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Background: Breast cancer (BC) is a significant malignancy characterized by a

high global incidence and a propensity for recurrence. Absorption, distribution,

metabolism, and excretion (ADME) genes comprise a collection of genes that

participate in the drug ADME. Understanding the role and prognostic value of

ARGs (ADME related genes) in BC advancement is critical for personalized

therapy. Therefore, an ARPS (ADME related prognostic signature) was created

in this study to examine the clinical implications of ARGs in patients with BC.

Methods: A multi-omics investigation of ADME-related genes in BC was

conducted using bulk RNA sequencing, single-cell RNA sequencing, and

spatial transcriptome data. According to the expression profiles of ADME-

related differentially expressed genes (DEGs), the ARPS was calculated, and all

patients were stratified based on their risk scores. A prediction model was then

created using Cox regression and stepAIC analyses. This model divided all

patients into HR (High risk) and LR (Low risk) groups following the median risk

score. Bioinformatics analyses were conducted to estimate the risk signature’s

predictive capacity.

Results: This study identified five ARGs (SLC7A5, HSD11B1, ADHFE1, GSTM2, and

TAP1) correlated with BC prognosis. The risk signature in the TCGA-BRCA,

METABRIC, and GSE58812 cohorts revealed robust predictive accuracy for 1-,

3-, and 5-year survival. Compared to the gene signature alone, the nomogram

integrating the ARPS and clinical parameters demonstrated improved prognostic

performance. Immune infiltration analysis revealed a high level of immune

checkpoint related gene expression and immune score in patients with ARPS

LR, suggesting potential implications for immunotherapy responses.

Conclusion: The findings highlight the prognostic significance of ARPS in BC and

its potential utility in guiding personalized treatment strategies. Combining ARPS

with clinical parameters enhances prognostic accuracy and may help patients

with BC make clinical decisions.
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Introduction

In 2020, breast cancer (BC) replaced lung cancer as the leading

cause of global cancer incidence while remaining the fifth most

prevalent cause of cancer mortality worldwide (1). There are

different types of BC, and even though many patients may have

better outcomes than those with other solid tumors after different

treatments, such as radical surgery, chemotherapy, radiation

therapy, and targeted therapy, some patients with BC still have

poor outcomes (2). Consequently, there is a continued need for

novel biomarkers to identify patients with BC.

Genes implicated in drug absorption, distribution, metabolism,

and excretion are designated as ADME genes (ARGs) (3, 4). The

PharmaADME group has disclosed that ARGs comprise 266

extended genes and 32 core genes (http://www.pharmaadme.org),

which include phase I and II drug-metabolizing enzymes, modifiers,

and transporters that influence hepatic drug clearance and

metabolism (5–7).

ARGs are extensively utilized in cancer research to understand

their expression profiles in different cancer types and their impact

on patient outcomes. Researchers have identified the differential

expression of ARGs in tumors, with some genes related to favorable

overall survival (OS) rates in certain cancers, while others are linked

to unfavorable outcomes (8–10). Studies have revealed that ARGs

may affect the survival of patients with cancer through various

mechanisms related to drug metabolism and disposition. Tang et al.

developed a novel ADME-related 14-gene prognosis model in

HNSCC (11). The model assigned patients into two groups, LR or

HR, and the results revealed that patients with LR have significantly

improved OS and DFS and benefit more from immunotherapy

and chemotherapy.

Moreover, ARGs are being explored as possible therapeutic

targets and prognostic biomarkers for cancer treatment,

highlighting their importance in personalized medication and

patient management improvement. Wang et al. established a risk

score signature based on ARGs that distinguishes HR from patients

with LR sarcoma, demonstrating longer survival in the LR group

and offering a direction for future targeted therapies (12). However,

the biological roles and predictive value of ARGs in BC remain

poorly understood.

