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Diffuse large B-cell lymphoma (DLBCL) is a highly heterogeneous malignancy

with challenges in treatment resistance and relapse. Single-cell RNA sequencing

(scRNA-seq) has provided important insights into tumor heterogeneity,

microenvironment interactions, resistance mechanisms, and prognostic

biomarkers. This review summarizes key findings from scRNA-seq studies,

which have deepened our understanding of DLBCL and contributed to the

development of precision therapeutic strategies. Integrating scRNA-seq with

spatial transcriptomics and single-cell multi-omics may further elucidate disease

mechanisms and identify novel therapeutic targets, supporting the advancement

of precision medicine in DLBCL.
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1 Introduction

Diffuse large B-cell lymphoma (DLBCL), the most prevalent hematologic malignancy

in adults, constitutes approximately 35% of non-Hodgkin lymphoma cases (1, 2).

Epidemiologic data from the U.S. Cancer Registry reveal an age-standardized incidence

rate of 7.2 per 100,000 individuals, with a pronounced male predominance and a clear

correlation between advancing age and disease occurrence (3). A significant rise in cases has

been noted in areas with historically low incidence rates of DLBCL, despite the fact that the

general incidence has remained largely unchanged.

The cornerstone of first-line treatment continues to be the R-CHOP regimen, which

consists of vincristine, doxorubicin, cyclophosphamide, prednisone, and rituximab.

Although it has significantly improved survival outcomes, approximately 50% of patients

experience refractory or relapsed disease following treatment (4–6). The prognosis for

patients with refractory DLBCL is poor, with overall survival rates around 20% (7, 8).

Chimeric antigen receptor T-cell (CAR-T) therapy has become a viable therapeutic strategy
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in recent years (9). However, the persistent problems of resistance

and recurrence underscore the urgent need for a deeper

comprehension of immune escape mechanisms and tumor

biology (10, 11).
2 Single-cell RNA sequencing:
reshaping cancer biology

Single-cell RNA sequencing (ScRNA-seq) is a transformative

high-throughput technology that enables high-resolution analysis

of gene expression, epigenetic modifications, and intercellular

interactions at the single-cell level, offering significant advantages

over traditional bulk sequencing (12–16).

In cancer research, scRNA-seq has been widely used to

characterize tumor heterogeneity (17–19), identify key gene

expression signatures (20–22), and elucidate their roles in tumor

progression, metastasis, and drug resistance (17–19, 23). It also

enables precise mapping of the tumor immune microenvironment

(24, 25), revealing immune cell composition, functional states, and

tumor-immune interactions, thereby advancing immunotherapy

strategies (26–28). Beyond oncology, scRNA-seq provides critical

molecular insights into cardiovascular diseases, muscle

development, autoimmune disorders, and tissue regeneration. It

has delineated the transcriptional landscape of hypertrophic

cardiomyopathy (29), uncovered alternative splicing dynamics in
Frontiers in Oncology 02
muscle cells (30), and contributed to the study of autoimmune

diseases, skin wound healing, and animal physiology (31–34).

Moreover, iMLGAM integrates scRNA-seq with machine learning

to predict ICB outcomes, offering significant potential for advancing

precision medicine (35). Overall, scRNA-seq has significantly

contributed to biomedical research, providing a valuable tool for

understanding disease mechanisms and supporting precision

medicine advancements.

The scRNA-seq enables high-resolution analysis of cellular

heterogeneity by isolating individual cells, capturing RNA, and

sequencing transcriptomes to generate gene expression profiles

(36). Recent advances, such as droplet-based systems (e.g., 10x

Genomics) and combinatorial indexing, have enhanced scalability

and cost-efficiency, enabling large-scale studies. However,

challenges remain, including low capture efficiency, amplification

bias, data sparsity, and batch effects, which limit the analysis of low-

abundance transcripts. Additionally, scRNA-seq fails to preserve

spatial relationships and microenvironmental context, which spatial

transcriptomics can partially address (37).

In DLBCL, scRNA-seq has identified key cell subpopulations

(e.g., cancer stem cell-like B cells and exhausted T cells), elucidated

microenvironment dynamics, and uncovered mechanisms of

immune evasion and therapy resistance (38–41) (Figure 1).

