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Objectives: Non-contrast MRI(NC-MRI) is an attractive option for liver tumors

screening and follow-up. This study aims to develop and validate a deep

convolutional neural network for the classification of liver lesions using non-

contrast MRI.

Methods: A total of 50418 enhanced MRI images from 1959 liver tumor patients

across three centers were included. Inception-ResNet V2 was used to generate

four models through transfer-learning for three-way lesion classification,

which processed T2-weighted, diffusion-weighted (DWI) and multiphasic T1-

weighted images. The models were then validated using one independent

internal and two external datasets with 5172, 2916, and 1338 images,

respectively. The efficacy of non-contrast models (T2,T2+DWI) in

differentiating between benign and malignant liver lesions at the patient level

was also evaluated and compared with radiologists. The performance of

models was evaluated using the area under the receiver operating

characteristic curve (AUC),sensitivity and specificity.

Results: Similar tomulti-sequence and enhanced image-basedmodels, the non-

contrast models showed comparable accuracy in classifying liver lesions as

benign, primary malignant or metastatic. In the independent internal cohort,

the T2+DWI model achieved AUC of 0.91(95% CI,0.888–0.932), 0.873(0.848-

0.899), and 0.876(0.840-0.911) for three tumour categories, respectively. The

sensitivities for distinguishing malignant tumors in three validation sets were

98.1%, 89.7%, and 87.5%%, with specificities over 70% in all three sets.
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Conclusions: Our deep-learning-based model yielded good applicability in

classifying liver lesions in non-contrast MRI. It provides a potential alternative for

screening liver tumors with the advantage of reducing costs, scanning time and

contrast-agents risks. It is more suitable for benign tumours follow-up, surveillance

of HCC and liver metastasis that need periodic repetitive examinations.
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1 Introduction

Liver cancer is one of the leading causes of cancer-related

mortality worldwide (1). Based on the primary tumor site, liver

cancer may be divided into primary liver cancer and metastatic

cancer of the liver. Hepatocellular carcinoma (HCC) accounts for 75-

85% of primary liver cancer while intrahepatic cholangiocarcinoma

(ICC) accounts for 10-15% (2). The liver is also the dominating site of

metastasis for gastrointestinal cancers and is a location highly

susceptible to the establishment of metastasis in many other

primary cancers, including breast, lung, and pancreatic cancers (3).

In addition, several types of benign masses also arise in the liver,

including cyst, hemangioma, focal nodular hyperplasia, abscess and

some benign nodules, such as cirrhotic nodules, regenerative nodules,

dysplastic nodules and adenoma (4, 5). Clinically, a key diagnostic

challenge lies in differentiating between primary hepatic

malignancies, metastatic lesions, and benign tumors. While benign,

asymptomatic lesions typically require no intervention other than

observation (6),accurate and timely diagnosis of malignant liver

lesions is crucial for effective treatment and improved prognosis (7).

Compared to ultrasound and computed tomography (CT),

Magnetic Resonance Imaging (MRI) achieves higher detection

rate and diagnosis accuracy for focal liver lesions, which makes it

the best candidate for surveillance of liver cancer (8, 9). However,

full contrast-enhanced MRI protocols are limited by long

acquisition times, high costs, and the potential adverse effects of

gadolinium-based contrast agents, including nephrogenic systemic

fibrosis and gadolinium deposition in tissues (10–19).

Non-contrast MRI (NC-MRI), incorporating T2-weighted

(T2W) imaging and diffusion-weighted imaging (DWI), is

emerging as a practical and safer alternative, especially for

patients requiring repeated follow-up. HCC presents with mild to

moderate hyperintensity on T2-weighted images, while non-

malignant lesions (e.g. cysts, hemangiomas, fibrosis) usually

display marked T2 hypo-intensity or marked T2 hyperintensity

(20). However, NC-MRI still has some limitations. Lesions like

FNH and adenomas can mimic malignancy, and certain HCCs may

appear isointense to the surrounding liver parenchyma on T2WI.

DWI is vulnerable to artifacts and has blind spots. Some reviews
02
pointed out that relatively low sensitivity and low inter-reader

agreement are main concerns in NC-MRI (21, 22).