In this study, DEARGs (Differentially Expressed ARGs) were

explored in BRCA using data from The Cancer Genome Atlas

(TCGA). Then, a 5-gene signature was established to predict

survival outcomes in the TCGA training cohort using Cox

regression and stepAIC analyses, and its prognostic usefulness

was extensively validated using external cohorts. Furthermore, the

underlying connotations between the signature and landscape of the

tumor microenvironment (TME), namely the expression level of

immune checkpoints, predictive enrichment of tumor-infiltrating

immune cells, and the level of tumor mutation, were revealed,
Abbreviations: BC, Breast cancer; ADME, Absorption, distribution, metabolism,

and excretion; GO, Gene ontology; KEGG, Kyoto Encyclopedia of Genes and

Genomes; LR, Low Risk; HR, High Risk; HGNC, HUGO Gene Nomenclature

Committee; DEG, Differentially expressed genes.
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providing novel insights for personalized immunotherapy. Finally,

the predictive value of the signature in patients with BC treated with

diverse therapeutic modalities was verified. Figure 1 provides is a

workflow diagram of our study.
Materials and methods

Preprocessing and dataset source

In this study, the training cohort consisted of currently

accessible treatment and expression data of patients with BRCA

obtained from TCGA (https://portal.gdc.cancer.gov/). The

“TCGAbiolinks” (13) package in R was used to download RNA-

seq data, the mutation profiles, and relevant clinical information.

Additionally, information from the cBioPortal website database

(https://www.cbioportal.org/) (14) and Gene Expression Omnibus

database (http://www.ncbi.nlm.nih.gov/geo/) was used to obtain

two independent validation cohorts: METABRIC and GSE58812.

The human BRCA scRNA-seq dataset, GSE176078, was obtained

from TISCH (http://tisch.comp-genomics.org/) (15). The BRCA

spatial transcriptome dataset GSE203612-GSM6177603 was

obtained from the Gene Expression Omnibus database (https://

www.ncbi.nlm.nih.gov/geo/). A group of ARGs (n = 298) was

derived from the PharmaADME Consort ium (http:/ /

www.pharmaadme.org) (5).
Processing BC spatial transcriptome
sequencing data

Seurat (16), an R program for analyzing spatial transcriptome

data, was used. This entailed normalizing unique molecular

identifier numbers, scaling the data, and identifying the most

variable characteristics with “SCTransform.” Downscaling and

unsupervised cluster analysis were then performed with

“RunPCA.” For the cluster analysis, default parameters were used,

focusing on the 30 most important principal components. The

“SpatialFeaturePlot” function was also used for subgroup and gene

visualization. The “AUCell” (17) R package is a useful tool for

spatial transcriptome ADME-related gene analysis. Its primary goal

is quantifying and exhibiting ADME-related activities at geographic

transcriptome resolution.
scRNA-seq data analysis

The 10× scRNA-seq data GSE176078 was transformed to a

Seurat object using the “Seurat” R package. Clusters with fewer than

three cells, less than 50 genes, and more than 5% of the

mitochondrial genes were deleted. Principal component analysis

was applied to the top 1500 variable genes. The “FindNeighbors”

and “FindClusters” routines were used to perform cell clustering

analysis based on the top 15 principal components. The

“FindAllMarkers” program was used to identify marker genes in
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various cell clusters, with FDR < 0.01 and |log2FC| > 1 as the

criterion. Clusters were annotated using the “CellMarker (version

2.0)” (18) database to identify various cell types. The “ssGSEA”

function from the Seurat package was used to quantify the activity

of a specific gene set in each cell.
Identification of differential ADME related
genes and functional analysis

For BRCA and normal cases in TCGA datasets, DEARGs were

identified using the R package “limma” (19). Notably, the cutoff was

defined as FDR < 0.05 and log2|FC| > 1. ARGs were characterized

using the Kyoto encyclopedia of genes and genomes (KEGG) and

gene ontology (GO) pathways, identified using the Metascape (20)

website, to investigate their potential biological roles and signaling

pathways. In the case of FDR < 0.1 and p < 0.05, the result was

determined to be statistically significant.
Frontiers in Oncology 03
Construction and validation of ARPS

The ADME-related prognostic genes were identified from

DEARGs using univariate Cox proportional hazards analysis with

a threshold of p < 0.05. The stepAIC analysis using the MASS

package was then performed to identify the most predictive ARGs

for BC prognosis in line with DEARGs. The most predictive ARGs

were subsequently loaded for further analysis using the multivariate

Cox proportional hazards regression model. The risk scores were

computed by combining the expression of each DEARG and the

relevant coefficient. All patients were divided into LR and HR

groups based on median risk scores.

