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Nucleolar spindle-associated protein 1 (NUSAP1) is a microtubule-binding

protein critical in the mitotic cell cycle. Its primary functions encompass

maintaining microtubule stability, facilitating spindle assembly, regulating

chromosome alignment, and modulating multiple signaling pathways. The

incidence and mortality rates of digestive system neoplasms are among the

highest of all malignant tumors. Therefore, identifying effective biological targets

for targeted cancer control and treatment strategies is critical. Recent studies

have demonstrated that NUSAP1 is highly expressed in various malignant tumors

of the digestive system and plays a pivotal role in the initiation, progression,

treatment, and prognosis of these tumors by regulating mitosis and key signaling

pathways. The distinctive function of NUSAP1 positions it as a central molecule

linking mitotic dysregulation with tumorigenesis, exhibiting dual potential as both

a diagnostic marker and a therapeutic target. This article primarily reviews the

structural characteristics, functional mechanisms, and related signaling pathways

of NUSAP1, focusing on exploring the functional mechanisms of NUSAP1 in

digestive system neoplasms. The objective is to offer new research perspectives

into the diagnosis, treatment, and prognosis evaluation of tumors.
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1 Introduction

Cancer has long been a huge challenge in both human history and medical science,

imposing a heavy burden on global society and economies while posing a significant threat to

human health. Despite the continuous advancements in cancer therapeutics, the mortality

and incidence rates of cancer are still on the rise. There were approximately 20 million new

cancer cases and nearly 10 million cancer-related deaths. Projections indicate that by 2050,

the number of new cancer cases will increase by 77% compared to the 2022 figures. Within

this group of cancers, the fatality rate for digestive system malignancies is significantly higher

than that of other tumor types, and patient outcomes tend to be unfavorable. Epidemiological

data reveal that colorectal, gastric, liver, esophageal, and pancreatic cancers are consistently

featured among the top ten leading causes of cancer-related deaths (1). Currently, the primary
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treatments for digestive system tumors encompass surgical resection,

radiotherapy, and chemotherapy. Additionally, emerging therapeutic

approaches include anti-angiogenic therapy, cancer immunotherapy,

and the application of nanotechnology in treatment (2, 3).

The increasing global prevalence of cancer highlights the urgent

requirement for focused approaches to cancer prevention and

therapy. A major difference between cancer cells and normal cells

lies in the uncontrolled proliferation capability of cancer cells,

which is driven by dysfunctions in cell cycle regulation, a core

mechanism in cancer progression (4). Thus, elucidating the

regulatory interactions between the cell cycle and cancer

metabolism provides new perspectives on the mechanisms

underlying cancer development and establishes a foundation for

developing therapeutic approaches that modulate cell cycle

regulation in cancer treatment (5). In the context of cell cycle

regulatory proteins, a range of therapeutic agents have advanced to

clinical application or trial phases, including CDK4/6 inhibitors (6),

Aurora-A inhibitors (7), and WEE1 inhibitors (8). Additionally, the

roles of increasing cell cycle regulatory proteins in cancer therapy

are being continuously uncovered.

Nucleolar and spindle-associated protein 1 (NUSAP1) is a key

microtubule-binding protein with critical roles in mitotic

regulation. This protein is specifically expressed in dividing cells,

where it interacts with microtubules to orchestrate spindle

formation, maintain spindle stability, and regulate chromosome

dynamics (9–11). NUSAP1 demonstrates dynamic relocalization

throughout the cell cycle, with its expression tightly controlled. This

regulation is vital for ensuring stable cell division. Consequently,

dysregulated NUSAP1 expression levels frequently result in

aberrant cell proliferation, leading to embryonic developmental

abnormalities and various cancers (12–15). This protein has

attracted considerable attention in light of the dynamic cellular

processes that NUSAP1 undergoes from spindle assembly to the

conclusion of mitosis. Extensive research has demonstrated that

NUSAP1 is overexpressed in various malignant tumors such as

glioma (16), hepatocellular carcinoma (17), gastric cancer (18), lung

cancer (19), prostate cancer (20), breast cancer (21), and bladder

cancer (22). This overexpression influences tumor invasion,

therapeutic response, and patient prognosis to varying extents.

This study provides a comprehensive analysis of the regulatory

features and detailed mechanisms governing NUSAP1 throughout

the mitotic cell cycle, along with its influence on the initiation and

progression of digestive system cancers, including liver, gastric,

esophageal, and pancreatic cancer. Based on these findings, the

article analyzes the potential and prospects for therapeutic

applications of NUSAP1 in digestive system malignancies.
2 NUSAP1 structure and
characteristics

2.1 The structure of NUSAP1

Nucleolar and spindle-associated protein (NUSAP) is a

microtubule- and chromatin-binding protein that plays an
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essential role in the formation and maintenance of the mitotic

spindle (9, 23). Four NUSAP proteins, designated NUSAP1 through

NUSAP4, have been identified in Trypanosoma brucei. Notably,

NUSAP1 is a kinetoplastid-specific protein that plays a critical role

in the segregation of isochromatids and contributes to the stability

of centromere-associated proteins KKIP1 and KKT1. NUSAP2 is a

protein in Trypanosoma brucei that contains MAP65/ASE1/PRC1

domains and is involved in facilitating the G2/M phase transition of

the cell cycle. NUSAP3 interacts with Kif13–1 and is crucial for

promoting chromosome segregation and ensuring the stability of

Kif13-1 (24).

However, the existing literature predominantly focuses on

NUSAP1, and this review primarily examines the current

understanding of NUSAP1. Human NUSAP1 exhibits significant

similarity to its murine counterpart, characterized by selective

expression in dividing cells and dynamic localization throughout

the cell cycle. The protein has a molecular weight of approximately

55 kDa and includes a single open reading frame spanning 1,281

base pairs. Importantly, its NH2-terminal region contains a putative

SAP (SAF-A/B, Acinus, and PIAS) domain (amino acids 10-44),

which is believed to function as a DNA-binding site and plays a

crucial role in regulating chromosome organization (9, 25, 26). The

central domain contains a putative bidirectional nuclear localization

signal (194–211 aa), while residues 384–390 form a KEN box motif.

The KEN box has been shown to function as a degradation signal

for Cdh1 (a WD repeat protein)-mediated anaphase-promoting

complex/cyclosome (APC/C) activity, regulating the ubiquitination

and degradation of proteins after the completion of the cell cycle,

including the APC/C -Cdh1-dependent ubiquitination and

degradation of NUSAP (26–28). The COOH-terminal region of

NUSAP1 contains a conserved high-charge binding domain (410–

430 aa) called the ChHD domain. Similar to other microtubule-

associated proteins (MAPs), NUSAP1 interacts with cytoplasmic

microtubules via a domain proximal to its COOH terminus. The

minimal microtubule-binding domain is between residues 243 and

367 (9, 26) (Figure 1).
2.2 Characteristics of NUSAP1

Studies have shown that NUSAP1 expression is significantly

upregulated during the G2/M phase of the cell cycle, whereas its

levels are markedly reduced in the G1 phase. Additionally, NUSAP1

displays dynamic subcellular localization throughout the cell cycle.

During interphase, NUSAP1 is primarily found within the nucleus,

with a predominant concentration in the nucleolus. As cells enter

mitosis, NUSAP1 is released from the nucleus and redistributes to

form bundles around the chromosomes. In anaphase, NUSAP1

exhibits strong localization to the central spindle microtubule

bundles associated with the chromosomal region. After the

completion of mitosis, NUSAP1 is rapidly degraded (9).

Researchers have also observed that overexpression of the

NUSAP1 protein results in forming long, curved, and abnormally

thick microtubule bundles in the cytoplasm. This accumulation of

microtubules leads to significant morphological and viability
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abnormalities in proliferating cells. Furthermore, inhibition of

NUSAP1 using small interfering RNA (siRNA) induces mitotic

delay, causing defects in spindle assembly and cytokinesis. These

findings underscore that proper expression and dynamic

localization of NUSAP1 are essential for the stable formation of

the spindle apparatus and the orderly progression of the mitotic

cycle. Both overexpression and knockdown of NUSAP1 can disrupt

normal mitotic processes (26).
3 NUSAP1 function and mechanism of
action

3.1 The function of NUSAP1

In addition to biochemical reconstitution and in vitro analyses

focused on identifying NUSAP1, earlier research also employed in

vivo experiments to further elucidate its function in cell

proliferation. These studies demonstrated that NUSAP1

deficiency impairs the mitotic process, leading to early embryonic

lethality in mice. The underlying mechanisms include the failure of

chromosomes to align properly during metaphase at the equatorial

plane and separate properly during anaphase due to NUSAP1

deficiency, along with persistent activation of the spindle

assembly checkpoint (SAC), ultimately resulting in apoptosis.

