluate whether the risk

score could serve as a reliable indicator for predicting prognosis.

The results showed that the risk score had significant statistical

significance in predicting patient survival time (p < 0.0001)

(Figure 3A). Additionally, the nomogram exhibited ROC curves

greater than 0.90 for predicting patient survival rates at 1 year, 3

years, and 5 years (Figure 3B).
3.3 A high abundance of bacteria is
associated with cellular immune and
inflammatory pathways in tumors

We presented a heatmap displaying the abundance distribution

of the 33 bacterial genera included in LGG samples from the high-

risk and low-risk groups. Within the high-risk subgroup of the

TCGA cohort, several bacterial taxa—specifically Brucella,

Thermobacillus, Collinsella, Rahnella, and Chondromyces—showed

markedly greater inferred abundance. Correspondingly, the heat-

map reveals a denser pattern of dark modules in these high-risk

samples, signifying overall stronger microbial infiltration

(Figure 4A). In the clinical sample cohort, our 16S rRNA

sequencing detected 9 out of these 33 bacterial genera, and based

on the abundance of these 9 genera, the samples were similarly

classified into high-risk and low-risk groups (Figure 4B).

Subsequently, we conducted a differential analysis of mRNA

expression levels between the two groups (Supplementary Table
Frontiers in Oncology 07
S3), selecting differentially expressed genes with an absolute log fold

change (logFC) > 1 and an adjusted p-value < 0.05. Surprisingly,

almost all of these genes exhibited higher expression trends in the

high-risk group (Figure 4C). In addition, within the clinical sample

cohort, we identified 32 mRNAs that were consistently differentially

expressed across both the TCGA and clinical cohorts (Figure 4D).

In the proteomic sequencing of the clinical samples, although

not all proteins corresponding to these 32 mRNAs were detected in

every sample, the detected proteins still showed a similar expression

trend. Notably, three genes that were highly expressed in the low-

risk group are PCDHGB4, KRT14, and KRT6A. Among these,

KRT14 and KRT6A belong to the cytokeratin family, a group of

cytoskeletal proteins; downregulation of these proteins may indicate

a reduction in the defensive capabilities of the barrier system (38).

Results from various enrichment analyses indicated that genes

with higher expression in the high-risk group were enriched in

pathways related to chemokines, T-cell signaling, and other cellular

immunity and inflammation pathways (Figures 4F–I, Supplementary

Table S4). Moreover, Supplementary Figures S2B–E displays the

pathway enrichment of the 32 common differentially expressed

genes identified in both cohorts, suggesting a correlation between

high bacterial abundance and increased activity in these pathways

within tumors. Considering that some genes exhibited opposite

trends across the two cohorts, we conducted a subsequent

enrichment analysis focusing solely on the genes with consistent

trends. The results indicated that after excluding the genes with

conflicting trends, there were no significant changes in the enriched

pathways (Supplementary Table S5). Finally, after calculating the

cellular components of the tumor microenvironment using the

ESTIMATE and EPIC methods, we observed that macrophage
FIGURE 3

Nomograms with the risk score are displayed to predict the survival time of LGG patients. (A) The nomogram based on risk scores was constructed
to predict the 1-year, 3-year, and 5-year survival time of glioma patients. (B) The corresponding ROCs illustrate the performance of the nomogram
model with risk scores. **P < 0.01; ***P < 0.001.
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FIGURE 4

Cellular immune and inflammatory pathways in tumors of different PRIBR Index groups. (A) Heatmap showing the abundance distribution of 33
filtered bacterial genera in LGG samples from both high- and low-risk groups, with gradient colors indicating the infiltration abundance of each
taxon after z-score normalization. (B) Heatmap displaying the infiltration abundance of 9 filtered bacterial genera measured in the clinical samples,
with gradient colors indicating the infiltration abundance of each taxon after z-score normalization. (C) Volcano plot of differentially expressed genes
between high- and low-risk groups in TCGA-LGG samples. (D) Volcano plot of differentially expressed genes between high- and low-risk groups in
clinical samples, with mRNAs that are positively differentially expressed in both cohorts annotated [(logFC > 1, p < 0.05)]. (E) Heatmap illustrating the
expression differences of the proteins translated from the 32 commonly expressed mRNAs in the proteomics analysis of clinical samples, where gray
indicates that the protein was not detected, with gradient colors indicating the expression levels of each protein after z-score normalization.
(F–I) Gene enrichment analysis of chemokines, T-cell signaling pathways, and other pathways related to cellular immunity and inflammation.
Frontiers in Oncology frontiersin.org08
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infiltration—as well as the StromalScore, ImmuneScore, and