Additionally, time-dependent ROC and KM analyses were used

to assess ARPS’s predictive performance. An external independent

validation cohort used data from METABRIC and GSE58812 to

determine the generalization degree of ARPS. Prognostic

independence was assessed for clinical parameters, including

ADME-related risk scores, in patients with BC using univariate
FIGURE 1

Flowchart for comprehensive analysis of ADME related patterns in postoperative patients with breast cancer (BC).
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and multivariate Cox regression analyses. Key risk variables were

included to develop a nomogram for predicting survival.

Calibration curves were plotted, and decision curve analysis

(DCA) was performed to assess the nomogram’s precision.
Immunogenomic landscape assessment

The relative proportions of the 22 types of immune cells were

estimated using the CIBERSORT (21) R package. The R package

“estimate” was then selected to compute the score of ESTIMATE,

stroma, and immunity to evaluate the tumor purity. The hypoxia

score of BC was acquired from the cBioPortal (https://

www.cbioportal.org/).
Analysis of gene mutations

A waterfall diagram displaying the distribution of genes with

high somatic mutation frequency in patients with BC was created

using the “maftools” (22) R package TCGA provided the copy

number variation (CNV) data; the patients in several risk categories

were examined using the GenePattern “gistic2” module (23). The

output results were demonstrated using the ChromPlot feature in

the R package “maftools.” Concurrent with this, the tumor

mutation burden (TMB) of every sample was computed to

investigate the correlation between the risk score and TMB.
Statistical analysis

The R software (version 4.3.1) was used for all statistical

analyses. The Wilcoxon test was used for pairwise comparisons

between two groups; the Kruskal–Wallis test ***p < 0.001; ****p <

0.0001 was used for multiple group comparisons. Survival analysis

was performed using the KM approach and log-rank test. The

outcome was considered statistically relevant at p = 0.05.
Results

ADME-related characteristics in spatial
transcriptome and scRNA-seq

Following dimensionality reduction clustering, we used

SCTransform’s method to adjust for spatial sequencing depth and

performed a series of normalization procedures, thereby identifying

nine different cell types in space (Supplementary Figure S1). We

calculated ADME-related activity in every cell subgroup using the

AUCell R package to assess the significance of ADME-associated

genes in each cell subset (Figure 2A). ADME-related activity was more

abundant in normal cells (Figure 2B). We then computed the

association between cell content and ADME-related activity at all

sites (Figure 2C) and between cell content and Spearman’s correlation

analysis. Obtained from 26 patients with BC, scRNA-seq data consists
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of 89,471 cells. The cells were grouped into 11 main clusters using

marker genes for distinct cell types: B cells, CD4Tconv, CD8Tex,

dendritic cells, endothelial cells, fibroblast cells, malignant cells,

monocytes/macrophages, plasma cells, SMC cells, and tprolif cells

(Figure 2D). We computed the expression levels of ADME-related

genes across all cells using the “ssGSEA” function in the Seurat

package to estimate ADME activity in various cell types (Figure 2E).

Of the 11 cell types, dendritic and fibroblast cells exhibited specifically

more ADME ADME-related activity (Figure 2F).
Variant landscape of ARGs in patients with
BC

First, ARS was calculated using the ssGSEA algorithm for 1050

patients with BRCA and 98 normal patients, derived from the

TCGA database. Compared to the control group, a significantly

lower ARS was observed in the BRCA group, which confirmed the

model accuracy (Figure 3A). Then, the association between ARS

and clinical parameters in patients with BRCA was further

investigated. A higher ARS was associated with a higher stage

(Figure 3B). In this study, we screened 36 DEGs for the BRCA

and normal groups to investigate their distinct transcriptomic

signatures (Figures 3C, D; Supplementary Table S1). The

expression of each of the 36 DEGs in the TCGA-BRCA cohort is

displayed in Figure 3E. Subsequently, the intricate relevance of

DEG-associated proteins was clarified by constructing a network of

interactions between proteins (Figure 3F).

Additionally, the molecular alteration landscape of ADME-

related DEGs in BRCA was examined, and the most prevalent

variant was the missense mutation (Figure 3G). ABCC9, FMO2,

ALDH1A3, AOX1, and SULF1 were the top five mutated genes. The

top 20 mutated ADME-related DEGs exhibited significant CNV

alterations based on CNV mutation frequency (Figure 3H). The

Metascape website was employed for GO and KEGG enrichment

analyses to examine the regulatory mechanisms of DEGS.