With the advancement of artificial intelligence in medical

imaging, deep learning (DL), particularly convolutional neural

networks (CNNs), has shown great promise in improving image-

based diagnosis (23, 24). Although several studies have applied DL

to liver lesion classification, most of them rely on contrast-enhanced

MRI, limiting their applicability in routine screening or contrast-

contraindicated patients (25–28). If CNN-based DL models can

achieve high diagnostic performance using only NC-MRI, this

would substantially reduce the cost and complexity of liver tumor

surveillance, while minimizing patient risk. This would be especially

advantageous for patients with benign lesions requiring long-term

follow-up and for those under regular surveillance for HCC or liver

metastases. Therefore, this study aims to evaluate the diagnostic

performance of a deep learning model using only non-contrast MRI

for classifying liver tumors. Specifically, we developed and validated

the model on a multicenter dataset encompassing diverse liver

lesion types, and compared its performance with that of

experienced radiologists to assess its clinical utility.
2 Materials and methods

2.1 Study design

This was a retrospective, multi-center, diagnostic study using

liver MRI image sets from three hospitals in China. The inclusion

criteria were as follows: (1) with liver tumors; (2) accepted enhanced

MRI inspection; (3) with final diagnosis: histopathologic report from

biopsy or surgery; HCC with typical Li-RADS 5 imaging diagnostic

criteria; metastatic lesions with typical imaging features and known

primary sites; benign tumors with typical imaging features; (4) aged

18 years or older. The exclusion criteria were as follows: (1) accepted

treatment related to the lesion before MRI inspection, including

surgery, transcatheter arterial chemoembolization (TACE),

radiofrequency ablation, chemotherapy, radiotherapy, targeted drug

therapy, etc.(2) unqualified image quality. This study consisted of two

stages: the training stage, in which deep learning models were trained
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using MRI image sets from the hepatic focal lesion database by

affiliated Sir Run Run Shaw Hospital, Zhejiang University School of

Medicine (SRRSH, obtained from January 2014 to December 2018)

and the test stage to examine the performance of the models using

three different test MRI image sets which were obtained from SRRSH

(January 2019 to July 2019), Hangzhou First People’s Hospital

(HZFPH) and Tongde Hospital of Zhejiang Province(TDH),

respectively. In the training, to classify liver tumors into three

categories, we undertook a series of supervised CNN learning using

different combinations of MRI sequences (T2, diffusion, Pre-contrast

T1, late arterial, portal venous, equilibrium phase) as input data. A

flowchart of the outline of this study are demonstrated in Figure 1.

This study has been approved by the Institutional Review Board

of Sir Run Run Shaw Hospital (SRRSH) and was conducted in

accordance with the Declaration of Helsinki. This work has been

reported in line with the STARD (Standards for the Reporting of

Diagnostic accuracy studies) criteria (29).
2.2 Ground truth

Four general radiologists with more than 10 years of experience

in abdominal imaging diagnosis were divided into 2 groups of 2 to
Frontiers in Oncology 03
participate in data quality control and data annotation. Each lesion

was manually annotated by two general radiologists, with one

radiologist delineating the boundaries of the lesion under the

supervision of another radiologist. The contours of the lesion

were finalized when the two radiologists reached a consensus.

The gold standard for lesion classification was established either

from available histopathological reports or from the consensus of two

senior general radiologists, each with over 20 years of experience in

abdominal imaging diagnosis. Specifically, malignancies were

validated via histopathology, while benign lesions were confirmed

either through appropriate histopathology or by the joint agreement

of the senior radiologists mentioned earlier. The agreement was

achieved after an independent review of all pertinent information,

which included clinical data, MRI scans, and associated radiological

reports which were collected over a follow-up period of at least six

months. Cases that had neither a histopathological report nor a

consensus agreement were all excluded from the study. For patients

who had several liver masses of the same diagnosis, the most typical

and largest liver mass was selected. These datasets covered almost all

types of liver mass-like lesions.

