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GPD1L downregulation in
colorectal cancer: a novel
obesity-related biomarker
linking metabolic dysregulation
to tumor progression
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Hongzhang Liu1,2* and Yusheng Wang1,2*

1General Surgery Department of Jincheng People’s Hospital, Shanxi, China, 2General Surgery
Department of Jincheng Hospital Affiliated to Changzhi Medical College, Shanxi, China
Objective: To delineate the expression profile and tumor-suppressive function of

the metabolism-associated gene GPD1L in colorectal carcinogenesis. Methods:

Transcriptomic datasets from TCGA and GEO repositories (GSE74602,

GSE113513, GSE164191) were computationally analyzed. Paired tumor/adjacent

mucosal specimens (n=58) from CRC patients at Jincheng People’s Hospital

were analyzed alongside the NCM460 colon epithelial line and five CRC lines

(SW620, HCT116, SW480, DLD-1, LOVO). Following GPD1L quantification via

qPCR, selected cell models underwent pcDNA3.1-GPD1L transfection for

functional characterization. Then Western blot analysis was used to explore its

possible mechanism.

Results: Comparative analysis revealed a marked elevation of GPD1L expression

in non-neoplastic tissues relative to tumor specimens (P<0.001). Transcriptional

profiling further identified significant depletion of GPD1L mRNA levels across

malignant cell lines versus the NCM460 epithelial reference (P<0.05), with

HCT116/SW620 showing maximal downregulation. Ectopic GPD1L expression

attenuated oncogenic phenotypes: proliferation decreased (P<0.001), while

Transwell quantification revealed 46.0% (HCT116: 605.0 ± 9.2 vs 326.7 ± 8.50

cells/field) and 54.3% (SW620: 455.3 ± 17.2 vs 208.0 ± 14.0 cells/field) reductions

in migratory capacity (both P<0.001). Invasion assays showed parallel inhibition

(HCT116: 43.3% decrease, P<0.01; SW620: 54.8% decrease, P<0.001). After

overexpression of GPD1L, the expression levels of HIF-1a and MMP9 were

reduced (P<0.05).

Conclusion: GPD1L downregulation represents a hallmark of CRC progression,

with affecting the expression of HIF-1a and MMP9 significantly impeding

malignant behaviors, nominating it as a candidate tumor suppressor in

colorectal neoplasia.
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1 Introduction

Globally, colorectal adenocarcinoma ranks as the second most

prevalent malignancy, with epidemiological surveillance data from

the 2022 GLOBOCAN initiative documenting approximately 1.9

million incident cases and 935,000 mortality events annually. This

disease burden translates to nearly 10.6% of total cancer-related

deaths worldwide, establishing it as a critical public health priority

in oncological research (1). The disease pathogenesis involves

complex interactions between hereditary predisposition and

modifiable lifestyle factors. Germline cancer predisposition

syndromes, predominantly characterized by Lynch syndrome and

familial adenomatous polyposis, contribute to approximately 5-10%

of CRC pathogenesis. These high-penetrance autosomal dominant

disorders collectively represent a significant subset of hereditary

CRC etiology (2). While lifestyle determinants including sedentary

behavior, excess adiposity, and ethanol consumption demonstrate

dose-dependent associations with CRC risk (3, 4). Of particular

concern, epidemiological meta-analyses establish obesity as an

independent risk modulator for CRC development (OR=1.33,

95%CI:1.21-1.46) (5–7), but the precise pathophysiological

pathways linking excess adiposity to colorectal oncogenesis have

yet to be fully elucidated.

Originally identified in 2007 through its modulation of voltage-

gated sodium channel (Nav1.5) membrane localization in

cardiomyocytes, the glycerol-3-phosphate dehydrogenase 1-like

(GPD1L) has evolved from its canonical characterization to be

recognized as a pleiotropic metabolic orchestrator with

multifunctional regulatory capacities (8). Beyond its established

role in Brugada syndrome pathogenesis through SCN5A

modulation (9), recent investigations reveal GPD1L’s capacity to

destabilize the oxygen-sensitive transcriptional regulator HIF-1a
via prolyl hydroxylase (PHD) activation (10). Notably, adipose

tissue GPD1L expression exhibits dynamic regulation during

nutritional interventions - upregulated 2.1-fold during calorie

restriction (P<0.01) versus suppressed 63% under high-fat feeding

(P<0.001) (11). This highlights GPD1L’s candidacy as a master

metabolic checkpoint, offering novel opportunities for developing

small-molecule therapies against lipidomic disorders and

glucoregulatory dysfunction.