These findings underscore the critical importance of NUSAP1 in

chromatin-induced spindle assembly (12). Furthermore, NUSAP1

also acts as a microtubule-stabilizing factor. It engages with the

microtubule depolymerase mitotic centromere-associated kinesin

(MCAK), thereby negatively regulating MCAK’s depolymerization

activity and enhancing the stability of centromere microtubules.

During this interaction, the phosphorylation of MCAK by Aurora B

kinase is critical (29). Beyond its direct interaction with

microtubules, similar to other MAPs, NUSAP possesses the

unique capability to engage with chromatin and accumulate on it.

NUSAP can efficiently generate high concentrations of

microtubules (MTs) near chromatin or DNA, facilitating the

rapid attachment of MTs to chromosomes (10). Additional

research has demonstrated that NUSAP1 interacts with the
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kinesin-like DNA-binding protein Kid during metaphase,

enhancing Kid’s association with microtubules and facilitating the

generation of polar ejection force (PEF). This interaction regulates

chromosome oscillation and ensures proper chromosome

alignment (11).
3.2 The functional mechanism of NUSAP1

A critical prerequisite for NUSAP1 to exert its function is its

translocation from the nucleus to the cytoplasm at the conclusion of

interphase, a process that is RanGTP (the small GTPase Ran)-

dependent and mediated by RanGTP. RanGTP not only functions

as a regulatory switch for the nuclear-cytoplasmic trafficking of

multiple spindle assembly factors (SAFs) but also plays a crucial

role in driving spindle assembly (30). During interphase, NUSAP1

undergoes differential regulation by three import proteins—Importin

(Imp)a, ImpB, and Imp7—to facilitate its nuclear import.

Concurrently, the functional activity of NUSAP1 is suppressed,

preventing unintended or premature interactions with microtubules

and ensuring the proper progression of the mitotic cycle.

Subsequently, elevated levels of RanGTP mediate the dissociation

of these import proteins from NUSAP1, enabling its translocation to

the cytoplasm, where it can interact with microtubules. Notably, the

complete release of NUSAP1 from its import proteins requires the

concurrent binding of microtubules (10, 13).
3.3 Post-translational modifications of
NUSAP1

3.3.1 Phosphorylation modification of NUSAP1
During the initiation of mitosis, NUSAP1 undergoes

phosphorylation mediated by the Cdk1/cyclin B complex. As a

consequence, the interaction between NUSAP1 and microtubules

becomes less stable, and this reduced binding persists throughout

metaphase until its completion. As the cell cycle progresses into its

late phase, NUSAP1 undergoes dephosphorylation and

subsequently binds to microtubules, facilitating the formation of
FIGURE 1

The structure of NUSAP1. The figure illustrates the structural organization and key functional domains of NUSAP1. Specifically, it includes the SAP
domain at the NH2 terminus (10–44 aa), the KEN box (384–390 aa), the ChHD domain (410–430 aa), a minimal microtubule-binding region
spanning residues 243-367, and a bidirectional nuclear localization signal (NSL) located at 194–211 aa. These domains facilitate interactions with
various proteins and signaling molecules, forming the molecular basis for NUSAP1’s diverse functions.
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the spindle midzone and advancing the cell cycle. In early mitosis, if

NUSAP1 remains unphosphorylated, microtubules within the

spindle exhibit extensive bundling and form thick, aggregated

structures. Consequently, phosphorylation of NUSAP1 during

early mitosis is crucial for regulating the proper assembly of the

spindle structure (31).

Moreover, RepoMan, a chromosome-associated scaffold

protein, can also facilitate the phosphorylation of NUSAP1 at its

CDK site, thereby enhancing the activation of NUSAP1 and

promoting microtubule assembly (32). Recent studies have

highlighted the critical role of NUSAP1 in regulating mitotic

spindle assembly. Specifically, NUSAP1 facilitates the cross-

linking of microtubules by the sliding motor protein Eg5,

mediating the sliding of antiparallel interpolar microtubules and

thereby extending the length of the metaphase spindle.

Additionally, Aurora A phosphorylates NUSAP1 at Ser-240,

enhancing its interaction with the microtubule depolymerase

Kif2A on the spindle. This interaction reduces the concentration

of Kif2A at the spindle poles, thereby inhibiting microtubule

depolymerization and ensuring the stability of the mitotic

spindle (33).

3.3.2 SUMO modification of NUSAP1
SUMOylation also influences NUSAP1 activity. Notably, Ran-

binding protein 2 (RANBP2), a nuclear pore protein with SUMO1

E3 ligase activity, is essential for the mitotic SUMO pathway (34,

35). The interaction between NUSAP1 and RANBP2 stabilizes

NUSAP1 at the ends of microtubules. Depletion of RANBP2

results in a marked decrease in NUSAP1 levels. Moreover,

NUSAP1 forms SUMO2/3-conjugated products at K44 and K316

residues in a RANBP2-dependent manner. These sites are situated

within the SAP domain and microtubule-binding domain,

respectively. Research findings indicate that mutation at K44

impairs NUSAP1’s binding to chromatin, thereby disrupting

chromosome alignment, while mutation at K316 results in

microtubule depolymerization and accelerates mitotic spindle

disassembly (36).

3.3.3 Ubiquitination modification of NUSAP1
NUSAP1 expression is rigorously regulated during the entire

cell cycle to guarantee accurate mitotic progression. Furthermore,

NUSAP1 degradation occurs via ubiquitination (37). In the G1

phase, NUSAP1 undergoes ubiquitination and subsequent

degradation mediated by the APC/C-Cdh1 E3 ligase. The KEN

box within NUSAP1 acts as the specific recognition element for

APC/C-Cdh1 (26, 27) (Figure 2 and Table 1).
4 NUSAP1 and signaling pathways

Recent studies have demonstrated that NUSAP1 plays a pivotal

role in cell division and interacts with multiple signaling pathways,

thereby contributing to tumorigenesis and progression.

Accumulating evidence suggests that NUSAP1 is closely

associated with key biological processes such as DNA repair,
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cellular metabolism, and cell cycle regulation (38–40). Therefore,

an in-depth exploration of the interaction mechanisms between

NUSAP1 and these signaling pathways will contribute to

the formulation of innovative anti-tumor therapeutic

approaches (Table 2).
4.1 NUSAP1 and Wnt/B-catenin signaling
pathway

The Wnt/B-catenin signaling pathway is a highly conserved

molecular mechanism widely involved in biological processes such

as embryonic development, cell proliferation, and differentiation

(41). When this signaling pathway is dysregulated and aberrantly

activated, it can contribute to carcinogenesis and is closely

associated with tumor malignancy and poor prognosis (42, 43).

Activation of the Wnt/B-catenin signaling pathway initiates with

Wnt ligands binding to its frizzled receptors and lipoprotein

receptor-related protein-5 or -6 (LRP5/6) co-receptors, which

subsequently triggers B-catenin translocation and nuclear

accumulation. Next, B-catenin forms a complex cell nucleus

transcription factor with T-cell factor/lymphoid enhancer factor

(TCF/LEF), activating target gene transcription (44).