Liver masses were finally classified into three categories

adhering to the criteria as follows: A. benign tumor, including

these types: cyst, hemangioma, abscess, focal nodular hyperplasia
FIGURE 1

Workflow diagram for the development and evaluation of deep learning models. SRRSH, Sir Run Run Shaw Hospital.
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(FNH), other benign nodules (cirrhotic nodules, regenerative

nodules(RN), dysplastic nodules(DN), rare benign tumors); B.

primary malignancy, including HCC and other primary hepatic

malignancy(intrahepatic cholangiocarcinoma(ICC), mixed HCC-

ICC, etc.); C. metastatic malignancy, with primary sites from

colorectal, breast, lung, pancreas, etc.
2.3 MRI acquisition protocol

Abdominal MRIs were performed in the supine position. The

T2 weighted sequence and diffusion weighted sequence (b value:

800s/mm2 or 1000s/mm2) were performed according to the

standard institutional liver MR imaging protocol, and the

acquisition time was 2-2.5min and 2-2.5min, respectively.

Contrast-enhanced T1 sequences were performed with acquisition

time of 12–18 s. Images of pre-contrast T1, late arterial phase (~ 15s

post-injection), portal venous phase (~ 60 s post-injection) and

equilibrium phase (~3 min post- injection) were also screened. The

scanners and contrast media used for MR acquisition in three

hospitals are listed in Supplementary Table S1. Imaging parameters

varied across different scanners and time frames.
2.4 Image preprocessing

Eligible MRI images were downloaded from the Picture

Archiving and Communication Systems (PACS) and stored as

Digital Imaging and Communications in Medicine (DICOM)

files. The region of interest (ROI) about liver tumor was

annotated in T2 sequences by trained senior abdominal

radiologists based on ground truth standard. Six images from six

sequences (T2, diffusion, Pre-contrast T1, late arterial, portal

venous, equilibrium phase) were then obtained for each cross

section of the lesion and resampled to a resolution of 0.7 × 0.7 ×

10 mm. Then the annotations of the other five sequences were

generated according to the origin and spacing information of

sequences. DICOM files were converted to images for the training

stage. To increase the diversity of data, the images were augmented

using rotation, flipping, scaling, shifting and shearing.
2.5 Deep learning model development

The overall process of the proposed deep learning system to

liver tumor diagnosis is explained in Figure 1. Our network

architecture was initially derived from Google Inception-ResNet

V2 CNN architecture. For initializing the network, we applied a

transfer learning method with backbone network pretrained on

ImageNet dataset (30) (see Supplementary Figure S1), while the first

convolution layer was modified to take in inputs of three or six

channels (for a single T2 sequence input, the T2 images were copied

and stacked to have three identical channels; for multi-sequence

input, the sequences were stacked in specified orders), and the last

fully-connected layer was modified to output three channels (for tri-
Frontiers in Oncology 04
classification task) or two channels (for binary-classification task).

For each group of input images, the output was a three or two-

dimensional vector representing the predicted probabilities for the

three or binary categories. The category with the largest value in the

vector was taken as the predicted diagnosis. To calculate the

patient-wise predicted value, the predicted vector for each image

group was summed up and the category with the largest value was

used as the final diagnosis of the patient.

The network was trained via back-propagation. The

optimization was stochastic gradient descent with global learning

rate of 0.1 and momentum of 0.9, while the step decay was set to

decrease by 50% every 20 epochs, combined with a linear warm-up

in the first 10 epochs. The training epoch was set to be 200 and

batch size as 16. Python and TensorFlow framework were used to

implement the training and validation stages. During the training

and validation stages, each image was first resized to 299×299 pixels

with bicubic interpolation. The images were also augmented via

random rotation within 40°, horizontal/vertical flip, and width/

height scaling, shearing and zooming which were all within 20%.

All codes were implemented in Python and Pytorch. One work-

station was used for individual model training and validation. More

specifically, all experiments were performed on a workstation

platform with 2 NVIDIA RTX 2080 Ti GPUs with 11GB GPU

memory, 256 G RAM, 1 NVIDIA RTX 1080Ti GPU and Intel(R)

Xeon(R) Gold6248 CPU @ 2.50 GHz, using Ubuntu 16.04.