According to the enrichment analysis, the most enriched

functions included drug metabolism-cytochrome P450,

detoxification, retinol metabolism, xenobiotic metabolic process,

and active transmembrane transporter activity (Figure 3I).
Construction of ARPS in BC

A univariate Cox regression analysis was used to screen for

ARGs with prognostic significance to build a prognostic gene model

from the ADME-associated DEGs. Therefore, seven genes were

found to have significant prognostic values (p < 0.05) (Figure 4A;

Supplementary Table S2). StepAIC analyses were performed to

minimize the gene count and streamline the model, resulting in a

final set of five ARGs with coefficients for the prognosis model

(Figures 4B, C; Supplementary Table S2). The 5-gene prognosis

model was defined as follows: Risk score = (0.1279) * SLC7A5 +

(-0.2116) * HSD11B1 + (-0.2388) * ADHFE1 + (-0.1828) * GSTM2

+ (-0.2116) * TAP1. Patients with BRCA were stratified into HR (n
frontiersin.org
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FIGURE 2

ADME-related characteristics in the spatial transcriptome and scRNA-seq. (A) Spatial visualization of the ADME intensity. (B) Differential analysis of
ADME-related activity in mixed malignant and normal regions. (C) Spearman’s correlation of ADME-related activity with microenvironmental
components at spatial transcriptome resolution. (D) Types of single cells identified using marker genes. (E) ADME enrichment score (activity) in each
cell. (F) Distribution of ADME scores in different cell types. ADME, Absorption, distribution, metabolism, and excretion.
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= 525) and LR (n = 525) groups according to the median signature.

Notably, in the TCGA cohort, the LR group outperformed the HR

group regarding the OS rate (p < 0.0001, Figure 4D). The

independent validation cohorts, METABRIC and GSE58812, were

utilized to confirm the model’s robustness, and the results

demonstrated that the LR group also outperformed the HR group
Frontiers in Oncology 06
regarding OS (METABRIC, p < 0.0001, Figure 4E; GSE58812, p =

0.029, Figure 4F). The survival status and risk scores distribution are

illustrated in Figures 4G–I for TCGA-BRCA, METABRIC, and

GSE58812 cohorts, respectively. These findings confirm the strong

performance of the ADME-related prognosis model for predicting

patients with BC outcomes across various datasets.
FIGURE 3

Different landscapes of ARGs in patients with BC. (A) Box plot with Wilcoxon test displaying the variations in the SSGSEA ARS between BRCA and
normal samples. (B) Box plot contrasting SSGSEA ARS across stages. FDR = 0.05; |log2FC| > 1. (C) Volcano plot of DEGs in BRCA (blue,
downregulated DEGs; red, upregulated DEGs; and gray, unaltered genes). (D) Venn diagram of ARGs and BRCA-associated DEGs. (E) Differential
analysis heatmap comparing BRCA with the normal group. The normal group is blue; the BRCA group is red; the blue square denotes low
expression; the yellow square denotes strong expression. (F) PPI network, including DEGs connected to ADME. (G) Oncoplot of the ADME-related
DEGs in the TCGA-BRCA cohort. (H) Frequencies of CNV gain, loss, and non-CNV among the DEGs associated with ADME. (I) ADME-related DEG
GO keywords and KEGG pathway enrichment analysis. Several hues represent distinct terms or paths.
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Development and evaluation of a
nomogram

This study employed univariate and multivariate Cox regression

analyses to evaluate the effect of ADME-related signatures on

prognosis prediction. The univariate Cox regression analysis

indicated that age, TNM.T, stage, TNM.M, grade, neoplasm status,

and risk score were significantly associated with OS. The multivariate

Cox regression analysis indicated that stage, age, risk score, and
Frontiers in Oncology 07
radiation were associated with OS in patients with BC (Figures 5A,

B). In this study, we developed a nomogram for predicting 1-, 3-, and

5-year survival in patients with BC, utilizing the correlation between

clinicopathological features and the ADME-related signature

(Figure 5C). Using the same nomogram, the risk score was

computed for all patients, and the patients were assigned in line

with their risk scores. The nomogram model outperformed the gene

signature model in terms of prognosis. The prognosis of LR and HR

groups differed significantly (p < 0.001, Figure 5D).
FIGURE 4

Development of an ARPS for patients with BC. (A) The forest plot illustrates the seven prognostic genes identified in the risk model derived from
the univariate regression analysis. (B) The forest plot illustrates the final five prognostic genes identified in the risk model derived from stepAIC
regression analysis. (C) Regression coefficients of five genes derived from stepAIC regression analysis. (D–F) OS in low- and high-risk patients in
(D) TCGA-BRCA, (E) METABRIC, (F) GSE58812. (G–I) Distribution of risk scores based on survival status and time in (G) TCGA-BRCA, (H) METABRIC
and (I) GSE58812. StepAIC refers to the stepwise application of the Akaike Information Criterion.
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FIGURE 5