The Wnt/B-catenin signaling pathway exerts a crucial influence

on cancer metastasis, encompassing key processes such as the

epithelial-mesenchyme transition (EMT) and the modulation of

cancer stem cell (CSC) properties (44). Accumulating evidence

demonstrates that NUSAP1 promotes cancer cell proliferation

and invasion by stimulating both Wnt/B-catenin signaling and

EMT pathways (21). As an important post-translational

modification, SUMOylation is involved in regulating oncogenic

processes, the cell cycle, and apoptosis (45). T-cell factor (TCF)

serves as a critical transcription factor in the Wnt signaling pathway

and plays an essential role in establishing the positive feedback loop

of this pathway (46). Upon Wnt protein stimulation in the

extracellular environment, B-catenin translocates to the nucleus

and transforms TCF from a transcriptional repressor into a

transcriptional activator (47–49). Research has indicated that

highly expressed NUSAP1 induces the nuclear translocation of B-

catenin, significantly enhances the transcriptional activity of B-

catenin/TCF, and simultaneously promotes the SUMOylation of

TCF4. By increasing nuclear B-catenin levels, NUSAP1 initiates the

activation of the Wnt/B-catenin signaling pathway, which

consequently supports the metastasis of cancer cells. Furthermore,

the upregulation of NUSAP1, through its interaction with SUMO

E3 ligase RanBP2, further induces the activation of the Wnt/B-

catenin signaling pathway, promoting CSC properties and the EMT

process (44).

Meanwhile, as the central mediator of Wnt/B-catenin signaling,

B-catenin is subject to stringent regulation of its cellular

concentration (50). When Wnt signaling is inactive, the

concentration of B-catenin is minimal due to ongoing

degradation facilitated by the destruction complex (51). Glycogen

synthase kinase-3B (GSK-3B), as one of the components of the

destruction complex, promotes the phosphorylation of B-catenin,
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leading to its ubiquitination and subsequent degradation (51–53).

Research has shown that in nasopharyngeal carcinoma (NPC), the

overexpression of NUSAP1 leads to increased phosphorylation of

GSK-3B, thereby reducing its enzymatic activity. Consequently, this

reduction in GSK-3B activity decreases the phosphorylation of B-

catenin, ultimately enhancing the activation of the Wnt/B-catenin

signaling pathway. Moreover, inhibition of GSK-3B not only

improves the activity of the Wnt/B-catenin signaling pathway but

also restores the suppression of signaling caused by NUSAP1

knockout. These findings indicate that NUSAP1 plays a critical

role in the activation of the Wnt/B-catenin signaling pathway, with

its function being mediated through GSK-3B (54). However,

whether GSK-3B inhibition potentiates NUSAP1 activity in

digestive system cancers remains experimentally unexplored.

While current studies have unequivocally shown that NUSAP1

positively modulates the Wnt/B-catenin pathway through multiple

mechanisms, including B-catenin nuclear translocation,

SUMOylation of TCF4, and inhibition of GSK-3B phosphorylation,
Frontiers in Oncology 05
it remains to be elucidated whether Wnt signaling feedback regulates

NUSAP1 expression through the classical ligand-receptor cascade.

The underlying regulatory interaction network between these two

factors still requires systematic investigation.

The aberrant activation of theWnt/B-catenin signaling pathway

plays a pivotal role in tumorigenesis and tumor progression, with its

regulatory mechanisms encompassing molecular interactions at

multiple levels. The transcription factor myocyte enhancer factor

2D (MEF2D) is primarily localized in the nucleus and regulates

cellular processes, including growth, differentiation, survival, and

apoptosis (55). MEF2D directly binds to the NUSAP1 promoter,

thereby enhancing the transcription of NUSAP1 mRNA and

subsequent protein expression. Notably, the downregulation of

MEF2D inhibits B-catenin accumulation and nuclear

translocation, consequently diminishing Wnt/B-catenin signaling

activity in cancer cells. However, NUSAP1 overexpression can

reverse the inhibitory effect of MEF2D knockdown on the

activation of the Wnt/B-catenin signaling pathway. The
FIGURE 2

The activation of NUSAP1 and MT assembly. During interphase, NUSAP1 is differentially regulated by three importins—Importin (Imp) a, ImpB, and
Imp7—to facilitate its nuclear localization. Additionally, NUSAP1 is phosphorylated by the CDK1/cyclin B complex, which inhibits its function and
ensures proper progression through the mitotic cycle. Subsequently, high concentrations of RanGTP mediate the dissociation of these importins
from NUSAP1, allowing it to translocate to the cytoplasm and interact with microtubules. RepoMan promotes this activation process by
phosphorylating the CDK site of NUSAP1, thereby facilitating its separation from the imports. Furthermore, NUSAP1 is phosphorylated at Ser-240 by
Aurora A kinase, which inhibits microtubule depolymerization and ensures the stability of the mitotic spindle. RANBP2, which possesses SUMO1 E3
ligase activity, interacts with NUSAP1 and stabilizes it at microtubule ends. Moreover, NUSAP1 forms SUMO2/3 conjugates at lysine residues K44 and
K316 in a RANBP2-dependent manner. These modifications occur within the SAP domain and microtubule-binding domain, respectively, and are
crucial for the proper formation and maintenance of the spindle structure.
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interaction between NUSAP1 and MEF2D enhances the activity of

the Wnt/B-catenin signaling pathway, promoting tumor

progression (56). Similarly, increased expression of ankyrin repeat

domain 22 (ANKRD22) was observed to markedly elevate the levels

of NUSAP1 expression. Additionally, elevated ANKRD22 levels led

to greater nuclear accumulation of B-catenin, which in turn

triggered activation of the Wnt/B-catenin signaling pathway.

Further studies have demonstrated that ANKRD22 indirectly

activates the Wnt/B-catenin signaling pathway by modulating the

expression of NUSAP1, consequently facilitating the malignant

progression of cancer cells (57). These results suggest that a

multitude of upstream factors, such as MEF2D and ANKRD22,

regulate the Wnt/B-catenin signaling pathway activity by

modulating NUSAP1 expression, which in turn has a crucial role

in the progression of tumors.
4.2 NUSAP1 and hedgehog signaling
pathway

The Hedgehog (HH) signaling pathway, first discovered through

genetic studies in Drosophila melanogaster, is essential for governing

the early stages of embryonic development (58). The glioma-associated

oncogene (GLI) protein is one of themajor signal transducers of the HH

signaling pathway. The overexpression of NUSAP1 leads to the

activation of the HH signaling pathway. Specifically, increased

NUSAP1 expression induces the translocation of GLI1 from the

cytoplasm to the nucleus, leading to nuclear accumulation of GLI1

and subsequent stimulation of the HH signaling pathway. This leads to

an increase in the expression of downstream target genes. This process

enhances the invasiveness of tumor cells and facilitates the growth and

metastasis of astrocytoma (59). Besides, NUSAP1 significantly

influences the proliferation, migration, invasion, and DNA damage

in basal cell carcinoma. These effects may be facilitated by activating the

HH signaling pathway (60).
Frontiers in Oncology 06
4.3 NUSAP1 and PI3K/Akt signaling
pathway

The PI3K/Akt signaling pathway is essential in regulating the

cell cycle and is intimately associated with cell quiescence,

proliferation, and cancer development. Abnormal activation of its

signaling transduction has oncogenic effects (61, 62). B-cell

translocation gene 2 (BTG2) is a member of the antiproliferative

gene family and is involved in regulating the cell cycle and apoptosis

while also exerting tumor-suppressive functions (63, 64). The

knockdown of NUSAP1 results in upregulated BTG2 expression

and concurrent inhibition of PI3K and Akt phosphorylation,

thereby reducing the activity of the PI3K/Akt signaling pathway.

This suggests that NUSAP1 may activate the PI3K/Akt signaling

pathway by suppressing BTG2 (65). The homeobox (HOX) genes

encode a family of pivotal transcription factors for regulating cell

differentiation and development (66). One member of this family,

the homeobox protein Hox-B2 (HOXB2), has been found to

enhance the malignant behavior of malignant cells, thus playing

an essential role in cancer progression (67). Investigations have

revealed that HOXB2 significantly enhances NUSAP1 expression

and can restore the inhibited PI3K/Akt signaling pathway following

NUSAP1 silencing. This suggests that HOXB2 may upregulate

NUSAP1 expression through activation of the PI3K/Akt signaling

pathway, consequently promoting cancer cell proliferation,

invasion, and migration (68). The mammalian target of

rapamycin (mTOR) serves as a crucial downstream effector of the

PI3K/Akt signaling pathway (69). Research has shown that

NUSAP1 knockdown substantially reduces the phosphorylation

levels of both AKT and mTOR, along with an increase in

apoptosis rates. These findings indicate that NUSAP1 promotes

cancer development by activating the PI3K/Akt/mTOR signaling

pathway (70). Elevated PI3K activity strongly correlates with

cellular malignant transformation and tumorigenesis (71). The

most direct therapeutic approach to inhibiting the PI3K/Akt
TABLE 1 Post-translational modifications of NUSAP1.