This regulatory duality positions GPD1L as a compelling

molecular interface between energy homeostasis and oncogenesis.

Building upon these observations, we hypothesize that GPD1L

dysregulation may mechanistically connect obesity-associated

metabolic dysfunction with CRC progression. Our investigation

systematically evaluates: (i) the differential expression patterns of

GPD1L in CRC versus normal mucosa, (ii) its clinicopathological

correlations, (iii) functional consequences of GPD1L reconstitution

on malignant phenotypes in vitro, and (iv) the molecular

mechanism of GPD1L influencing CRC cells.
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2 Materials and methods

2.1 Transcriptomic profiling and clinical
data curation

RNA sequencing datasets formatted in HTSeq-FPKM units,

encompassing colorectal adenocarcinoma (COAD), rectosigmoid

junction carcinomas and rectal adenocarcinoma (READ), were

systematically curated from The Cancer Genome Atlas (TCGA)

database (retrieval date: December 3, 2022). The primary cohort

comprised 554 neoplastic samples juxtaposed with 48 histologically

normal controls. To ensure analytical rigor, specimens with

incomplete clinicopathological metadata were excluded through a

standardized filtration protocol. Post-curation cohorts were

stratified into two analytical subsets: 533 cases allocated for

survival trajectory modeling and 467 cases subjected to Cox

proportional hazards regression. For external validation, three

orthogonal transcriptomic repositories (GSE74602, GSE113513,

GSE164191) were acquired from the Gene Expression Omnibus

(GEO) platform.
2.2 Clinical specimen collection

Fifty-eight treatment-naïve CRC patients undergoing curative

resection at Jincheng People’s Hospital (January 2023-January

2024) were prospectively enrolled. Surgically resected tumor

specimens paired with histologically normal adjacent tissues

(harvested from macroscopically normal regions ≥5 cm distal to

the neoplastic periphery) were subjected to rapid cryopreservation

via liquid nitrogen immersion within 10 minutes of resection.

Processed biospecimens were subsequently transferred to vapor-

phase liquid nitrogen cryogenic storage systems maintained at -80°

C. Inclusion Parameters: (1) histological ly confirmed

adenocarcinoma; (2) R0 resection; (3) AJCC 8th edition staging

available. Exclusion Parameters: neoadjuvant therapy history. All

patients’ specimens were collected and archived under protocols

received formal ethical certification (IRB Approval No.: JCPH-

20240724007) from the Jincheng People’s Hospital.
2.3 RNA quantification

Tissue samples were homogenized in TRIzol® reagent

(Invitrogen) followed by RNA extraction using chloroform-

isopropanol precipitation. cDNA synthesis was performed with

HiScript III RT SuperMix (Vazyme Biotech). qPCR amplification

employed ChamQ SYBR Master Mix (Vazyme Biotech) under

standardized conditions: the amplification regimen was initiated

by a 60-second denaturation phase at 95°C, followed by 40 iterative
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cycles of: Denaturation: 15-second exposure to 95°C. Annealing/

Extension: Combined 60-second incubation at 60°C. Final

elongation was performed at 72°C for 5 minutes to ensure

a m p l i c o n i n t e g r i t y . P r i m e r s : G P D 1 L F : 5 ′ -
C A A A T C T T A G C G A G G C T G T G C - 3 ′ , R : 5 ′ -
AAATGAGCTTCAGCCCCTCG-3′ (168 bp), GAPDH F:5′-GG
AGCGAGATCCCTCCAAAAT-3′, R:5′-GGCTGTTGTCATA
CTTCTCATGG-3′ (197 bp), Relative expression calculated via 2

−DDCt method.
2.4 Pathway enrichment profiling

GSEA v4.2.3 was implemented to identify enriched molecular

signatures between GPD1L expression subgroups (high vs low,

median cutoff). MSigDB hallmark gene sets were interrogated

with 1,000 permutations. Significance thresholds: normalized

Enrichment Score (NES) exceeding ±1.6 directional thresholds;