Development and evaluation of the nomogram survival model. (A) Univariate study of the clinicopathological characteristics and risk score in TCGA-
BRCA. (B) Multivariate analysis of clinicopathological characteristics and risk scores of TCGA-BRCA. (C) A nomogram for forecasting the prognosis of
patients with BRCA. (D) Kaplan–Meier analysis of the two BRCA cohorts based on the nomogram score. (E) ROC curve study of the nomogram in
TCGA-BRCA. (F) Calibration graphs illustrating the probabilities of 1-, 3-, and 5-year overall survival in TCGA-BRCA. (G) DCA of the nomogram
forecasting 1-, 3-, and 5-year OS.
Frontiers in Oncology frontiersin.org08
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Besides, the combined model had AUCs for 1-, 3-, and 5-year

survival rates of 0.822, 0.844, and 0.827, respectively (Figure 5E).

Moreover, the nomogram’s predictive accuracy was revealed via the

calibration curve (Figure 5F). Furthermore, a DCA (Figure 5G) was

conducted to compare the nomogram’s clinical applicability

regarding the 1-, 3-, and 5-year survival. The results demonstrated

that the 3- and 5-year OS was better predicted by the nomogram,

which provided more net clinical benefit than the 1-year OS. In

general, when utilizing these essential clinical parameters to assess the

prognosis of patients with BC, the nomogram demonstrated solid

prediction power and clinical applicability.
Immune characteristics of ADME-related
prognostic subgroups

The TCGA-BRCA cohort was used to investigate the

relationship between the ARPS and the immune status of

patients. Most normal cells in tumor tissue consist of infiltrating

immune and stromal cells that modulate cancer biology besides

disrupting tumor signaling. The ESTIMATE algorithm was

employed to analyze the immune microenvironment to elucidate

the relationship between the ADME-related risk score signature and

its biological function in the immune response. This algorithm

demonstrated that a high immune score was noted more frequently

in patients with higher risk scores (Figure 6A). A notable reduction

in the immune infiltration levels of CD8 T cells, gamma delta T

cells, activated NK cells, and activated mast cells was observed in

patients with HR.

Conversely, an increase was noted in plasma cells, resting

memory CD4 T cells, and M2 macrophages (Figure 6B).

Moreover, five genes within the prognostic model were highly

correlated with TIICs (Figure 6C). A violin plot revealed that

SLC7A5 and TAP1 were highly expressed in dendritic and Tprolif

cells (Figure 6D). ICIs are antitumor immunotherapies. They are

frequently utilized in clinical practice. The differential expression of

ICGs between HR and LR groups may lead to a distinct

susceptibility to ICIs. As depicted in Figure 6E, most immune

checkpoints, such as PDCD1, CD274, CTLA-4, IDO1, TIGIT,

and PDCD1LG2, were significantly highly expressed in the LR

group. These results indicate that ICI may be associated with ARPS.

Additionally, patients with HR exhibited an elevated hypoxia score

(Figure 6F) based on the analysis of hypoxia-responsive

gene expression.
Genomic modifications in patients
classified as low- or high-risk

A greater non-synonymous TMB was observed in the protein-

coding regions of the genome in high-risk patients (Figure 7A). The

top 20 genes exhibiting the highest mutation frequency were

identified in both the risk groups (Figures 7B, C). Notably, the

inverse frequency was recorded for PIK3CA (high/low-risk, 26%/

39%) and TP53 (high/low-risk, 42%/26%) (Figures 7D, E). The
Frontiers in Oncology 09
fraction genome change (FGA) was significantly elevated in the

high-risk group (Figure 7F). Mutations concentrated in the DNA-

binding domain of the respective protein may significantly

contribute to the decline in tumor suppression efficacy and

reduction in patient survival rates.
Discussion

BC represents a substantial global health threat due to its

increasing prevalence and high mortality (24). Although

therapeutic strategies for BC have progressed significantly, the

prognosis of patients with BC remains unfavorable, mainly

because of resistance to conventional therapies and late diagnosis

(25). Several molecular markers for building predictive models for

various cancers have been reported in recent studies (26–30).