Despite challenges like technical biases and data integration,

scRNA-seq holds immense potential for discovering prognostic

biomarkers and therapeutic targets. Integrating scRNA-seq with
FIGURE 1

Application of scRNA-seq in DLBCL.
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multi-omics and spatial transcriptomics will further advance

precision medicine, improving DLBCL diagnosis, treatment, and

patient outcomes.
3 ScRNA-seq in DLBCL: key insights

3.1 Tumor heterogeneity

ScRNA-seq has played a pivotal role in uncovering the tumor

heterogeneity of DLBCL. Fengling Liu et al. conducted a single-cell

analysis of B-cell subpopulations in DLBCL and normal lymphoid

tissues, revealing that the high infiltration of cancer stem cell-like B-

cell subpopulations is significantly associated with poor patient

prognosis. They discovered a critical transcription factor network

controlled by HMGB3, SAP30, and E2F8, and confirmed the

existence of this subpopulation through immunofluorescence

assays (38). Shu Wang et al. examined the heterogeneity between

primary central nervous system DLBCL and extracerebral DLBCL

at both the transcriptomic and genomic levels, revealing that

mutations in the TLR and BCR-NFkB pathways are critical

drivers of malignant B-cell proliferation within the central

nervous system (42).

In terms of immune cell functional heterogeneity, Qiqi Zhu

focused on the exhaustion heterogeneity of CD8+ tumor-infiltrating

lymphocytes (TILs) in DLBCL, revealing that exhausted CD8+ TILs

comprise both precursor and terminal states. She also identified that

the CD39/A2AR pathway may drive the exhaustion process of these

TILs (43). By analyzing single-cell databases in DLBCL, Zhencang

Zhou discovered a significantly higher proportion of exhausted T

cells in DLBCL compared to normal tissues, along with a notable

upregulation of the ID3 gene in these exhausted T cells (44).

Furthermore, Anthony R. Colombo et al. compared the

expression of immune checkpoint molecules, such as PD-L1, PD-

1, and TIM-3, in Hodgkin lymphoma and DLBCL using imaging

mass cytometry and single-cell spatial analysis. Potential

therapeutic targets like TIM-3, CCR4, and CXCR3 were found via

their study (45).

In terms of signal transduction, a study utilized phospho-

specific flow cytometry to analyze the B-cell signaling profiles of

non-Hodgkin lymphoma patients. The researchers found that

lymphoma cells from DLBCL patients exhibited higher

phosphorylation levels at multiple signaling nodes, a significant

distinction from those observed in mantle cell lymphoma (46).

These findings emphasize the potential of targeted therapies that

tackle tumor cell heterogeneity. Future advancements in single-cell

technologies may further refine treatment strategies and improve

prognostic accuracy in DLBCL.
3.2 Tumor microenvironment interactions

Tumor heterogeneity in DLBCL shapes a dynamic interplay

be tween tumor ce l l s and immune ce l l s w i th in the

microenvironment. Single-cell analysis has revealed that diverse
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tumor subpopulations influence the microenvironment,

contributing to immune evasion, tumor progression, and

resistance to treatment. These subpopulations interact with

immune cells and stromal components, creating a complex

microenvironment that drives disease progression. ScRNA-seq

has provided key insights into these intercellular interactions,

emphasizing the importance of understanding tumor-immune cell

dynamics for developing more effective therapeutic strategies

in DLBCL.

Benoit Manfroi et al. found through single-cell sequencing that

tumor-associated macrophages (TAMs) in DLBCL exhibit atypical

genetic characteristics and express both M1 and M2 macrophage

marker genes, which may explain the lack of significant influence of

TAMs in DLBCL progression (47). Additionally, studies have

shown that highly immunosuppressive activated tumor-

infiltrating regulatory T cells (Tregs) are significantly enriched in

DLBCL tissues, suggesting that they may play a crucial role in

tumorigenesis, progression, and treatment response (39). By

comparing scRNA-seq data from DLBCL patients and control

samples, Xiaofei Ye et al. identified a CD70-CD27 interaction

between malignant B cells and T cells. They also discovered that

co-inhibitory signaling through TIM3 and TIGIT may be a major

driver of T cell exhaustion and highlighted that HBV infection

could influence DLBCL progression by promoting malignant cell

survival or inducing immune escape (48). Together, these studies

highlight the intricate interactions between immune and tumor cells

within the DLBCL microenvironment, offering valuable insights for

the design of therapies targeting the microenvironment.
3.3 Mechanisms of resistance

ScRNA-seq technology has made significant progress in

uncovering the mechanisms of resistance in DLBCL. Xiyue Xu

et al. employed scRNA-seq to comprehensively analyze the genomic

features of the CD58 in DLBCL patients. Their study revealed that

CD58 deletion could increase PD-L1 and IDO expression by

activating the LYN/CD22/SHP1 signaling pathway, thereby

facilitating immune evasion and contributing to treatment

resistance (40). In terms of T-cell function regulation, Tingting

Zhang et al. proposed that targeting the PD-1/PD-L1/L2 pathway in

combination with CD73/A2aR could reverse T-cell dysfunction,

providing a new therapeutic strategy for DLBCL (49). Additionally,

Zi-Xun Yan et al. explored the potential mechanisms of resistance

to CAR-T therapy in DLBCL patients through scRNA-seq. They

discovered that cholesterol efflux in M2 macrophages might induce

CD8+ T-cell exhaustion, thereby impairing CAR-T cell anti-tumor

responses. The study suggested that cholesterol-lowering drugs or

antibodies targeting HAVCR2 or TIGIT, when combined with

CAR-T therapy, might enhance therapeutic efficacy (50).