ESTIMATEScore—were all significantly higher in the high-risk

group (Supplementary Figure S2A).
3.4 The degree of immune cell infiltration
in tumor microenvironment was different
between PRIBR Index groups

Subsequently, we used a heatmap to illustrate the differential

expression of chemokines such as CCL5, CXCL10, and CXCL11

between the high-risk and low-risk groups (Figure 5A), showing

higher expression patterns in the high-risk group. Moreover, there

was a correlation between the risk score and these chemokines

(Figures 5B–D), suggesting that bacteria present in tumors may

jointly induce immune responses. Previous studies have indicated

that microbiota in the gut or within tumors can promote antitumor

immunity by inducing more severe inflammation or immune

responses (18, 39). However, our earlier research showed that the

abundance of these 33 bacteria genera associated with prognosis

correlated with poorer outcomes in glioma patients. Considering

the cold immune characteristics of gliomas (40), we attempted to

analyze the differential mRNA expression of various negative

immune checkpoints, including PDL1. The results showed that

these negative immune checkpoints exhibited higher expression

trends in the high-risk group (Figure 5E), and the expression levels

of PDL1 (CD274), CD48, CD80, and CD276 were positively

correlated with the risk score (Figures 5F–I). In our proteomic

analysis, we demonstrated that the expression patterns of proteins

translated from these mRNAs, as depicted in the heatmap, exhibited

a similar trend (Supplementary Figure S3A). However, because

these proteins were not measured across all samples, we

incorporated glioblastoma mRNA and corresponding protein

sequencing data from the CPTAC database. Correlation analysis

revealed that the expression levels of CD48, CD276, and CD274

proteins in glioma were significantly correlated with their mRNA

levels (r > 0.6, p < 0.05) (Supplementary Figures S3B-D). This may

explain why the immune benefits brought about by bacteria in

gliomas show a trend contrary to that seen in tumors in

other locations.
3.5 The bacterial abundance in LGG was
weakly associated with the mutant
landscape of the tumor

We attempted to analyze whether there were differences in gene

mutations or chromosomal alterations between the high-risk and

low-risk groups. However, the results showed that in the high-risk

group, only the mutation probability of EGFR differed significantly

(Figure 6A), while the mutation landscape of other genes was

relatively similar. The mutation percentage is highest for IDH1,

with 73% in the high-risk group and 87% in the low-risk group. This

is because the samples included in TCGA are from a long time ago

and did not utilize the 2021 WHO classification for central nervous
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system tumors to categorize glioma samples. As a result, some

samples now considered to be glioblastomas were classified as grade

3 or grade 2 (3). Similarly, the results of CNV analysis did not reveal

significant differences between the two groups (Figures 6B, C).

We selected genes involved in important pathways in the

development of gliomas such as the WNT signaling pathway, p53

signaling pathway, TGFb signaling pathway, and PI3K signaling

pathway to examine their methylation levels. The results indicate

that, in most cases, there were no significant changes in gene

promoter methylation. However, there was a substantial increase

in the percentage of complete methylation for several genes

(Supplementary Table S6). This change ranged from

approximately 10% to 15%. Previous studies have suggested that

certain gut microbiota can influence epigenetic changes in cells (41).

This result may explain why there are differences in mRNA

expression levels among LGG samples with different

bacterial abundances.
3.6 Different PRIBR Index groups exhibited
varying drug sensitivities

Using IC50 as the criterion for assessment, we attempted to

predict drug sensitivity in all LGG samples. In the low-risk group,

several targeted drugs were identified to have lower IC50 values

(Figure 7A), including Gefitinib targeting the EGFR signaling

pathway (Figure 7D), Palbociclib targeting CDK4/6 (Figure 7C),

and Venetoclax targeting apoptosis regulation (Figure 7E).

Analyzing the correlation between specific 33 bacterial species

and the sensitivity to these targeted drugs revealed that several

bacteria showed a positive correlation with the IC50 trends of

targeted drugs such as KU.55933, BMS.345541 (12/33), MG.132 (8/

33), NVP.ADW742 (16/33), and BIBR.1532 (9/33) (Figure 7B).