Primary Significance: Nominal PP-value < 0.05 derived from

Kolmogorov-Smirnov test; Multiple Testing Correction: false

discovery rate (FDR) < 0.1.
2.5 Cellular model establishment and
maintenance

The human colorectal carcinoma cell panel (SW620, HCT116,

SW480, DLD-1, LOVO) and non-neoplastic colonic epithelial line

NCM460 were procured from the General Surgery Research

Laboratory at Tianjin Medical University General Hospital. Four

specialized media formulations cultivated cellular systems: McCoy’s

5A, RPMI-1640, Leibovitz L-15, and DMEM, each enriched with 10%

fetal bovine serum (FBS) and penicillin-streptomycin(1%) antimicrobial

formulation. Standardized in vitro conditions were rigorously

maintained through incubation in a 5% CO2 humidified atmosphere

at 37°C, with complete medium replacement executed at 48-hour

intervals. To ensure experimental validity, quarterly mycoplasma

surveillance was conducted using the One-Step QuickColor

Mycoplasma Detection System (Yeasen Biotechnology, Shanghai,

Cat#40602ES76) in strict compliance with ISO 17025 testing protocols.

For targeted GPD1L overexpression, 2 mg of the pcDNA3.1-

GPD1L mammalian expression plasmid was reconstituted in 100 mL
Opti-MEM Medium, while parallel dilutions of Lipofectamine 2000

transfection reagent were prepared in an equivalent volume of Opti-

MEM. The lipid-DNA complexes were incubated for 20 minutes at

ambient temperature to facilitate nanoparticle formation prior to

cellular administration. Transfected cells were collected at 48 hours

post-transfection for downstream functional analyses.
2.6 Proliferation assay

Proliferative dynamics of GPD1L-overexpressing SW620 and

HCT116 cell models were systematically assessed through CCK-8

assay (YEASEN Biotechnology, Cat#40203ES). At 48h post-
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transfection, cellular suspensions were seeded at a density of

2×10³ cells/well into sterile 96-well microplates (Corning® 3599)

through multichannel pipette dispensing, maintaining a

standardized volume of 100 mL/well to ensure uniform monolayer

formation. Metabolic activity monitoring was conducted at 0, 24,

48, and 72 h intervals through controlled CCK-8 kits incubation: 10

mL additive per well, 37°C incubation for 60 min, followed by

spectrophotometric quantification at 450 nm wavelength via

TECAN Infinite® M200 microplate reader (Switzerland).
2.7 Scratch wound closure analysis

To systematically quantify the impact of GPD1L overexpression

on cellular motility, scratch wound assays were conducted using

confluent monolayers of SW620 and HCT116 colorectal carcinoma

cell models. Genetically modified cellular suspensions (density: 3×105

cells/well) were seeded into 6-well tissue culture-treated plates and

incubated for 24 hours post-inoculation to ensure stable adhesion,

achieving 90% confluence prior to mechanical wounding with 200-

mL sterile pipette tips. Following PBS washes (×2), serum-starved

conditions (0% FBS) were maintained during the 48h observation

period. Wound closure dynamics were documented at 0/24/48 h

intervals under phase-contrast microscopy (Nikon Eclipse Ti2, 100×),

with migration rates calculated through ImageJ v1.53 analysis using

the formula: Migration rate (%) = [(A0 - At)/A0] ×100, where A

represents wound area.
2.8 Transwell invasion assay

To establish invasion-permissive substrates, Transwell®

polycarbonate filter inserts (Corning® 3422) with defined 8 mm
porosity underwent extracellular matrix functionalization using

growth factor-reduced Matrigel® (Corning® 354230). The matrix

solution was reconstituted through 1:8 volumetric dilution in

serum-deprived RPMI-1640 medium, followed by uniform

deposition onto membrane surfaces under refrigerated conditions

(4°C) for 12-hour polymerization. Cellular suspensions containing

2×104 cells resuspended in 200 mL serum-deprived RPMI-1640

were seeded into apical chambers, while the basolateral chamber

received 600 mL chemoattractant medium containing 10% FBS-

enriched complete medium. Following standard 24-hour

incubation under normoxic conditions (37°C, 5% CO2),

membranes were subjected to sequential processing: (1) 15-

minute fixation with 4% paraformaldehyde (PFA) at ambient

temperature; (2) 20-minute nuclear staining with crystal violet

(0.1%) solution. Invasion quantification was performed by

imaging three randomly selected microscopic fields per

membrane using an Olympus IX73 inverted phase-contrast

microscopy platform (200× magnification). Digital image analysis

for cell enumeration was executed through the Image-Pro Plus 6.0

analytical suite (Media Cybernetics), with transmigration rates

calculated relative to control groups.
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2.9 Western blot analysis