To generate a visual explanation of the model diagnosis process,

attention maps were plotted using the Grad-CAM algorithm which

displayed the pixels in the ROIs that provided the greatest

contribution to the classification output (31).
2.6 Statistical analysis

Descriptive statistics were summarized as mean ± SD.

Comparisons between groups were made with the Kruskal-Wallis

H test, when appropriate, for quantitative variables and with the X2

test or Fisher’s test for qualitative variables. For classification

purposes, the receiver operating characteristic (ROC) curve was

used to show the diagnostic ability of the model in discriminating

specific category from the others. The ROC curve and the

corresponding area under ROC curve (AUC) for each category

were calculated in each model using the python library sklearn.

Differences between various AUCs were compared using a Delong

test. 95% CIs for sensitivity and specificity were calculated with the

Clopped-Pearson method. The diagnostic likelihood ratio (DLR)

was calculated to evaluate the clinical value of binary models. All

statistical tests were two-sided with a significance level of 0·05.
3 Results

3.1 Baseline characters

Between Jan, 2014, and Dec, 2018, 2942 patients with liver

tumors were enrolled from the hepatic focal lesions MR imaging
frontiersin.org
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database at SRRSH (Figure 1). Owing to undetermined final

diagnosis and prior anti-tumor treatment before MRI inspection,

1260 patients were excluded. After quality control evaluation, 6077

of 47069 images were discarded because of poor quality or multi-

sequence images that were not registered during image processing.

For the internal independent validation dataset, 5172 tumor images

from 220 patients were included at SRRSH between Jan, 2019, and

Jul, 2019. At the two other participating hospitals, 2916 images of

173 patients were obtained from Hangzhou First People’s Hospital

and 1338 images of 72 patients were acquired from Zhejiang

Tongde Hospital. The patient characteristics were summarized in

Table 1. Detailed diagnosis information about each type of tumors

in training and validation sets was shown in Supplementary

Table S2.
3.2 AUC performance of CNN models

The CNNmodels were first validated on the internal independent

SRRSH dataset (Figure 2). T2 and T2+DWI exhibited similar

performance compared to the other two multi-sequence models in

classifying benign tumor, primary malignancy and metastatic tumor.

Compared with T2+DWI, the other three models for each category

bascially showed no statistical significance in AUC (p>0.05,

Supplementary Table S3). However, the ability for distinguishing

metastatic tumor was significantly inferior in T2 model compared

to T2+DWI model (p=0.03, Supplementary Table S3). The AUCs of

T2+DWI reached 0.91, 0.873, and 0.876 for three categories,

respectively, while in T2 model, the AUCs were 0.92, 0.885 and 0.842.
Frontiers in Oncology 05
To further examine generalizability, we tested the models on the

two external independent cohorts beyond the SRRSH data

(Figure 3). The AUCs on these two test datasets presented with

similar trends to SRRSH validation set. On the HZFPH dataset, the

performances of four models on three-way classification were not

statistically different (p>0.05, Supplementary Table S3). However,

on the TDH dataset, the AUCs of T2+DWI were significantly better

than Six-Seq model with enhanced images (p<0.01, Supplementary

Table S3), which might be related to the different contrast medium

used in TDH validation set and SRRSH training set. The

corresponding ROC curves were shown in Figures 3A–C and 2D–F.
3.3 Diagnostic accuracy of non-contrast
models

The performance of two models based on non-contrast images

in classifying liver tumors on three independent validation datasets

was shown in Figure 4. Their diagnostic accuracy showed no

significant variation for classifying benign tumor and primary

malignant tumor (P>0.05, Supplementary Table S3). However, T2

+DWI exhibited a higher diagnostic accuracy compared with T2 for

differentiating metastatic tumors from the other tumors, and

differences of AUCs were all statistically significant (p<0.05,

Supplementary Table S3) in SRRSH and TH datasets. The

sensitivity and specificity analyses also demonstrated that T2

+DWI was better than T2 (Supplementary Table S4) based on the

comprehensive consideration about their performance on the three

hospital datasets.
TABLE 1 Baseline characteristics.