Epigenetic regulation has also provided new insights for

overcoming resistance in DLBCL. Oliver H. Krämer and Günter

Schneider reviewed the potential of combining c-FOS and HDAC

inhibitors (HDACi) in DLBCL, noting that this combined strategy

might enhance anti-tumor efficacy through the modulation of
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epigenetic modifications (51). Further studies revealed that the

potent HDACi LAQ824 could effectively kill DLBCL cells, and

when used in combination with a c-Fos inhibitor, it significantly

enhanced anti-tumor activity, offering a new direction for HDACi

combination therapy (52).

In targeted therapy, Syahru Agung Setiawan et al. found that the

BTK inhibitor zanubrutinib, in combination with the BCL-2

inhibitor navitoclax, synergistically suppressed double-hit

lymphoma by inducing apoptosis and ferroptosis, providing a

new combination therapy strategy to overcome DLBCL resistance

(53). Additionally, the mechanism of bendamustine-rituximab (BR)

therapy in DLBCL partially relied on apoptosis and enhanced

immune responses induced by the cGAS-STING pathway,

providing a conceptual framework for the clinical use of BR

therapy (54).

In conclusion, these studies have identified key resistance

mechanisms in DLBCL, including immune evasion, epigenetic

alterations, and dysregulated signaling pathways, which provide

critical insights for the development of combination therapies. By

integrating scRNA-seq with functional assays such as CRISPR screens,

a deeper understanding of these mechanisms is achieved, enabling the

identification and validation of potential therapeutic targets (55).

ScRNA-seq uncovers gene mutations and pathway changes, while

CRISPR screens facilitate the functional validation of these targets,

offering a promising strategy for therapeutic advancement.
3.4 Prognostic markers

ScRNA-seq technology has advanced significantly in the

investigation of DLBCL prognostic indicators, revealing a close

relationship between various cell types and molecular features with

patient prognosis.

In terms of B lymphocytes, Zijun Y. Xu-Monette et al. found

that the prognosis of DLBCL patients was substantially correlated

with the abundance of tumor-infiltrating B lymphocytes (TIL-B),

with patients with high TIL-B abundance showing larger

proportions of memory B cells and naive CD4 T cells (56).

In T cells, Sylvia Zöphel et al. showed that CD16+ T cell

populations had a protective role, with higher CD16+ T cell

counts correlating with better prognosis, suggesting their

potentialas markers for progression-free survival in aggressive B-

NHL,including DLBCL (41). T-cell dysfunction was identified as a

core mechanism of immune evasion and CAR-T therapy failure in

DLBCL. Jinrong Zhao pointed out that intrinsic defects in CAR-T

cells were one of the reasons for the variation in treatment efficacy

(57). However, while these markers offer promising insights, their

clinical validation in larger cohorts is still needed. Jin Jin et al.,

through scRNA-seq, discovered that elevated levels of Ki67, CD57,

and TIM3, along with decreased CD69 levels in T cells, were

associated with poor prognosis (58). Yao Wang et al. further

found that a high proportion of CD8+ CAR-T cells and enhanced

activation of CD8+ stem cell-like memory T cell populations were

key to prolonging clinical efficacy, while the absence of CCR7 gene
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outcomes (59). Qiqi Zhu et al., through scRNA-seq, revealed that

the TIM3/Galectin-9 pathway induces exhaustion in CD8+ tumor-

infiltrating lymphocytes, which is associated with immune

suppression, poor prognosis, and a reduced response to CHOP

chemotherapy (60). Nianping Liu et al., analyzing the tumor

microenvironment of primary central nervous system DLBCL

(PCNS DLBCL), found that a plasmablast-like program was

linked to worse prognosis, with a higher score of exhausted CD8

T cells possibly contributing to poor outcomes (61).