Proteins were extracted from cells using RIPA buffer containing

protease inhibitors. After centrifugation (14,000 × rpm, 30 min, 4°

C), supernatants were quantified via BCA assay. Samples (20–50 mg
protein) were mixed with Laemmli buffer, denatured (95°C, 5 min),

and separated on 10% SDS-PAGE gels at 100 V. Proteins were

transferred to PVDF membranes (0.45 mm) using a wet transfer

system (220mA, 120min). Membranes were blocked with 5% non-

fat milk in TBST (1h, RT), then incubated overnight at 4°C with

primary antibodies [GPD1L, ab113595, Abcam; HIF-1a, ab179483,
Abcam; MMP9, ab228402, Abcam; b-actin, ab8227, Abcam] diluted

in blocking buffer. After TBST washes, membranes were probed

with HRP-conjugated secondary antibodies (1h, RT). Signals were

visualized by ECL and analyzed using ImageJ.
2.10 Statistical analysis

Biostatistical analyses were executed via R version 3.5.2 (R

Foundation) and GraphPad Prism 8.0.1 (GraphPad Software). To

assess non-parametric associations between GPD1L expression and

clinicopathological parameters, Wilcoxon signed-rank tests and
Frontiers in Oncology 04
Kruskal-Wallis tests were used. Survival trajectories were generated

through Kaplan-Meier estimation with between-group comparisons

ascertained by log-rank testing. Multivariable survival analysis was

conducted through Cox proportional hazards regression utilizing the R

statistical platform (version 4.3.1) with survival package. Continuous

variables were analyzed using parametric methods: independent two-

group comparisons employed Student’s t-test, while multi-group

comparisons implemented one-way ANOVA. For non-normally

distributed variables, non-parametric alternatives were applied:

Mann-Whitney U test and Kruskal-Wallis H-test. Categorical

variable associations were interrogated through Pearson’s chi-square

contingency testing with Yates’ continuity correction where

appropriate. All inferential analyses adopted a bidirectional a
threshold of 0.05 for significance determination.
3 Results

3.1 GPD1L expression alterations in
colorectal tissues

TCGA cohort analysis demonstrated significantly reduced

GPD1L expression in 554 CRC tissues with 48 normal controls
FIGURE 1

The expression differences of GPD1L in multiple datasets were analyzed. (a) Differential GPD1L expression profiling between malignant colorectal
tissues (n=554) and non-cancerous controls (n=48), (b) Expression difference of GPD1L in 47 CRC tissues and donor-matched normal tissues (TCGA
database), (c) Expression difference of GPD1L in 30 CRC tissues and donor-matched normal tissues (GSE74602), (d) Differences in the expression of
GPD1L in 14 CRC tissues and donor-matched normal tissues (GSE113513), (e) Differences in the expression of GPD1L in whole blood genes between
62 healthy controls and 59 CRC patients (GSE164191), (***P<0.001).
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(P<0.001, Figure 1a). Paired-sample analysis of 47 CRC cases

confirmed tumor-specific downregulation (P<0.001, Figure 1b).

External validation using GEO datasets revealed consistent

patterns: GSE74602 (30 tumor-normal pairs, P<0.001, Figure 1c)

and GSE113513 (14 pairs, P<0.001, Figure 1d) both exhibited

decreased GPD1L in malignant tissues. Systemic analysis of

GSE164191 further identified reduced GPD1L levels in whole

blood samples from 59 CRC patients versus 62 healthy controls

(P<0.001, Figure 1e). Our institutional cohort (58 paired specimens)

replicated these findings, showing diminished GPD1L expression in

tumors (P<0.001, Figure 2a). Cellular-level analysis disclosed

significantly higher GPD1L levels in non-malignant NCM460

cells compared to CRC lines (HCT116/DLD-1/SW480: P<0.01;

SW620: P<0.05, Figure 2b).
3.2 GPD1L downregulation correlates with
disease progression

Stratification analysis of 533 TCGA-CRC cases revealed

significant GPD1L expression variations across nodal involvement

(N-stage: P=0.005) and overall clinical staging (P=0.044)

(Figure 3a). No associations were observed with age, sex, primary

tumor invasive depth (T-stage), or distant metastasis (M-stage).