Characteristic
Training Set Validation Set (n=465)

p value
SRRSH (n=1494) SRRSH (n=220) HZFPH (n=173) TDH (n=72)

Age 52 (13.41) 55 (14.98) 54 (13.49) 55 (15.09) 0.003

Gender
Male
Female

811 (54.3%)
683 (45.7%)

132 (60.0%)
88 (40.0%)

92 (53.2%)
81 (46.8%)

42 (58.3%)
30 (41.7%)

0.378

Abscess 73 (4.89%) 12 (5.45%) 12 (7.10%) 6 (8.33%) 0.400

Cyst 155 (10.37%) 17 (7.73%) 22 (13.02%) 1 (1.39%) 0.027

Hemangioma 275 (18.41%) 29 (13.18%) 29 (17.16%) 23 (31.84%) 0.005

FNH 197 (13.19%) 29 (13.18%) 14 (8.28%) 6 (8.33%) 0.205

Benign nodules 150 (10.14%) 29 (13.18%) 14 (8.28%) 4 (5.56%) 0.206

Metastatic malignancy 140 (9.37%) 36 (16.36%) 22 (13.02%) 13 (18.36%) 0.002

HCC 396 (26.51%) 56 (24.45%) 42 (24.85%) 16 (22.22%) 0.832

Other primary malignancy 108 (7.23%) 12 (5.45%) 14 (8.28%) 3 (4.17%) 0.524

Lesion diameter (mm) 49.48 (35.39) 48.03 (34.78) 41.49 (24.87) 40.06 (29.04) 0.016
Data are mean (SD) or n (%). SRRSH, Sir Run Run Shaw Hospital; HZFPH, Hangzhou First People’s Hospital; TDH, Zhejiang province Tongde Hospital. p<0·05 indicates that patient age and sex
composition or the proportion of each category varied significantly by hospital (the Kruskal-Wallis H test was used to test whether patient age varied significantly by hospital, and the c² test was
used to test whether sex composition or the proportion of each category varied significantly by hospital).
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FIGURE 3

Comparison of receiver operating characteristic curves between T2, T2+DWI and Tri-Seq, Six-Seq models for the classification of three categories in
two external validation cohorts.(A, D) Benign tumor versus malignancy. (B, E) Primary malignancy versus other lesions(benign and metastatic
tumors). (C, F) Metastatic malignancy versus other lesions (benign and primary malignant tumors). (A-C) Hangzhou First People’s Hospital external
independent validation set. (D-F) Zhejiang province Tongde Hospital external independent validation set. AUC, area under the receiver operating
characteristic curve; Tri-Seq, Three sequences; T2+DWI+Pre-contrast T1; Six-Seq, Six sequences: T2+DWI +Pre-contrast T1+ late arterial, portal
venous, equilibrium phase.
FIGURE 2

Comparison of receiver operating characteristic curves between T2, T2+DWI and Tri-Seq, Six-Seq models for the assessment of three categories in
the independent SRRSH internal validation cohort. (A) Benign tumor versus malignancy. (B) Primary malignancy versus other lesions(benign and
metastatic tumors). (C) Metastatic malignancy versus other lesions (benign and primary malignant tumors). SRRSH, Sir Run Run Shaw Hospital; AUC,
area under the receiver operating characteristic curve; Tri-Seq, Three sequences; T2+DWI+Pre-contrast T1; Six-Seq, Six sequences; T2+DWI +Pre-
contrast T1+ late arterial, portal venous, equilibrium phase.
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We examined the internal features learned by the CNNs of non-

contrast models using t-SNE (t-distributed Stochastic Neighbor

Embedding) (32) (Supplementary Figure S2). Each point

represented a tumor image projected from the high-dimensional

output of the CNN’s last hidden layer into two dimensions. The

point cluster of benign tumors were basically split from those of

malignant tumors, while the point clusters of two malignant

categories were partly mixed. This indicated that the CNN could

distinguish malignant images from benign images with a high

accuracy, while more prediction errors occurred within the

specific classifications of malignant tumors.