This suggests that patients with a high PRIBR Index may have a

poor response to targeted therapy.
4 Discussion

In this study, we aimed to establish a prognosis-related machine

learning predictive model for intra-tumoral microbiota in low-

grade gliomas, seeking to identify the multi-omic differences of

intra-tumoral microbiota in different patterns of LGG. This study

represents the first comprehensive analysis of the differential

impacts caused by microbial infiltration in gliomas. we shed light

on the effects of microbial infiltration on patient prognosis, grading,

mRNA transcription, potential pathway variances, epigenetic

alterations, genomic characteristics, and drug sensitivity in

gliomas. This study addresses a significant gap in the current

understanding of this field.

Over the past century, there has been a growing recognition of

the role of microorganisms in the development of tumors. Initially,

certain viruses capable of inducing cancer, such as the Epstein-Barr

virus, human papillomavirus, and hepatitis B virus, were

discovered. In the late twentieth century, the discovery of
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FIGURE 5

Different PRIBR Index groups showed different phenotypes. (A) Boxplot of the differential expression of chemokines between the high-risk and low-
risk groups. (B–D) Correlation analysis between the risk score and expression of relative chemokines (CCL5, CXCL10, CXCL11). (E) Box plots are
presented about the differential mRNA expression of various negative immune checkpoints between the high-risk and low-risk groups by the
Kruskal–Wallis test. -, not significance, *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. (F–H) Correlation analysis between the risk score and
expression of various negative immune checkpoints (CD80, CD276, CD48).
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Helicobacter pylori in the stomach led to discussions in the

academic community about the role of bacteria in tumors (42).

With the emergence of 16s rRNA sequencing and metagenomic

next-generation sequencing (mNGS) technologies, researchers can

now independently sequence bacterial DNA. The first reports

focused on the role of gut microbiota in the development of

tumors, sparking significant interest among researchers in this

field (43–45). The microbiota in the gut not only influences the

biological functions of gastrointestinal tumors but also affects

distant tumors by regulating the host’s systemic immune response

(46). In 2020, Nejma et al. published a study in Science identifying

and analyzing tumor microbiomes in seven different types of

tumors. They identified associations between tumor-associated

microorganisms and tumor subtypes in breast cancer, lung

cancer, and glioblastoma, while immunotherapy responses were

reported only in melanoma (23).

By analyzing the distribution of bacterial species and phyla

within LGG tumors, we found significant differences in the bacterial

infiltration status among different samples. The abundance of
Frontiers in Oncology 11
Proteobacteria was highest in most samples, with Pseudomonas

being detectable in most samples, consistent with the sequencing

results reported by Nejma et al. in high-grade gliomas (23).

Subsequently, we employed 60 different machine learning

algorithms to construct various models related to LGG-associated

microbiota and validated them. We selected the algorithm with the

highest accuracy to establish the model. Ultimately, we identified 33

bacteria associated with the survival period and status of LGG

patients. The risk score based on the abundance of these 33 bacteria

exhibited significant differences among different clinical groups and

could serve as an independent prognostic factor.

In the high-risk group, there is infiltration by a greater variety of

bacterial species. To identify the potential impact of tumor

microbiota infiltration status under different patterns on the

biological behavior of LGG, we conducted differential analysis of

mRNA transcription profiles between high and low-risk groups

identified by the model. The results were unexpected, as almost all

differentially expressed genes exhibited a higher expression pattern

in the high-risk group. Enrichment analysis of these genes revealed
FIGURE 6

Association of bacterial abundance in LGG with tumor mutation. (A). Waterfall plots exhibited top 30 genes mutation information in each sample in
the high-risk and low-risk group. Column heatmap showed base-pair mutations in genes (genes with higher mutation frequencies in the low-risk
group are highlighted in blue, while those more frequently mutated in the high-risk group are marked in red). (B, C) Chromosome plots
demonstrated recurrent copy number variation (CNV) in the high-risk (B) and low-risk group (C).
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enrichment in chemokine or T-cell pathways using different

analysis methods, implying that microbiota within tumors may be

involved in the tumor’s immune status. Our subsequent analysis of

the tumor microenvironment similarly validated this point,

showing increased T-ce l l infi l t r a t ion in the tumor

microenvironment of the high-risk group. In drug sensitivity

analysis, we found that LGG patients in the high-risk group

benefited less from certain targeted drugs in sensitivity predictions.