Complementing these findings, our institutional cohort analysis

(n=58) demonstrated progressive GPD1L downregulation
Frontiers in Oncology 05
correlating with metastatic dissemination (M-stage: P=0.04),

advanced nodal metastasis (N-stage: P=0.038) and advanced

clinical staging (P=0.006). Notably, elevated body mass index

(>25 kg/m²) showed inverse correlation with GPD1L levels

(P=0.004) (Figure 3b).
3.3 Prognostic implications of GPD1L
downregulation

Survival trajectory analysis via the Kaplan-Meier method

demonstrated a pronounced decline in overall survival rates

among CRC cohorts exhibiting attenuated GPD1L expression

(P=0.001, Figure 4a). Univariate Cox regression identified GPD1L

downregulation (HR=0.908, 95%CI:0.857-0.961; P<0.001) as a

prominent prognostic determinant alongside established clinical

parameters, including advanced T-stage (HR=3.035, 95%CI:1.933-

4.764), nodal metastasis (HR=2.198, 95%CI:1.694-2.853), distant

dissemination (HR=5.354, 95%CI:3.402-8.427), age (HR=1.040,

95%CI:1.017-1.063), and advanced clinical staging (HR=2.630,

95%CI:2.023-3.422), all demonstrating P<0.001 significance

(Figure 4b). Following comprehensive adjustment for potential

clinical confounders including tumor stage, differentiation status,

and so on, multivariable Cox proportional hazards regression

analysis identified GPD1L transcriptional levels (adjusted

HR=0.936, 95% CI: 0.880-0.994; P=0.032) and patient age
FIGURE 2

The expression differences of GPD1L in clinical specimens and CRC cells. (a) Differences in the expression of GPD1L in 58 CRC patients and donor-
matched normal tissues (***P<0.001), (b) Differences in the expression of GPD1L in normal colonic epithelial cell lines (NCM460) and five CRC cell
lines (SW620, HCT1161, SCT116, DLD 480 and LOVO) (ns P>0.05, *P<0.05, **P<0.01, ***P<0.001).
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(adjusted HR=1.047, 95% CI: 1.024-1.070; P<0.001) as statistically

independent prognostic determinants of overall survival (OS).

These findings persisted after rigorous sensitivity analysis,

confirming the robustness of both biomarkers in predicting long-

term oncological outcomes (Figure 4c).
3.4 GSEA enrichment analysis

Gene Set Enrichment Analysis (GSEA) of CRC samples

stratified by GPD1L expression levels revealed distinct functional

signatures. Functional annotation of KEGG pathways revealed

statistically significant enrichment (Benjamini-Hochberg adjusted

FDR<0.05) within the GPD1L-low expression cohort, with

predominant activation of adaptive immune response

mechanisms, particularly antigen processing and presentation

pathways, cell adhesion molecules (CAMs) and extracellular

matrix (ECM) receptor interactions. Conversely, GPD1L-high

specimens exhibited predominant activation of metabolic

pathways, notably glycosylphosphatidylinositol-mediated
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membrane anchoring systems, catabolic processing of branched-

chain amino acids, and peroxisome-related metabolism (Figure 5).
3.5 GPD1L overexpression inhibits cellular
proliferation

Quantitative PCR analysis confirmed differential GPD1L

expression across colorectal cancer cell (SW480, SW620, DLD-1,

HCT116, LOVO) and normal colonic NCM460 cells. Significantly

lower GPD1L levels were observed in SW480 (P<0.05), SW620

(P<0.05), DLD-1 (P<0.05) and HCT116 (P<0.01), compared to

NCM460 controls (Figure 2b). Given the minimal expression in

HCT116 and SW620, these lines were selected for functional

studies. Transfection with GPD1L overexpression plasmid (OE)

significantly elevated mRNA and protein levels in both SW620 and

HCT116 (P<0.001) versus empty vector controls (Figure 6). CCK-8

assays demonstrated marked proliferation inhibition in OE groups:

HCT116 and SW620 proliferation decreased compared to baseline

controls(P<0.001) (Figure 7).
FIGURE 3

Relationship between GPD1L expression level and clinicopathological features. (a) TCGA database, (b) Data from the center.
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FIGURE 5

Enrichment plots from the gene set enrichment analysis (GSEA). GSEA results showing differential enrichment of genes in KEGG with
GPD1L expression.
FIGURE 4