Figure 5 showed attention maps from eight types of cases to

interpret the diagnostic mechanism of the neural networks. These

lesions were difficult to distinguish on T2 by naked vision, while

CNN models provided accurate diagnostic outcomes. The map

quantified each pixel’s contribution to diagnosis by analyzing the

lesion ROI. The red parts indicated areas that provided more related

information during the network’s diagnostic process. The networks

focused most of its attention on the tumor lesions themselves and

ignored liver background.
3.4 Binary classification at the specific
algorithm

In the performance analysis above, the prediction results about

CNN models were all based on single 2-D MR image slice of liver

tumor lesions. However, in clinical setting, one lesion with several
Frontiers in Oncology 07
image slices usually had only one diagnosis. Therefore, we tried to

develop an algorithm which could combine the confidences at slice-

level to predict the lesion-level confidence.

Firstly, the predicted vectors of all slices for each lesion were

summed up and the category with the largest value was taken as the

final diagnosis of the lesion. Then we obtained the diagnostic

performance of the T2+DWI model on three independent test

sets. Our study also conducted performance comparisons with

radiologists. To ensure a fair comparison, the radiologists only

relied on the T2 and DWI sequences to make independent

diagnoses, while blinded to medical history and histopathological/

radiological reports.

The ROC curves depicted in Figure 6 highlighted that T2+DWI

model surpassed all radiologists in binary classification on three

independent test sets, achieving an AUC of 0.935 (95% CI: 0.915-

0.955), 0.902(0.858-0.946), 0.920(0.867-0.972). In particular, the

model achieved superior performance in terms of accuracy,

sensitivity, and specificity. The accuracy across three test sets was

significantly higher than that of junior radiologists (P<0.05) and

was comparable to that of senior radiologists. The sensitivities from

the model were 0.908, 0.882, and 0.843, respectively. While superior

to those of radiologists, these differences did not reach

statistical significance.

In order to reduce the risk of delayed or missed care from false

negatives, we further defined an algorithm as follows: the tumor was

classified as benign only if all the related 2D slices were predicted

negative, otherwise, once any of the slices was predicted as primary

or metastatic malignancy, the tumor should be classified as
FIGURE 4

Receiver operating characteristic curves and area under the curve (AUC) analysis of two non-contrast models in three independent validation sets.
(A-C) T2 model. (D-F) T2+DWI model. (A, D) Sir Run Run Shaw Hospital internal validation set. (B, E) Hangzhou First People’s Hospital external
validation set. (C, F) Zhejiang province Tongde Hospital external validation set.
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FIGURE 5

Attention maps of non-contrast models on eight types of focal liver lesions. The color-coded maps highlight regions which were most discriminative
for a certain category. Red indicates the areas that contributed most, and blue areas contributed least. The left column is the region of interest from
T2 image, the middle is the attention map of T2 model, and the right is attention map of T2+DWI model. The number in the picture indicates the
probability of corresponding category predicted by the model. The original T2 images for each lesion were presented in Supplementary Figure S4.
A B C

FIGURE 6

Performance Comparison of T2+DWI model with Radiologists on three dependent test sets. ROC curves for binary classification; (A) Sir Run Run
Shaw Hospital internal validation set. (B) Hangzhou First People’s Hospital external validation set. (C) Zhejiang province Tongde Hospital external
validation set.
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malignant. Table 2 presented the sensitivity and specificity of T2

and T2+DWI model based on this rule, along with the

corresponding positive and negative DLRs.

The sensitivities of malignant tumors gained from T2 model

were 95.2%, 81.8%, and 87.5% in SRRSH, HZFPH and TDH

datasets, respectively, and the corresponding results in T2+DWI

model were 98.1%, 89.7%, and 87.5% respectively, while all

specificities were almost greater than 70%. These results indicated

that our models could identify over 95% patients with malignancy

at best using non-contrast images, and more than 70% of patients

with benign tumors could have the opportunity to avoid a further

inspection using contrast mediums.
4 Discussion

In this multicenter study, we investigated whether different

categories of liver tumor could be differentiated by deep learning

CNN models using only non-contrast MRI. Compared with the

multi-sequence model using enhanced images, Model T2 and T2

+DWI showed similar performances on classifying liver masses into

benign liver tumors, primary malignancy and metastatic

malignancy. Their robustness and generality were demonstrated

in three independent validation datasets. Moreover, under the

defined algorithm, they could identify more than 98% malignancy

and over 70% benign lesions at best. To the best of our knowledge,

this is currently the largest study in the field of deep-learning-

assisted liver tumor diagnosis based on non-contrast MR images

worldwide, which has the most variable types of focal liver lesions.