Types of post-
translational
modifications

The relevant
enzymes or proteins

Modification site The result of the effect References

Phosphorylation

The Cdk1/cyclin B complex —— NUSAP1 remains in its inactive state. (31)

RepoMan CDK NUSAP1 activation and MT assembly (32)

AuroraA Ser-240
Inhibit microtubule depolymerization to ensure
the stability of the spindle.

(33, 33)

ATM(phosphoinositide 3-
kinase family)

Ser124
Ectopic expression of NUSAP results in
mitotic arrest.

(151)

SUMOylation RANBP2

K44
Promoting NUSAP1 binding to chromatin
ensures precise chromosome alignment.

(34–36)

K316
Inhibit microtubule depolymerization and
promote spindle stability.

(34–36)

Ubiquitination The APC/C-Cdh1 E3 ligase KEN box
NUSAP1 ubiquitination and subsequent
degradation ensure the normal progression of
the mitotic cycle.

(26, 27)
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signaling pathway is to target PI3K itself (72). To date, multiple

PI3K inhibitors (e.g., BKM120) with potential anticancer

applications have been synthesized (73). NUSAP1 may affect cell

growth and survival through the regulation of cell cycle progression

and apoptosis-related pathways. Targeting NUSAP1 may

significantly enhance the therapeutic efficacy of existing PI3K

inhibitors, but its clinical potential necessitates further

experimental validation and comprehensive clinical investigation.
4.4 NUSAP1 and TGF-B signaling pathway

Transforming growth factor-B (TGF-B) is a highly conserved

multifunctional cytokine involved in modulating diverse signaling

pathways throughout both embryonic and adult stages. It performs

critical regulatory functions in cell differentiation, proliferation, and

cell- or tissue-specific motility (74). The TGF-B signaling pathway

exerts a dynamic influence on human cancer progression,

demonstrating inhibitory effects during initial cancer development

but facilitating cancer advancement in later stages (75). The TGF-B

signaling pathway drives the proliferation and metastasis of cancer

cells by inducing the EMT process. TGF-B receptor type 1

(TGFBR1) is crucial in this process (76, 77). The experiment

shows that the expression level of NUSAP1 is positively

correlated with TGFBR1 and the downstream effector factors

Smad2/3 of the TGF-B signaling pathway. Overexpression of

NUSAP1 not only up-regulates the expression levels of TGFBR1

and Smad2/3 but also promotes the expression of mesenchymal cell

markers, such as Vimentin and N-cadherin, while simultaneously

inhibiting the expression of the epithelial cell marker E-cadherin

(78, 79). Inhibiting TGFBR1 expression in NUSAP1-overexpressing

cells significantly suppresses their invasive and metastatic

capabilities while also markedly decreasing the expression levels

of p-Smad2/3 and EMT-related proteins. The research results
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suggest that NUSAP1 may activate the TGF-B signaling pathway

by directly up-regulating TGFBR1, thereby mediating the EMT

process and promoting tumor cell proliferation, migration, and

invasion (78).
4.5 The Hub Role of NUSAP1 in Signaling
Pathways

As a critical microtubule-associated protein and cell cycle

regulator, NUSAP1 exerts central control over tumorigenesis and

progression by modulating multiple signaling pathways through its

intricate molecular mechanisms. Existing research evidence

demonstrates that NUSAP1 exerts multi-level regulation on

signaling pathways, including Wnt/B-catenin, Hedgehog, PI3K/

Akt, and TGF-B, thereby establishing a precise regulatory network.

NUSAP1 achieves multifunctional regulation via its unique

structural domains, including chromatin binding, microtubule

stabilization, and protein stability modulation (10, 29, 36). Notably,

the regulatory function of NUSAP1 is distinguished by its significant

multi-pathway synergistic characteristics. Within the TGF-B

signaling pathway, NUSAP1 upregulates TGFBR1 expression,

leading to enhanced Smad2/3 phosphorylation and consequently

promoting the EMT process (78). Another study demonstrated that

transmembrane protein 64 (TMEM64) activates the Wnt/B-catenin

signaling pathway by facilitating B-catenin nuclear translocation.

Additionally, in cells with TMEM64 knockdown, the expression

levels of mesenchymal markers Vimentin and N-cadherin were

significantly decreased, whereas the expression of the epithelial

marker E-cadherin was markedly upregulated (80). These findings

suggest that EMTmay serve as a common downstream effector of the

Wnt/B-catenin and TGF-B signaling pathways. Moreover, NUSAP1

is likely to synergistically promote EMT via both pathways, thereby

enhancing tumor cell proliferation, migration, and invasion. Given
TABLE 2 Major signaling pathways involving NUSAP1 and its role in tumors.

Signaling pathway Mechanism of function Tumor categories References

Wnt/B-catenin signaling pathway
Promotes the nuclear translocation of B-catenin and enhances its
transcriptional activity.

Breast cancer, Cervical carcinoma (21, 44)

Hedgehog signaling pathway
Promotion of GLI1 nuclear translocation facilitates its
accumulation within the nucleus.

Astrocytoma, Basal cell carcinoma (59, 60)

PI3K/Akt signaling pathway Regulates phosphorylation of PI3K and Akt. Lung cancer, Nephroblastoma (65, 68, 70)

TGF-B signaling pathway
The enhancement of EMT is promoted through the regulation of
TGFBR1 and Smad2/3 expression.

Bladder cancer, Gastric cancer (76–78)

SHCBP1/JAK2/STAT3
signaling pathway

NUSAP1 inhibits JAK2/STAT3 phosphorylation through
SHCBP1, affecting the immune microenvironment.

Hepatocellular carcinoma (105)

Hippo signaling pathway
NUSAP1 enhances the stability of YAP1, promoting its nuclear
translocation and transcriptional activity.

Gastric cancer (18)

AMPK/PPARg signaling pathway NUSAP1 regulates cellular metabolism and energy homeostasis. Breast cancer (39)

DNA damage repair pathway
NUSAP1 promotes the SUMOylation of RAD51 to prevent
its degradation.

Chronic lymphocytic leukemia (38)
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the central role of NUSAP1 in pro-cancer signaling pathways,

targeting NUSAP1 for inhibition may enable coordinated blockage

of multiple pathways, thereby establishing it as a highly promising

therapeutic target for cancer treatment.
5 NUSAP1 and digestive system
neoplasms

5.1 NUSAP1 and liver cancer

5.1.1 Overview of liver cancer
Liver cancer ranks as the sixth most common malignancy

worldwide and is geographically widespread. It is the third

leading cause of cancer-related mortality, following lung and

colorectal cancers (1). Liver cancer can be categorized into

multiple subtypes. Among these, hepatocellular carcinoma (HCC)

constitutes approximately 80% of primary liver cancers, while

intrahepatic cholangiocarcinoma (iCCA) accounts for about 15%

(81). Over the past few decades, the global advancement in medical

and healthcare standards has led to a decline in both the incidence

and mortality rates associated with liver cancer. Nevertheless, the

five-year survival rate remains suboptimal, as most patients are

diagnosed with HCC at an advanced stage, resulting in a poor

prognosis (82). Current treatment modalities for liver cancer

primarily encompass surgical excision, transcatheter arterial

chemoembolizat ion (TACE), radiofrequency ablat ion,

pharmacological interventions such as tyrosine kinase inhibitors

(TKIs), and immunotherapy (83). In light of the availability of

diverse treatment options, the complexity of liver cancer

development and its high post-treatment recurrence rate

underscores the urgent necessity to identify effective biomarkers

and therapeutic targets and elucidate their relationship with

changes in the tumor microenvironment in HCC management.

NUSAP1, serving as a key regulator of the cell cycle, plays a pivotal

role in tumor progression and alterations within the tumor

microenvironment (15). Moreover, the potential link between this

factor and HCC has attracted considerable attention from a wide

range of researchers.