Some viewpoints suggest that protective immune responses

against certain pathogens may also target tumors (47), as

evidenced by studies on the response of certain gut microbiota to

immune checkpoint inhibitors in tumors (48, 49). Therefore, we

attempted to analyze the expression of chemokines between the

high and low-risk groups. The results showed that the differentially

expressed chemokines were upregulated in the high-risk group,
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indicating that tumors and bacteria may jointly induce immune

responses. However, in gliomas, the higher the identified bacterial

infiltration associated with prognosis, the shorter the survival time

of glioma patients. This phenomenon contradicts existing theories.

Thus, we attempted to analyze certain immune checkpoints such as

CD274 (PDL1), CD48, and HAVCR2 (TIM-3) (50–52), which have

been proven to play negative roles in gliomas. The expression levels

of these immune checkpoints were higher in the high-risk group,

which may partially explain the contradictory findings compared to

previous research results.

At the same time, we also attempted to analyze whether this

different bacterial infiltration status would affect the genomic and

epigenetic modification status of tumor cells. At the genomic level,

there seemed to be little difference between the high and low-risk

groups, with only the mutation rate of EGFR being more common
FIGURE 7

The PRIBR Index predicts patient sensitivity to targeted therapy: (A) Heatmap displaying 27 targeted therapeutic drugs exhibiting differences between the
two groups, with annotations on the right indicating the targeted pathways for each drug (blue indicates drugs with an IC50 positively correlated with
risk (correlation coefficient > 0.1 and p < 0.05), and red indicates drugs with an IC50 negatively correlated with risk (correlation coefficient < -0.1 and
p < 0.05)). (B) Correlation analysis between 33 bacterial species and five specific targeted drugs. (C–E) Boxplots illustrating differences in IC50 values of
different drugs between the two groups: Palbociclib (C), Gefitinib (D), Venetoclax (E).
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in the high-risk group compared to the low-risk group. However,

the analysis of methylation status showed that methylation status

on multiple pathways appeared to change in the high-risk group,

which may be related to toxins released by certain bacteria (53). The

symbiotic relationship between cells and bacteria can also alter the

epigenetic modification status of cells (41, 54). Takashi et al.’s study

demonstrated that the gene methylation level of TLR4 in intestinal

epithelial cells was higher in conventional mice compared to germ-

free mice (41). This result partly explains the reason for the

phenotypic differences between samples with different cell-

bacteria symbiotic relationships in LGG.

We are the first to analyze the relationship between different

microbial states within glioma samples and multi-omics differences

in tumors. Despite obtaining many meaningful results, our study

has certain limitations. Firstly, the microbial data we relied on is

from the online BIC database, which only includes LGG samples,

this cohort only includes samples classified as WHO grade 2 and 3.

This means that although previous research tends to focus more on

glioblastoma (28), we had to exclude these samples. Secondly,

although we included 507 samples from online databases in our

study, clinical sample validation may also require large-scale

sequencing datasets to avoid biases. Due to time constraints, we

did not include more clinical samples for validation. For the clinical

samples included in this study, we performed 16S rRNA and

proteomic sequencing. However, due to the limited sample size,

additional analyses (e.g., single cell sequencing or histological

staining) were not feasible. In addition, the bacterial infiltration

abundance data we obtained were derived from unmapped reads in

TCGA sequencing results, which were not assigned to specific

genes. Compared to results obtained from 16S rRNA sequencing,

this method inherently carries certain potential biases. However,

given the lack of large-scale 16S rRNA sequencing data specifically

targeting gliomas, we had no choice but to adopt this approach.

Similar to previously published studies on intratumoral bacterial

infiltration, our machine learning-based analyses were conducted

using the relative abundance of bacterial infiltration. This may raise

concerns among some researchers. To address these potential

concerns, we supplemented our findings with bacterial sequence

counts measured in clinically derived glioma samples. It is

important to note that, whereas the BIC database leverages

normal brain samples from TCGA as controls, our 16S rRNA

sequencing analysis—conducted under ethical constraints—was

restricted to tumor specimens and did not include matched

normal brain tissue. This limitation may have introduced bias

into our validation results. Moreover, we used both EPIC and

ESTIMATE algorithms to predict immune−cell infiltration.

Because these approaches are based exclusively on bioinformatic

inference and our study included only a limited number of clinically

collected glioma samples, we were unable to validate the TCGA

−derived findings in an independent external cohort. This

limitation may introduce some degree of bias into our results.

Lastly, while our analysis suggests that intra-tumoral bacteria are
Frontiers in Oncology 13
associated with various cellular activities, we also hope for large-

scale microbiome studies targeting all glioma subtypes.
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