To date, there are hardly few studies that explore the feasibility

of non-contrast MRI for classifying liver tumors using deep learning
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(27, 33). Previous studies are usually based on enhanced images and

smaller datasets (n< 500 patients). In contrast, our model exhibited

a robust performance on multiple independent, real-world,

heterogeneous datasets (acquired with many different imaging

protocols and scanners, Supplementary Table S1), independent of

differences in patient demographics. Although the six-seq model

added with enhanced images did not perform better than the non-

contrast models on validation sets, it should still be noted that its

performance might be underestimated owing to the incomplete

registration between enhanced sequences and non-enhanced

sequences. Especially in the TDH set, the performance of the six-

sequence model was significantly weaker than the T2 model. It

might result from different contrast media (Supplementary Table

S1) used in Tongde hospital (Gadodiamide, 0.1mmol/kg) and

SRRSH (Gadopentetate dimeg-lumine, 0.2 mmol/kg) that lead to

different enhanced-image features in TDH validation set compared

with the training set.

As for non-contrast models in this study, T2+DWI showed

similar diagnostic efficacy with T2 for classifying liver tumors.

However, given that the excellent performance of DWI sequence

in detecting small malignant lesion (<2cm) (34), T2+DWI should

be the better choice in clinical application. After all, the problem of

automatic tumor detection was not considered in this study.

Moreover, for the TDH validation set with high-quality DWI

images, the performance of T2+DWI was better than that of T2

model, in contrast, the results of the other two larger datasets with

worse diffusion images were not improved. These results indicated

that the performance of T2+DWI model was highly associated with

the quality of diffusion images.

For three-way classification per image, it is commonly seen that

differentiating metastatic malignancy from the other two categories
TABLE 2 Sensitivity, specificity, and diagnostic Likelihood Ratio testing associated with T2 and T2+DWI models at specific algorithm.

Variable

SRRSH

T2 T2+DWI

Sensitivity, % Specificity, % DLR+ DLR- Sensitivity, % Specificity, % DLR+ DLR-

Malignancy 95.2 (89.0-98.4) 68.2 (58.6-76.7) 2.99
(2.15-4.23)

0.07
(0.02-0.19)

98.1 (93.2-99.8) 70.0 (60.5-78.4) 3.27
(2.36-4.61)

0.03
(0.00-0.11)
HZFPH

T2 T2+DWI

Sensitivity, % Specificity, % DLR+ DLR- Sensitivity, % Specificity, % DLR+ DLR-

Malignancy 81.8 (71.4-89.7) 70.0 (59.4-79.2) 2.73
(1.76-4.31)

0.26
(0.13-0.48)

89.7 (85.9-92.7) 73.3 (63.0-82.1) 3.21
(2.05-5.18)

0.19
(0.09-0.38)
TDH

T2 T2+DWI

Sensitivity, % Specificity, % DLR+ DLR- Sensitivity, % Specificity, % DLR+ DLR-

Malignancy 87.5 (71.0-96.5) 72.5(56.1-85.4) 3.18
(1.62-6.61)

0.17
(0.04-0.52)

87.5 (71.0-96.5) 75.0 (58.8-87.3) 3.5
(1.72-7.60)