In macrophages, their polarization status was closely associated

with prognosis in DLBCL. Baoping Guo developed a prognostic

model based on M2 macrophage-related genes (MS4A4A, CCL13,

LTB, etc.), finding that patients in the high-risk group had poorer

prognosis but were more sensitive to chemotherapy drugs and

immune checkpoint inhibitors (62). Guangcan Gao et al. discovered

that high expression of C1qC M2 macrophages predicted poor

prognosis, with C1qC expression positively correlating with

immune checkpoint molecules (63). Min Liu et al., through

comprehensive transcriptomic analysis of macrophages in reactive

lymphoid tissue (RLT) and different spatial regions of DLBCL,

revealed transcriptomic differences in macrophages between the

two, and established six macrophage signature profiles (MacroSigs)

from distinct spatial sources. They found that specific MacroSigs

were closely associated with the cellular subtypes of DLBCL and

patient survival rates (64). These findings suggest potential

therapeutic implications, but their clinical significance in guiding

treatment strategies still requires robust validation.

In monocytes, Juliette Ferrant et al. identified S100A9^high

monocytes as potential biomarkers for DLBCL, suggesting their role

in tumor progression (65). Additionally, elevated expression of

S100A8 was associated with poor prognosis in DLBCL, and

inhibiting S100A8 was found to promote apoptosis and suppress

tumor growth (66).

The role of other immune-related biomarkers in DLBCL

prognosis has also attracted significant attention. Other immune-

related biomarkers, such as CD161 monoclonal antibodies identified

by Francesca Alvarez Calderon, have also shown potential for

improving prognosis (67), but their clinical application is yet to be

established. Martin A. Rivas et al. demonstrated that the cohesin

complex played a key role in lymphoma development, and reduced

expression of its subunits was linked to poorer prognosis in DLBCL

patients (68). Jing Tang et al. developed a prognostic feature model

based on exocytosis-related molecules, including SNRPB and

CEP290, and confirmed the predictive capability of this model

through immunohistochemistry (69). Additionally, Jurriaan

Brouwer-Visser et al. found that CD20 expression loss in patients

with relapsed/refractory B-cell non-Hodgkin lymphoma treated with

Odronextamab could be a potential mechanism of resistance (70). In

relapsed/refractory (R/R) DLBCL, scRNA-seq analysis of peripheral

blood mononuclear cell samples identified 12 biomarkers (CD82,

CD55, CD36, CD63, CD59, IKZF1, CD69, CD163, CD14, CD226,

CD84, and CD31) that were notably upregulated. These markers

correlate with patient prognosis and may offer potential new targets
frontiersin.org

https://doi.org/10.3389/fonc.2025.1583250
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2025.1583250
for therapy in R/R DLBCL (71). These biomarkers, while promising,

require validation in larger, diverse patient populations to determine

their clinical relevance in guiding treatment decisions.

The dual-protein expression lymphoma (DUEL) diagnostic

method, based on the co-expression of BCL2 and MYC at

the single-cell level , was validated through multiplex

immunofluorescence and dual immunohistochemistry. The study

demonstrated that DUEL was an independent adverse prognostic

factor for DLBCL patients, providing a reliable basis for identifying

high-risk patients and developing new therapeutic strategies (72).

Liyuan Dai et al. combined single-cell and spatial transcriptomics

technologies to reveal that the glycolytic metabolic activity in highly

malignant DLBCL cells was significantly increased. High-glycolysis

tissues exhibited abundant IFN_TAMs and reduced CD8+ T cells,

and glycolysis gene expression was positively correlated with tumor

malignancy. Immunohistochemical analysis validated the prognostic

potential of glycolytic biomarkers such as STMN1, ENO1, PKM, and

CDK1 (73). Additionally, radiomics parameters showed potential in

prognostic prediction for DLBCL. One study has found that high

total metabolic tumor volume (TMTV) and low tumor-infiltrating

(TI) CD4+ cell levels are independently associated with poorer

prognosis. Combining TMTV with TI cell analysis enhances the

accuracy of prognostic prediction (74), but these findings need to be

integrated with clinical data to validate their prognostic value.
4 Conclusion

ScRNA-seq technologies have demonstrated remarkable potential

in DLBCL research, revealing key insights into tumor heterogeneity,

microenvironment interactions, resistance mechanisms, and

prognostic biomarkers. These studies have not only provided new

perspectives for understanding the biological characteristics of DLBCL

but also laid a solid foundation for developing precision therapeutic

strategies. However, further validation of these findings in clinical

settings is needed. Future research should explore how integrative

approaches, such as spatial transcriptomics or single-cell multi-omics,

can refine our understanding of DLBCL pathogenesis and help

identify novel therapeutic targets. Overall, scRNA-seq could be

instrumental in advancing early diagnosis, treatment monitoring,

and personalized therapy, ultimately enhancing the field of precision

medicine for DLBCL.
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