Patients with CRC with low GPD1L expression have a worse prognosis. (a) The relationship between GPD1L expression and overall survival in CRC
patients in the TCGA database, (b) Univariate Cox regression analysis of GPD1L expression and clinicopathological features, (c) Multivariate Cox
regression analysis of GPD1L expression and clinicopathological features.
Frontiers in Oncology frontiersin.org07
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3.6 GPD1L reconstitution suppresses
metastatic potential

Scratch wound closure analysis demonstrated significant

attenuation of migratory capacity in GPD1L-overexpressing cells:

HCT116 migration decreased from 51.63 ± 1.84% to 14.77 ± 0.40%

(P<0.001), and SW620 from 40.43 ± 0.97% to 20.90 ± 0.96%
Frontiers in Oncology 08
(P<0.001) versus controls (Figure 8). Transwell validation

confirmed this inhibitory effect, revealing reduced migratory cell

counts in HCT116 (605.0 ± 9.2 vs 326.7 ± 8.50 cells/field, P<0.001)

and SW620 (455.3 ± 17.2 vs 208.0 ± 14.0 cells/field, P<0.001).

Invasion capacity was similarly impaired, with HCT116 invaded

cells decreasing from 274.3 ± 9.6 to 155.7 ± 7.5 (P<0.01), and

SW620 from 224.7 ± 10.9 to 101.7 ± 8.5 (P<0.001) (Figure 9).
FIGURE 7

Results of proliferation capacity analysis. (a) Changes in the proliferation capacity of HCT116 after GPD1L overexpression, (b) Changes in the
proliferation capacity of SW620 (aP<0.05, bP<0.01, cP< 0.001).
FIGURE 6

Transfected with GPD1L overexpression plasmid. (a) Transfection efficiency at the mRNA level of GPD1L overexpression plasmid, (b) Transfection
efficiency at the protein level of GPD1L overexpression plasmid in HCT116 cells, (c) Transfection efficiency at the protein level of GPD1L
overexpression plasmid in SW620 cells (**P<0.01, ***P<0.001, ****P<0.0001).
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3.7 GPD1L potentially affects the biological
behavior of CRC cells through altered HIF-
1a stabilization and MMP9 transcriptional
activity

We used GSEA to analyze the potential mechanism by which

GPD1L affects CRC cells. The results are shown in Figure 5. Low

expression of GPD1L activated the cell adhesion molecules (CAMs)

and extracellular matrix (ECM) receptor interactions molecular

pathways, and MMP9 is closely related to these two signaling
Frontiers in Oncology 09
pathways (12). Many studies have shown that GPD1L may affect the

activity of HIF-1a. Therefore, we speculate that GPD1L may affect the

biological behavior of CRC cells by affecting the expression of these two

molecules. Proteins of CRC cells overexpressing GPD1L were extracted

and WB analysis were performed. The results showed that when

GPD1L was overexpressed, the expression of HIF-1a and MMP9 in

HCT116 cells was reduced, and the same results were shown in SW620

cells (Figure 10). These results supported our hypothesis that GPD1L

can affect the malignant behavior of CRC cells by affecting the activity

of HIF-1a and the expression of MMP9.
FIGURE 8

Results of scratch wound closure analysis. (a) HCT116 migration ability decreased after GPD1L overexpression, (b) SW620 migration ability decreased
after GPD1L overexpression (***P<0.001).
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4 Discussion

The global surge in obesity prevalence, attributable to calorically

dense dietary patterns and reduced physical activity, now represents

a pivotal challenge in preventive oncology. Epidemiological studies

consistently implicate adiposity as an independent risk modulator

for colorectal carcinogenesis, demonstrated significant
Frontiers in Oncology 10
epidemiological correlations with dysmetabolic conditions

including cardiovascular pathologies, type II diabetes mellitus and

multiple malignancies (7, 13, 14). Colorectal cancer (CRC), in

particular, exhibits a well-documented epidemiological link to

obesity, with meta-analyses revealing a 1.3-fold increased risk in

obese individuals (BMI >30 kg/m²) (15). Despite this clinical

association, the molecular mechanisms bridging adiposity and
FIGURE 9

Transwell experimental results. (a) The migration and invasion ability of HCT116 decreased after overexpression of GPD1L, (b) The migration and
invasion ability of SW620 decreased after overexpression of GPD1L (**P<0.01, ***P<0.001).
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colorectal carcinogenesis remain poorly elucidated. Our study

addresses this gap by identifying GPD1L, a gene recently

implicated in obesity pathogenesis through genome-wide

association studies (16), as a novel tumor suppressor in CRC,

thereby providing mechanistic insights into obesity-

driven oncogenesis.