Integrating molecular biomarkers into prognosis models may

offer a more comprehensive disease evaluation, improve the

accuracy of predicting patient outcomes, and ultimately lead to

better patient care and outcomes in BC management.

In this study, a novel ADME-related prognostic model was

constructed based on the TCGA-BRCA cohort, and its robustness

was validated using the external METABRIC and GSE58812

cohorts. The risk scores were calculated using Cox regression and

stepAIC analysis to predict the patients’ prognosis in BC. The

analysis indicated that patients in the high-risk group exhibited

shorter survival times in the training and validation cohorts. We

then identified whether the prognostic signature was correlated with

immunomodulators, the tumor microenvironment, and

gene mutations.

In this study, a novel prognostic model was created based on

five ARGs: SLC7A5, HSD11B1, ADHFE1, GSTM2, and TAP1.

SLC7A5, a key component of AA transporters, is essential for

sodium-independent transport of large neutral amino acids across

the membrane (31). This biological process is critical for the rapid

growth and proliferation of tumor cells (32). Altered regulation of

SLC7A5 has been observed in various cancer types, including

ovarian and non-small-cell lung cancers (33–35). HSD11B1,

identified among the five prognostic genes in this study, regulates

glucocorticoid levels and is associated with unfavorable outcomes in

patients diagnosed with clear cell renal cell carcinoma (36). Single

nucleotide polymorphisms in HSD11B1 may correlate with BC risk

in postmenopausal women (37). Alcohol dehydrogenase iron-

containing 1 (ADHFE1) is an oncogene associated with BC that

negatively affects patient survival rates (38).

Additionally, ADHFE1 facilitated metabolic reprogramming

characterized by elevated levels of D-2HG and reactive oxygen

species, a shift toward reductive glutamine metabolism, and

alterations in the epigenetic landscape (38). The glutathione-S-

transferase family (GST) represents a significant group of

antioxidant enzymes in living organisms, with GSTM classified

under the Mu subfamily of GSTs (39). Reports indicate that GSTM

enzymes are invo lved in the metabo l i sm of tumor

chemotherapeutic drugs and in protecting organelles or cells from

stress injuries (40). GSTM2 encodes a protein containing a GST
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FIGURE 6

Immunological attributes of ADME-associated prognostic groupings. (A) Violin plot illustrating reduced immune infiltration, stromal, and ESTIMATE
scores, alongside increased tumor purity in patients with HR. (B) A box plot of the 22 invading immune cell types was generated using CIBERSORT.
(C) The correlation between TME-infiltrating cells and genes in the ADME-related model. (D) Bubble plot illustrating the average and percentage
expression of model genes across various cell subtypes. (E) Box plot illustrating the expression levels of genes related to immunological checkpoints.
(F) Violin plot illustrating significant elevation in hypoxic scores among HR patients. *p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001.
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structural domain integral to numerous biological functions (41).

Guo E et al. demonstrated that GSTM2 low expression in colon

cancer correlates with improved patient prognosis, as evidenced by

bioinformatics analysis (42). Transporter associated with antigen

processing 1 (TAP1) is a transporter protein that presents tumor

antigens in the MHC I or HLA complex. Mutant TAP1 has been

reported to influence MHC-I function in tumor surveillance (43). A

prior study suggested that TAP may serve as a cancer treatment

through immunotherapy, given its role in the peptide-MHC I

complex and its ability to enhance the immune response (44).

A powerful tool for risk stratification of patients is the in-depth

molecular characterization of tumor heterogeneity. This study revealed

that compared to patients with LR, patients with HR have a lower

immunological checkpoint level, hypoxia score, and a higher degree of

tumor mutation. According to the findings, patients in the HR group

responded poorly to immunotherapy. Moreover, in the HR group,

tumor suppressor genes (for example, TP53) revealed a greater

mutation frequency; conversely, tumor-promoting genes (PIK3CA)

revealed reduced mutation frequency. The poor prognosis of high-risk

patients might have their origin in these biological carcinogens.