It is commonly acknowledged that the development of HCC is

not attributable to a single gene but rather emerges from the

interplay of multiple genetic factors and environmental

influences. Leveraging advanced bioinformatics tools, numerous

studies have identified key hub genes with essential pathological

roles in liver cancer progression by employing various approaches,

including database mining, gene network interaction analysis,

survival analysis, and risk evaluation. In 2020, a study aimed to

identify potential therapeutic target genes for HCC and ultimately

pinpointed 10 hub genes. Among these, six genes—OIP5, ASPM,

NUSAP1, UBE2C, CCNA2, and KIF20A—were recognized as novel

hub genes in the context of HCC (84). A separate study identified

six genes—CDKN3, ZWINT, KIF20A, NUSAP1, HMMR, and

DLGAP5—that are closely associated with HCC prognosis

through COX proportional hazards regression analysis and the

development of a prognostic model (85). Both studies performed
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survival analysis on NUSAP1 and consistently concluded that its

overexpression is significantly associated with reduced survival time

in HCC patients. Furthermore, NUSAP1 is one of the hub genes

associated with immune infiltration and can predict poor prognosis

in HCC patients (86, 87).

As early as 2013, studies reported that NUSAP1 expression

levels in HCC tissues were markedly higher than in normal tissues.

Moreover, elevated NuSAP1 protein levels were significantly

correlated with early postoperative recurrence in HCC patients

(88). A study utilized RT-qPCR and western blotting techniques to

examine the expression levels of NUSAP1 in 47 paired tumor and

adjacent non-tumor tissues, demonstrating that both mRNA and

protein levels of NUSAP1 were significantly upregulated in tumor

tissues. Furthermore, lentivirus-mediated downregulation of

NUSAP1 resulted in a significant reduction in cell proliferation

and invasion (89). In recent years, there has been a rise in research

efforts focused on uncovering the precise mechanisms through

which NUSAP1 influences HCC progression. Several studies have

demonstrated that NUSAP1 accelerates HCC proliferation by

regulating the G1-to-S phase transition (90, 91). Furthermore,

NUSAP1 can influence CD4+ T cell resting memory and M0

macrophages via potential mechanisms. Additionally, lower

expression levels of NUSAP1 have been linked to enhanced

immunotherapy outcomes in HCC patients. This indicates that

NUSAP1 could serve as a promising therapeutic target for

immunotherapy in HCC (91). NUSAP1 has been recognized as a

specific gene involved in the progression from non-alcoholic fatty

liver disease (NAFLD) (92), HBV infection (93, 94), and liver

cirrhosis (95, 96) to HCC. Consequently, NUSAP1 is likely to

play a critical role in the carcinogenesis of liver diseases.

Inhibiting NUSAP1 expression may hinder or delay the

progression of various chronic liver conditions to HCC, thereby

highlighting its substantial potential as a therapeutic target for

HCC prevention.

5.1.2 The mechanism by which NUSAP1 regulates
HCC

Beyond bioinformatics analysis, recent studies have also

concentrated on molecular biology experiments to elucidate the

specific molecular mechanisms by which NUSAP1 regulates HCC.

Researchers developed three HCC mouse models with varying

pathogenicities and conducted a combined analysis of miRNA and

mRNA to identify a previously unrecognized miRNA, miR-193a-5p.

Using conventional bioinformatics target prediction and

comprehensive mRNA transcriptome analysis, they established that

NUSAP1 is a critical target of miR-193a-5p. During this investigation,

it was observed that miR-193a-5p levels were reduced in both mouse

and human HCC cells and tissues, leading to increased NUSAP1

expression. NUSAP1 regulates the cell cycle, promoting HCC cell

proliferation, survival, and metastatic potential, thereby reducing

patient survival time. These findings indicate that NUSAP1 serves

as a key mediator in the miR-193a-5p-regulated progression of HCC.

Upregulating miR-193a-5p expression or inhibiting NUSAP1 to

disrupt the miR-193a-5p/NUSAP1 axis may represent a promising

therapeutic strategy for HCC (97).
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In addition to miR-193a-5p, further studies have revealed that

NUSAP1 functions as a critical target for miR-122 in the

progression of HCC, regulating cell cycle-related processes. In the

absence of miR-122 (i.e., under knockout conditions), a significant

elevation in NUSAP1 expression was observed (98). In the context

of HBV infection, the HBV X protein (HBx) downregulates miR-

18b by inducing methylation of the CpG island in the miR-18b gene

promoter. Using miRNA target gene prediction analysis,

researchers identified NUSAP1 as a potential target of miR-18b

and noted that the downregulation of miR-18b led to increased

NUSAP1 expression. Follow-up studies revealed that HBx-induced

upregulation of NUSAP1 significantly enhanced liver cancer cell

proliferation in both experimental and physiological settings,

thereby promoting hepatocarcinogenesis. These results highlight a

potential pathway linking HBV infection to liver cancer

development (99). Circular RNA Hsa_circ_0002124 originates

from intron 9 of the NUSAP1 gene and exhibits significantly

increased expression levels in HCC tissues. Subsequent studies

have demonstrated that hsa_circ_0002124 promotes HCC cell

proliferation by modulating the expression of key proteins

associated with the MAPK signaling pathway in HCC cells (100).

Besides modulating the cell cycle to promote the proliferation of

liver cancer cells, NUSAP1 can also enhance the cancer stemness

characteristics of HCC cells and increase the early recurrence of

HCC. Cancer stem cells, also known as tumor-initiating cells, are

the major factors causing the difficulty in treating liver cancer and

the high recurrence rate (101, 102). Based on the analysis of existing

public datasets and HCC patient cohort data, it was observed that

NUSAP1 expression is markedly upregulated in liver tumors and is

strongly associated with early recurrence in HCC. Further studies

using multiple mouse models revealed that NUSAP1 facilitates the

activation of the STAT3 signaling pathway by interacting with

receptors for activated C kinase 1 (RACK1), thereby promoting

stem cell-like characteristics in HCC cells and contributing to early

recurrence. These findings suggest that NUSAP1 may serve as a

valuable predictive marker for postoperative intervention in HCC

patients and a sensitive indicator of early recurrence (17).

The E2F8 transcription factor, a member of the E2F family, has

been shown to exhibit significantly elevated expression levels in

HCC and harbors the potential to promote cellular proliferation

(103). Recent studies have uncovered an interaction between

NUSAP1 and E2F8, wherein NUSAP1 serves as a downstream

target of E2F8. E2F8 enhances cisplatin resistance in liver cancer

cells by activating NUSAP1, which in turn inhibits DNA damage.

Conversely, silencing NUSAP1 results in cell cycle arrest in liver

cancer cells increases DNA damage, and sensitizes these cells to

cisplatin-based chemotherapy (104). These findings suggest that the

E2F8/NUSAP1 axis may serve as a potential target for mitigating

cisplatin resistance in HCC and offer a novel strategy to improve

chemosensitivity in liver cancer. NUSAP1 exerts a potential

influence on modulating the tumor immune microenvironment

in HCC. Specifically, NUSAP1 interacts with SHC and spindle-

associated protein 1 (SHCBP1) to inhibit the phosphorylation of the

Janus kinase 2/signal transducer and activator of transcription 3

(JAK2/STAT3) pathway. The activation of the SHCBP1/JAK2/
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STAT3 pathway can suppress the differentiation of peripheral

blood mononuclear cells (PBMCs) into dendritic cells (DCs),

leading to tumor immune evasion. Consequently, NUSAP1 may

represent a viable target for HCC immunotherapy, promoting both

HCC cell apoptosis and DC generation (105).
5.2 NUSAP1 and gastrointestinal neoplasms

5.2.1 NUSAP1 and esophageal cancer
Globally, esophageal cancer (EC) ranks eleventh in terms of

cancer incidence and is responsible for the 7th highest number of

cancer-related deaths worldwide (1). Additionally, it is also listed as

the 7th most frequently occurring cancer in China (106). EC

comprises two major histological subtypes: esophageal squamous

cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC).