Located at chromosomal locus 3p22.3, the GPD1L gene encodes

a dehydrogenase enzyme critical to glycerol phosphate metabolism.

First identified through the NIH Mammalian Gene Collection

initiative in 2002, this gene initially gained recognition for its

regulatory functions in cardiac sodium channel dynamic (17),

GPD1L was first characterized for its role in cardiac sodium

channel trafficking and association with Brugada syndrome (8,

10). Subsequent investigations have expanded its functional

repertoire, revealing its capacity to destabilize hypoxia-inducible

factor 1-alpha (HIF-1a) through prolyl hydroxylase activation (18),

thereby modulating angiogenesis via VEGF regulation (19).

Intriguingly, recent studies highlight GPD1L’s tumor-suppressive

potential across diverse malignancies, including HER2-negative

breast cancer (20), esophageal squamous cell carcinoma (21), and
Frontiers in Oncology 11
gastric carcinoma (22), though its role in CRC remained unexplored

prior to this investigation.

Our multi-platform analysis of TCGA and GEO datasets

revealed consistent GPD1L downregulation in CRC tissues

compared to normal mucosa (Figure 1), a finding validated in our

institutional cohort (n=58 tumor-normal pairs; Figure 2a).

Clinically, diminished GPD1L expression correlated with

advanced nodal metastasis (N-stage), distant dissemination (M-

stage), and poorer survival outcomes (Figures 3a, 4a), establishing

its prognostic relevance. Multivariate Cox regression confirmed

GPD1L as an independent prognostic indicator (HR=0.936,

P=0.032; Figure 4c), reinforcing findings from gastric cancer

studies where GPD1L loss predicted aggressive phenotypes (22).

Notably, overweight patients exhibited accentuated GPD1L

downregulation (Figure 3b), aligning with preclinical models

demonstrating diet-induced obesity reduces hepatic GPD1L

expression by 63% (P<0.001) (11), suggesting a potential

mechanism for obesity-associated CRC progression.

Functional validation in low-expressing CRC models (HCT116/

SW620) demonstrated GPD1L’s multimodal tumor suppression:
FIGURE 10

Genetic modulation of GPD1L overexpression altered HIF-1a stabilization and MMP9 transcriptional activity in CRC cell lines. (a) Effect of GPD1L
overexpression on the expression levels of HIF-1a and MMP9 in HCT116 cells, (b) Effect of GPD1L overexpression on the expression levels of HIF-1a
and MMP9 in SW620 cells (**P<0.01, ***P<0.001).
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Proliferation inhibition (P<0.001; Figure 7), consistent with its HIF-

1a regulatory role (23) and anti-angiogenic effects via VEGF

suppression (24); Metastatic constraint, evidenced by 62–68%

migration attenuation (Figures 8, 9), mirroring observations in

head-neck squamous carcinoma where GPD1L inversely

correlated with recurrence (25); Metabolic reprogramming

revealed through GSEA, showing GPD1L-high tumors enriched

in branched-chain amino acid degradation (Figure 5), a pathway

linked to tumor suppression in gastric cancer (22).

Mechanistically, the dichotomous pathway activation—

immune/ECM remodeling in GPD1L-low versus metabolic

regulation in GPD1L-high tumors (Figure 5)—suggests GPD1L

modulates tumor-stroma crosstalk. This aligns with its recently

identified role in miR-210-mediated HIF-1a regulation under

hypoxia (26), potentially explaining the metabolic plasticity

observed in CRC progression. Our results confirmed this

mechanism. When GPD1L was overexpressed in CRC cells,

we found that the expression of HIF-1a and MMP9 was

reduced (Figure 10).

While our integrated approach (bioinformatics, clinical cohorts,

functional assays and molecular mechanism) provides robust

evidence, limitations include the retrospective clinical analysis

and lack of in vivo validation. Future studies should explore

isoform-specific effects, given GPD1L’s known splice variants in

cardiovascular systems, and therapeutic potential in obesity-

associated CRC models.
5 Conclusion

This study establishes GPD1L downregulation as a molecular

hallmark of CRC progression, mechanistically linking obesity-

associated metabolic dysregulation to metastatic dissemination.

The conserved tumor-suppressive activity across epithelial

malignancies positions GPD1L as a promising therapeutic target

for metabolic syndrome-associated cancers.
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