The significant differences observed in the immunogenomic

landscape between the high- and low-risk groups are particularly
Frontiers in Oncology 11
noteworthy for potential clinical applications. The finding that the

low-risk group exhibited high immune scores and, critically,

significantly higher expression levels of key immune checkpoint

genes such as PDCD1, CD274, and CTLA-4, strongly suggests that

patients in the low-risk group may be more likely to respond favorably

to immune checkpoint inhibitor therapies. Conversely, the high-risk

group’s association with elevated hypoxia, known to create an

immunosuppressive environment, alongside reduced infiltration of

cytotoxic T cells (like CD8 T cells and gamma delta T cells) and

increased presence of M2 macrophages, indicates a potentially less

‘inflamed’ or more immunosuppressive tumor microenvironment,

which is generally associated with poorer response to

immunotherapy. These immunological distinctions identified by the

ARPS highlight their potential as a predictive biomarker for stratifying

patients who might benefit most from immune-based treatments.

Furthermore, the results demonstrated that the LR and HR

groups differed significantly in ICI characteristics. Patients with HR

exhibited a much lower immune infiltration level of T cells CD8, T

cells gamma delta, increased plasma cell levels, and macrophages

M2. The disease progression and patient prognosis were influenced

by important factors such as the composition and dynamics of ICI

in TME of BC, particularly the levels of CD8+ T cells. A higher CD8
FIGURE 7

Mutation profile among ADME-related prognostic groupings. (A) Analysis of TMB. (B, C) Waterfall plot depicting somatic mutation characteristics in
the high- and low-risk score categories. (D, E) Comparison of several TP53 and PIK3CA mutation loci. (F) Analysis of differences in FGA among
various risk score groups.
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+ T cell infiltration level in BC generally correlates with a reduced

possibility of metastatic disease and a better prognosis (45).

Increased interest in using tumor-infiltrating gamma-delta T cells

for cancer immunotherapy results from their ability to recognize

stress antigens in an MHC-unconstrained manner and their

correlation with favorable prognosis across many cancer types

(46). A study linked poor prognosis in BC to the presence of

invading plasma cells (47). Macrophages, the key elements of the

TME, are mostly associated with a poor prognosis (48). By reacting

to cancer cell-secreted factors, such as macrophage-CSF and GM-

CSF, the recruited macrophages typically polarize toward the M2

phenotype during tumor growth (49–51). Crucially important for

protumorigenic activities, M2 macrophages express arginase 1 and

extensively generate cytokines, growth factors, and proteases. M2

macrophages also induce cancer cell migration, invasion,

immunosuppression, and matrix remodeling (52, 53).
Limitations

While this study presents a novel and validated ADME-related

prognostic signature for breast cancer, it is important to acknowledge

its limitations, which also pave the way for essential future research.

Our analysis, primarily based on bulk RNA-seq of overall cohorts, did

not allow for a detailed investigation of how the ARPS performs or how

the five genes function within distinct molecular subtypes of breast

cancer (e.g., Luminal, HER2+, Triple-Negative), which have vastly

different biologies and treatment responses. Similarly, a comprehensive

assessment of the signature’s predictive value in patients receiving

specific treatment modalities beyond general outcomes (such as

different chemotherapy regimens, targeted therapies, or specific

neoadjuvant/adjuvant settings) was limited by the scope and detailed

treatment information available in the public databases, as noted.

Furthermore, while we discussed potential roles based on known

gene functions, delineating the precise underlying biological

mechanisms and interactions of this specific 5-gene combination in

breast cancer progression and response requires dedicated

experimental validation. Investigating the signature’s performance

and the function of these genes in diverse ethnic populations is also

a critical area for future study to ensure broad clinical applicability.

Therefore, while our ARPS shows promise for risk stratification and

suggests implications for immunotherapy, future prospective studies,

analyses within specific BC subtypes, and detailed mechanistic

investigations are needed to fully understand its clinical utility and

biological underpinnings.
Conclusions

This study generated a new ARPS for BC using a TCGA cohort

and verified it in two outside cohorts in general. The risk model

performed well in predicting patient survival. Besides, there was an

association between ARS and ICI in BC. This study offers a

promising ARPS to guide the personalized treatment of patients

with BC. Furthermore, it provides new insights into possible
Frontiers in Oncology 12
immunotherapeutic and combined strategies for BC, as targeting

ARGs may reverse ICI in BC.
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