Both subtypes are characterized by unique epidemiological and

clinical characteristics (107). EC currently confronts serious

challenges in clinical practice, including extensive treatment

requirements, severely limited health-related quality of life

(HRQOL), and poor prognosis (108). At present, most treatment

methods, chemotherapy or chemoradiotherapy, followed by

extensive surgery (108), but these often lead to adverse

complications and a decline in quality of life. Therefore,

elucidating the underlying molecular mechanisms related to the

progression of EC is one of the effective approaches to improving

existing treatment methods and poor prognosis. Research has

shown that NUSAP1 is an independent predictor of ESCC, and its

expression is significantly correlated with the malignancy and

invasive characteristics of ESCC. Patients with lower NUSAP1

expression levels demonstrate extended overall survival (OS),

reduced tumor proliferation, and a more favorable clinical

prognosis (109). Esophageal chemical burns may be one of the

potential carcinogenic factors for EC. Simulation analyses suggest

that NUSAP1 could be considered a key shared gene between

chemical burns and EC (110). These researches indicate that

NUSAP1 may play a decisive function in the occurrence and

development of EC by modulating cancer cell proliferation

and apoptosis.

5.2.2 NUSAP1 and gastric cancer
Gastric cancer (GC) is ranked fifth worldwide in both incidence

and mortality rates (1), and it is also the fifth most frequently

diagnosed cancer in China (106). GC often exhibits an insidious

onset, with no symptoms or nonspecific symptoms in the early

stages, making diagnosis difficult (111). Most patients are diagnosed

at an advanced stage of GC, resulting in a high mortality rate (112).

In 2022, the global mortality from GC was estimated to be

approximately 660,000 (1). Most current clinical treatments for

GC are still traditional surgery combined with radiotherapy and

chemotherapy. This approach not only impairs the growth,

development, and differentiation of normal cells, leading to a

decline in immune function, but also has the potential to induce

severe side effects (113). In recent years, advancements in molecular

biology and genomics have led to a growing focus on identifying
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novel molecular targets and biomarkers for GC, thereby offering the

potential to improve the early diagnosis rate and treatment efficacy.

NUSAP1 exerts a significant influence on the development and

clinical treatment of GC through its involvement in regulating

several critical signaling pathways. The signaling pathway governs

cellular processes such as proliferation, differentiation, and survival

in multicellular animals (114, 115). Within this pathway, Yes-

associated protein 1 (YAP1) serves as the core effector molecule

and plays a critical role in the progression of various human

cancers, including GC (18). Research demonstrates a direct

interaction between NUSAP1 and YAP1, with the expression level

of NUSAP1 positively correlated to the stability of YAP1. This

implies that NUSAP1 may enhance the transcriptional activity of

YAP1 by stabilizing it, thereby coordinating the Hippo signaling

pathway and promoting the malignant behavior of GC cells. These

findings highlight the critical role of NUSAP1 in GC progression

(18). Previous studies have demonstrated that the Hippo-YAP1

signaling pathway plays a pivotal role in gastric tumorigenesis, and

maintaining the stability of YAP1 protein expression represents one

of the core mechanisms enabling its diverse functional activities

(116). NUSAP1 exhibits potential as a therapeutic target for YAP1-

driven tumors by stabilizing YAP1 and co-regulating critical

oncogenic pathways. Future studies should focus on elucidating

the underlying molecular mechanisms and investigating specific

inhibition strategies, thereby offering novel insights into combined

treatment approaches for GC.

Moreover, mTOR has been shown to impact tumor progression

through dysregulated cellular signaling pathways in multiple

cancers. Its signal is mediated by two distinct complexes, mTOR

complex 1 (mTORC1) and 2 (mTORC2). Previous studies have

established that the mTORC1 signaling pathway critically regulates

cellular processes, including the cell cycle, growth, apoptosis, EMT,

migration, and invasion across diverse malignancies. Recent

research has further revealed that downregulation of NUSAP1

can inhibit the mTORC1 signaling pathway, thereby suppressing

the proliferation, migration, and invasion of GC cells (117–119).

The combined application of anticancer bioactive peptides (ACBP)

and oxaliplatin (OXA) effectively inhibits the proliferation of the GC

cell line MKN-45 and induces its apoptosis. This process is

accompanied by the decreased expression of multiple proteins, such

as NUSAP1, indicating that the downregulation of NUSAP1 may

suppress GC cell proliferation and enhance the anti-tumor efficacy of

medicines (120). In addition, NUSAP1 enhances cellular

radioresistance by inhibiting the ubiquitination of ANXA2.

Meanwhile, miR-129-5p directly targets NUSAP1 to reduce its

expression, thereby diminishing the radioresistance of GC cells. This

suggests that modulating the miR-129-5p/NUSAP1/ANXA2 pathway

may provide a novel strategy to improve the efficacy of radiotherapy for

GC (121). Another study has reported a positive correlation between

the expression level of NUSAP1 and the risk of peritoneal metastasis in

patients with GC, highlighting its potential value as a biomarker (122).

5.2.3 NUSAP1 and colorectal cancer
Colorectal cancer (CRC) is a prevalent and fatal malignancy,

with the third highest incidence rate and second highest mortality
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rate in the world. CRC is the second most frequently diagnosed in

China (1, 106). CRC tends to show obvious symptoms only in the

late stages. Timely screening and personalized therapy are the keys

to improving patients’ prognosis and survival rates. With a

deepening understanding of CRC, future treatment strategies will

become more diverse and effective (123).

Several studies have confirmed the presence of multiple

differentially expressed genes (DEGs), including NUSAP1, in CRC

tissues. These results consistently suggest that the upregulation of

NUSAP1 is potentially associated with poor prognosis in CRC

patients (124–127). NUSAP1 and its interacting miRNAs affect CRC

growth and hold potential as biomarkers for prognosis in CRC patients

(126). It was also found that NUSAP1 expression is significantly

upregulated in CRC tissues and cell lines. Knockdown of NUSAP1 to

silence its expression effectively inhibits cancer cells’ proliferation,

invasion, migration, and EMT. Elevated DNA methyltransferase 1

(DNMT1) expression promotes CRC proliferation, metastasis, and

invasion. In contrast, silencing NUSAP1 markedly decreases the

expression of DNMT1 at both mRNA and protein levels, indicating

that NUSAP1 may affect the malignant behavior of cancer cells

through modulation of DNMT1 expression (128). Further study has

demonstrated that NUSAP1 expression in CRC tissues is markedly

elevated compared to normal tissues. NUSAP1 expression is correlated

with histopathological grading, depth of invasion, lymph node

metastasis, and TNM stage. In patients with advanced-stage CRC,

high NUSAP1 expression is significantly associated with poor

prognosis (129). These findings suggest that the expression level of

NUSAP1 relates to the prognosis of CRC, implying its potential as a

prognostic marker and therapeutic target.
5.3 NUSAP1 and pancreatic cancer

Pancreatic cancer (PC) is among the malignancies with the

poorest prognosis. In 2022, there were 511,000 new cases of PC

globally, leading to 467,000 deaths. This accounted for approximately

5% of all global cancer deaths, making PC the sixth leading cause of

cancer-related mortality (1). PC is the 10th most common cancer in

China (106). Despite recent advances in PC diagnostics and

treatments, the five-year survival rate for patients remains

extremely low, at approximately 4% (130). The molecular biological

mechanisms underlying the occurrence and development of PC

are complex and diverse and require further study. In recent years,

numerous data analyses and experimental studies have demonstrated

that NUSAP1 expression in PC tissues is higher than in normal

pancreatic tissues. Its high expression is closely associated with OS

and disease-free survival (DFS) in PC patients, suggesting that

NUSAP1 may play a pivotal and indispensable role in the

proliferation, migration, and invasion of PC cells and could

function as a prognostic indicator for PC patients (131–134).