0.17
(0.04-0.49)
DLR, diagnostic likelihood ratio; SRRSH, Sir Run Run Shaw Hospital; HZFPH, Hangzhou First People’s Hospital; TDH, Zhejiang province Tongde Hospital. The sensitivity, specificity, and DLRs
for three independent validation datasets at the specific algorithm are shown. The algorithm is defined that when all the images of one patient are benign judged by the CNN model, the case is
classified to benign tumor, in contrast, this case is classified to malignancy even if only one image indicated malignant. This algorithm can provide the greatest sensitivity for suspicious
malignancy while maintaining an adequately high specificity for benign tumors as to reduce the use of contrast agents.
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is more challenging in non-contrast models. Many metastatic

tumors were mis-predicted primary malignancy. This is because

the heterogeneity of metastatic lesions is more severe owing to

diverse primary tumor sites and histological types, and the

proportion of this category (11.5%, 4836/42150) was much less

than that of images with other categories in the training set. The

current CNN models sti l l have tremendous room for

improvements, and it is likely that CNN may achieve better

sensitivity in assessing metastatic tumors, if the sample

population of this category could be further extended in future

studies. Similarly, this situation has also been observed in some rare

types of two other categories, such as adenoma, ICC, small highly

differentiated HCC, etc., which were more likely to be misclassified.

The non-contrast models achieved basically satisfactory diagnosis

accuracy at image-level, encouraging further exploration of its utility

at patient-level. According to our defined rule, over 95% of patients

with malignant tumors in SRRSH validation set were correctly

judged, with a bit inferior about this indicator in two other

datasets. However, an inspection of misclassifications also provided

excellent feedback for our models (see Supplementary Figure S3,

confusion matrix). These errors are mostly concentrated in the

intrahepatic cholangiocarcinoma without typical image

manifestations, and usually all images of the lesion are misjudged.

For example, two ICCs fromHFPH were considered as inflammatory

granuloma and epithelial hemangioendothelioma respectively in

formal radiology reports. These tumors were underrepresented in

the training set and typically had a benign-looking appearance.

To the best of our knowledge, this is the largest multicenter study

that aimed to analyze the diagnostic performance of non-contrast MRI

for liver tumors by means of deep neural networks, covering the most

variable types of focal liver lesions. This system could be applicable to

get the first-step judgement for patients with liver masses by non-

contrast MRI, and then potential malignant patients be selected for

further enhanced inspections with suitable contrast agents. It could be

beneficial especially for the patients that require multiple follow-up

MRIs, such as those with benign lesions, or at relatively high risk of

liver metastasis, or post liver cancer resection, etc., which can avoid

unnecessary enhanced testing to reduce side effects and financial costs.

The work presented here has limitations. First, as our study

population was composed of those have confirmed focal liver

lesions (usually >1cm), our study results should be interpreted with

caution. Future studies need to involve more patients with <1cm small

lesions, especially those at high risk of HCC or metastasis. Prospective

studies focusing on these specific populations will be more convincing.

Second, our study performed in a diagnostic setting, thus the detection

ability to lesions under non-contrast MRI needs to be further

demonstrated. Fortunately, some studies have provided optimistic

evidence. Non-contrast MRI showed high sensitivity and specificity

for detecting HCCs in the early stage and in high-risk HCC patients

under the evaluation of radiologists (11, 12, 14, 35, 36). In the study of

Kim et al (26), a fully automated deep learning model outperformed

less experienced radiologists in detecting very small HCCs using

hepatobiliary phase MR images. From this perspective, we have

reason to believe that the deep learning model using T2 and DWI

images may also have a higher detection performance than human
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readers. Third, future studies need to involve more patients of small

number of types in a large scale, as well as to achieve an equal

distribution of patients in major categories, to make the deep learning

model better trained. Moreover, the model itself also needs to be

further developed with more comprehensive integration of other

clinical data, such as medical history, tumor markers, other

serological results, etc., which are valuable for tumor diagnosis.

In summary, using DL algorithms, NC-MRI provided accurate

diagnosis for liver tumors in classifying to benign, primary

malignancy and metastatic tumors. Moreover, the sensitivity of

malignant tumors achieved significant improvement at the patient-

level algorithm. In the independent internal and external cohorts,

the models also showed excellent robustness. The developed DL

model has potential to be used for benign tumors follow-up,

surveillance of HCC and liver metastasis that need regular

repetitive examinations in high-risk patients, yet further

prospective studies are still needed before applied to real-world

clinical settings.
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