NUSAP1 is involved in regulating the process of PC occurrence,

development, and metastasis through multiple molecular

mechanisms. Research has established that methionine stress

regulates the cell cycle and mitosis of PC cells. Under methionine

stress conditions, NUSAP1 expression is significantly
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downregulated in the PC cell lines, coinciding with observed cell

cycle arrest and mitotic abnormalities. This indicates that NUSAP1

could be essential for the proliferation and division of PC cells. This

indicates that NUSAP1 could be necessary for PC cell proliferation

and division processes (135). Altered NUSAP1 expression has been

hypothesized to be associated with cancer cell growth and

proliferation. Under hypoxic conditions, NUSAP1 expression in

PC cells increases more than tenfold, suggesting that NUSAP1 may

facilitate cancer cell proliferation and metastasis under hypoxic

stress (136). Further studies revealed significantly lower expression

levels miRNA-569 in PC cells and tissues compared to normal

tissues. Experimental evidence has confirmed that miRNA-569 can

directly target binding to the 3’-untranslated region (3’-UTR) of

NUSAP1, thereby inhibiting its expression and reducing the mRNA

level of NUSAP1 by approximately 60%. Moreover, upon

overexpression of miRNA-569, the migratory and invasive

capabilities of PC cells decreased by approximately 60%,

suggesting that miRNA-569 may significantly suppress the

metastatic potential of PC cells through the downregulation of

NUSAP1 (137). These findings further substantiate the critical role

of NUSAP1 overexpression in promoting the migration and

invasion of PC cells. It was also reported that Zinc finger E-box

binding homeobox 1 (ZEB1) participates in cancer progression and

metastasis (138). It was observed that miRNA-569 expression

exhibits a negative correlation with ZEB1. In contrast, NUSAP1

expression positively correlates with ZEB1, suggesting that the

miRNA-569/NUSAP1/ZEB1 axis may play an important role in

regulating the metastatic and invasive ability of PC cells (137).

An in-depth study demonstrated an interaction between

NUSAP1 and lactate dehydrogenase A (LDHA) in pancreatic

ductal adenocarcinoma (PDAC). The upregulation of NUSAP1

leads to enhanced LDHA activity, forming a positive feedback

loop by promoting glycolysis and lactate production, ultimately

inhibiting NUSAP1 degradation. This positive feedback mechanism

reinforces the Warburg effect, whereby cancer cells prefer to

generate energy through aerobic glycolysis rather than oxidative

phosphorylation. The synergistic interaction of NUSAP1 and

LDHA significantly enhances the migration and invasion of

PDAC cells, which means that the NUSAP1/LDHA axis may be a

potential target for therapies against PDAC (139). AMP-activated

protein kinase (AMPK) has been proven to suppress tumor growth

by inhibiting rapid cell proliferation and arresting the cell cycle

(140). Recent studies have discovered that increased NUSAP1

expression promotes the EMT process, a critical step for cancer

cells to acquire invasive and migratory capabilities. This

enhancement contributes to enhanced proliferation, migration,

and invasion of PDAC cells. At the same time, NUSAP1 restricts

intracellular energy homeostasis and metabolic regulation by

reducing AMPK phosphorylation, thereby promoting cancer cell

proliferation and metastasis (141). NUSAP1 plays a central

regulatory role in the occurrence, development, and metastasis of

PDAC by regulating multiple molecular mechanisms such as cell

cycle, metabolism, and EMT process. Its expression level holds

potential as a significant biomarker for both the diagnosis and

prognosis of PDAC.
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5.4 Comparison of NUSAP1 with other
biomarkers

In recent years, the ongoing discovery and validation of

biomarkers have significantly advanced clinical diagnosis,

prognosis, and treatment across various diseases. Furthermore,

integrating biomarkers with nanotechnology has markedly

improved the early detection and diagnosis of diseases, including

tumors and neurological disorders (142, 143). Traditional

biomarkers for digestive system tumors, such as AFP, CEA, and

CA19-9, are widely utilized in clinical settings for diagnosis and

prognosis evaluation. Nevertheless, these traditional biomarkers are

susceptible to interference from multiple factors, resulting in

limited specificity and sensitivity. To align with contemporary

trends in clinical diagnostics, novel biomarkers for digestive

system tumors continue to be identified (144, 145).

Emerging biomarkers include m5C, long non-coding RNA

(lncRNA) NORAD, small nucleolar RNA host gene 16 (SNHG16),

and NUSAP1. Among these, the novel biomarker m5C regulates the

expression of multiple oncogenes, thereby influencing tumor cell

proliferation, migration, invasion, and chemoresistance (146). The

lncRNAs NORAD and SNHG16 function as competitive

endogenous RNAs (ceRNAs) by sponging microRNAs, thereby

constructing lncRNA/miRNA/mRNA regulatory networks that

modulate the expression of target genes implicated in tumorigenesis.

Additionally, this process is associated with the activation of multiple

signaling (147, 148). NUSAP1, as a critical mitotic regulator, exhibits

tightly controlled expression levels and subcellular localization during

the cell cycle. Therefore, abnormal expression levels of NUSAP1 often

lead to abnormal cell proliferation, a characteristic that aligns with the

mechanism of cancer occurrence. Moreover, the literature indicates

that in the pre-cancerous transformation stage, mitotic dysregulation

precedes genomic instability (12–15, 149). Secondly, similar to the

aforementioned novel biomarkers, NUSAP1 plays a critical role in

regulating multiple signaling pathways and modulating the expression

levels of various miRNAs, thereby contributing to the carcinogenic

process. This suggests that NUSAP1 can reflect tumor occurrence from

multiple perspectives and is highly valuable for early tumor

identification. Furthermore, as previously discussed, NUSAP1

promotes chemotherapy resistance by enhancing DNA damage

repair and compromises immunotherapy efficacy by facilitating

tumor immune escape (104, 105). These findings collectively indicate

that NUSAP1 is a promising prognostic biomarker and therapeutic

target. Consequently, NUSAP1 is involved in nearly every stage of

tumor initiation and progression. Compared with other novel

biomarkers, it is associated with a broader spectrum of carcinogenic

pathways, making it an excellent candidate for diagnostic and

prognostic evaluation, as well as a promising therapeutic target.
6 Summary and prospect

NUSAP1, a microtubule-associated protein, plays an essential

role in the formation of the mitotic spindle. The precise

spatiotemporal regulation of its localization and expression levels
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throughout the cell cycle is vital to ensure accurate chromosome

segregation and proper mitotic progression. Dysregulation of

NUSAP1’s ability to maintain stable cell proliferation frequently

results in various adverse consequences, including early embryonic

lethality and the development and progression of various cancers

(12, 14, 15). These findings highlight the potential significance of

NUSAP1 in elucidating the pathogenesis of diseases characterized

by abnormal cell proliferation.

Research has shown that the expression of NUSAP1 is

significantly increased across various types of tumors and is

closely associated with tumor invasion, disease advancement,

poor prognosis, and treatment outcomes. These findings are

consistent with NUSAP1’s inherent pro-proliferative activity.

Current research has firmly demonstrated that NUSAP1 exerts

regulatory functions in several key signaling pathways, including

theWnt/B-catenin, Hedgehog, PI3K/Akt, and TGF-B pathways (21,

59, 65, 78). Through mechanisms such as DNA repair, cell

metabolism modulation, and cell cycle regulation, NUSAP1

facilitates tumor progression. Further experimental and clinical

investigations are warranted to elucidate the precise role of

NUSAP1 in tumor biology, which may provide novel insights for

the treatment of malignant tumors, particularly those of the

digestive system.

A substantial body of research has employed diverse

bioinformatics approaches to identify oncogenic genes, revealing

that NUSAP1 is a hub gene frequently observed in various digestive

system tumors, including hepatocellular carcinoma (85), gastric

cancer (122), colorectal cancer (124–127), and pancreatic cancer

(131–134). Further analysis using COX risk regression and the

construction of prognostic models have demonstrated that the

overexpression of NUSAP1 is associated with poor prognosis in

digestive system tumors. These findings suggest potential

overlapping pathogenic mechanisms among these malignancies

and highlight the critical role of NUSAP1 within the gene

expression network. However, its precise biological functions
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require comprehensive validation through extensive in vivo and

in vitro experiments for further clarification. Future research should

aim to investigate the associations and common mechanisms of

NUSAP1 across different digestive system tumors.

The interactions between miRNAs and their regulation of

downstream transcription factors are crucial in the development

of cancer. Some miRNAs are considered promising immune-related

biomarkers with prognostic value and significantly influence the

proliferation, migration, invasion, and immune escape mechanisms

of certain tumor cells (150). Based on the preceding analysis, it is

evident that NUSAP1 serves as an important mediator in the

miRNA-regulated progression of digestive system tumors. For

instance, in liver cancer patients, decreased expression of miR-

193a-5p, miR-122, and miR-18b results in elevated NUSAP1 levels,

which in turn promotes the proliferation of hepatocellular

carcinoma cells (97–99). NUSAP1 enhances radioresistance in

GC cells by inhibiting ANXA2 ubiquitination. Additionally, miR-

129-5p directly targets NUSAP1, and its downregulation

significantly increases radiosensitivity in these cells (121). These

findings indicate that up-regulating specific miRNAs or inhibiting

NUSAP1 expression to target the miRNA/NUSAP1 pathway may

represent a promising therapeutic strategy for digestive system

tumors (Table 3).

Moreover, NUSAP1 can modulate downstream transcription

factors to activate multiple signaling pathways, thereby inducing

cancer cell stemness and contributing to early tumor recurrence.

Additionally, NUSAP1 influences the immune microenvironment,

facilitating tumor immune escape. Moreover, NUSAP1 is crucial in

determining the sensitivity and resistance to chemotherapy drugs;

reducing its expression can enhance the sensitivity of cancer cells to

chemotherapeutic agents (131). E2F8 transcriptionally activates the

target gene NUSAP1, thereby alleviating DNA damage and

mediating cisplatin resistance in liver cancer cells. Conversely, the

knockdown of NUSAP1 significantly increases DNA damage and

restores cisplatin sensitivity in these cells (104). Simultaneously, the
TABLE 3 NUSAP1-associated microRNAs and their functions in cancers.

MicroRNAs
Digestive

system neoplasms
Mechanism of function References

miRNA-193a-5p Liver cancer Downregulation of miRNA-193a-5p results in increased NUSAP1 expression. (97, 97)

miRNA-122 Liver cancer miRNA-122 knockdown leads to increased NUSAP1 expression. (98, 98)

miRNA-18b Liver cancer HBx contributes to higher NUSAP1 expression through the downregulation of miRNA-18b. (99, 99)

miRNA-129-5p Gastric cancer miRNA-129-5p targets NUSAP1 to decrease its expression for enhancing radiotherapy sensitivity. (121, 121)

miRNA-569 Pancreatic cancer Promotion of pancreatic cancer cell invasion through the microRNA-569/NUSAP1/ZEB1 axis. (137, 138)

miRNA-490-3p Osteosarcoma
miRNA-490-3p mediates the regulation of apoptosis and cell cycle by targeting NUSAP1 and
CDCA8/ATF3.

(152)

miRNA-758-3p Non-small cell lung cancer
miRNA-758-3p inhibits the proliferation, migration, and invasion abilities of NSCLC cells by
targeting NUSAP1.

(153)

miRNA-128-3p Glioblastoma
LINC01393 promotes the occurrence and development of Glioblastoma by up-regulating NUSAP1
as a ceRNA of miRNA-128-3p and activating the NF-kB pathway.

(154)
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high expression of NUSAP1 may suppress immune responses,

indicating its potential as a novel immune checkpoint and

offering a new avenue for optimizing tumor immunotherapy.

NUSAP1 inhibits the differentiation of PBMCs into DCs via the

SHCBP1/JAK2/STAT3 pathway, thereby promoting immune

escape. Targeted suppression of NUSAP1 not only reinstates the

differentiation potential of DCs but also synergistically amplifies the

efficacy of immunotherapy (105). Consequently, NUSAP1 holds

significant potential for research in specific therapies (such as

chemotherapy, radiotherapy, and immunotherapy), efficacy

evaluation, postoperative surveillance, and prognosis in patients

with digestive system tumors.

Although the structure, function, and role of NUSAP1 in

tumors have been extensively investigated, several critical issues

warrant further exploration. Post-translational modifications,

including phosphorylation, ubiquitination, and SUMOylation, are

essential for NUSAP1’s functions in promoting microtubule

formation and regulating the cell cycle (31–37). Current studies

primarily focus on how NUSAP1 influences tumor progression by

modulating the post-translational modifications of other proteins;

however, no research has directly established a link between

NUSAP1’s own post-translational modifications and tumor

progression. This gap represents a promising direction for future

research, as elucidating this relationship could facilitate a deeper

understanding of NUSAP1’s unique role in tumor development and

its potential applications in clinical diagnosis and treatment.

In summary, as research on NUSAP1 and digestive system

tumors continues to deepen, the importance of NUSAP1 in various

malignant biological behaviors of tumors has become increasingly

apparent. NUSAP1 holds promise as a novel tumor biomarker,

offering new avenues for clinical diagnosis and prognosis evaluation

in digestive system cancers. Additionally, targeted therapies aimed

at NUSAP1 may provide more promising treatment options for

patients with digestive system tumors.
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NUSAP1 Nucleolar spindle-associated protein 1
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HCC Hepatocellular carcinoma
iCCA Intrahepatic cholangiocarcinoma
TACE Transcatheter arterial chemoembolization
TKIs Tyrosine kinase inhibitors
EC Esophageal cancer
ESCC Esophageal squamous cell carcinoma
EAC Esophageal adenocarcinoma
HRQOL Health-related quality of life
OS Overall survival
GC Gastric cancer
CRC Colorectal cancer
PC Pancreatic cancer
DFS Disease-free survival
PDAC Pancreatic ductal adenocarcinoma
EMT Epithelial-mesenchymal transition
CSC Cancer stem cell
TCF/LEF T-cell factor/lymphoid enhancer factor
GSK-3b Glycogen synthase kinase-3b
MEF2D Myocyte enhancer factor 2D
ANKRD22 Ankyrin repeat domain 22
HH Hedgehog
GLI Glioma-associated oncogene
PI3K Phosphoinositide 3-kinase
Akt Protein kinase B
BTG2 B-cell translocation gene 2
HOXB2 Homeobox protein Hox-B2
mTOR Mammalian target of rapamycin
TGF-b Transforming growth factor-beta
TGFBR1 TGF-b receptor type 1
Smad2/3 Mothers against decapentaplegic homolog 2/3
YAP1 Yes-associated protein 1
DNMT1 DNA methyltransferase 1
LDHA Lactate dehydrogenase A
AMPK AMP-activated protein kinase ZEB1, Zinc finger E-box

binding homeobox 1
SHCBP1 SHC and spindle-associated protein 1
JAK2/STAT3 Janus kinase 2/signal transducer and activator of

transcription 3
17
PBMCs Peripheral blood mononuclear cells
DCs Dendritic cells
AFP Alpha-fetoprotein
CEA Carcinoembryonic antigen
CA19-9 Carbohydrate antigen 19-9
m5C 5-Methylcytosine
lncRNA Long non-coding RNA
NORAD Non-coding RNA activated by DNA damage
SNHG16 Small nucleolar RNA host gene 16
ceRNA Competitive endogenous RNA
AI Artificial intelligence
ML Machine learning
CDK4/6 Cyclin-dependent kinase 4/6
APC/C Anaphase-promoting complex/cyclosome
MCAK Mitotic centromere-associated kinesin
RanGTP Ras-related nuclear protein GTP
Impa/b/7 Importin alpha/beta/7
SUMO Small ubiquitin-like modifier
RANBP2 Ran-binding protein 2
KEN box Lysine-glutamine-asparagine box
ChHD Conserved high-charge binding domain
SAP SAF-A/B, Acinus, and PIAS domain
MAPs Microtubule-associated proteins
MTs Microtubules
SAC Spindle assembly checkpoint
PEF Polar ejection force
SAFs Spindle assembly factors
LRP5/6 Lipoprotein receptor-related protein 5/6
E2F8 E2F transcription factor 8
RAD51 DNA repair protein RAD51
NF-kB Nuclear factor kappa-light-chain-enhancer of activated B cells
ATM Ataxia-telangiectasia mutated
PPARg Peroxisome proliferator-activated receptor gamma
CDCA8 Cell division cycle-associated protein 8
ATF3 Activating transcription factor 3
LINC01393 Long intergenic non-protein coding RNA 1393
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