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MYCN, or N-Myc, is a member of the MYC family of transcription factors, which

plays a key role in tumor formation by regulating genes involved in proliferation,

differentiation, and apoptosis. MYCN is essential for neural development,

especially for the appropriate growth and differentiation of neural progenitor

cells, and its aberrant expression contributes to tumorigenesis. Gene

amplification and mutations of this gene have been observed in a wide variety

of cancer types, particularly in pediatric brain and non-brain tumors, such as

neuroblastoma. Previous studies have provided extensive insights into the

complex regulatory network of this transcription factor. Additionally, the

presence of MYCN alterations in patient tumors serve as a key factor for risk

stratification, as it correlates with poorer outcomes, and presents a significant

challenge for treatment. Despite its clinical significance, therapeutic targeting of

MYCN is challenging due to its structure, nuclear localization, and complex

regulatory pathways. Efforts to target MYCN have focused on destabilizing the

protein, modulating epigenetic mechanisms, and disrupting its transcriptional

network. This review explores the role of MYCN in different subtypes of pediatric

brain tumors and highlights novel ongoing therapeutic approaches. However,

further research is necessary to develop more effective therapies and improve

survival outcomes for patients with MYCN-driven tumor.
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1 Introduction

MYCN (or N-Myc) is a member of the MYC family of oncogenes, which also includes

C-Myc and L-Myc (1). The c-Myc gene (v-Myc myelocytomatosis viral oncogene homolog)

was initially discovered in Burkitt lymphoma, a fast-growing type of non-Hodgkin

lymphoma (2). MYC family oncogenes act as transcriptional factors, playing a critical

role in regulating crucial genes involved in proliferation, differentiation, and apoptosis (3).

Overexpression or constitutive activation of a MYC family oncogene can lead to

deregulated growth and proliferation, eventually contributing to cancer development.

The overexpression of MYC family genes in a wide variety of cancer highlights their role

in tumorigenesis (1–5) (Figure 1A). Several critical cancer-related pathways, including
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mitogen-activated protein kinase/extracellular signal-regulated

kinase (MAPK/ERK), WNT, transforming growth factor ß

(TGFß) and sonic hedgehog (SHH), have MYC as a key

downstream target (3). Moreover, MYC family proteins are

essential for cell cycle regulation and developmental processes

such as stemness and cell fate determination (6). For instance,

ectopic expression of MYCN in neuroblastoma cells can stimulate

the re-entry of quiescent cells into the cell cycle and reduce the G1

phase, also decreasing cell attachment to the extracellular matrix

(7). On the other hand, when MYCN expression is reduced, cell

cycle arrest, differentiation and apoptosis can be observed (7).
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Schwab et al. first identifiedMYCN, which was amplified in a panel

of neuroblastoma cell lines (4). Albeit a significant functional overlap

between MYC and MYCN, their expression patterns are different.

While MYC is expressed ubiquitously, MYCN is predominantly

expressed in the peripheral and central nervous system (CNS) (8).

Aberrant expression of MYCN in the developing nervous system has

been linked to the development of neuroblastoma and

medulloblastoma, highlighting its role as a potent oncogenic driver

(9, 10). In addition to the nervous system, MYCN expression is also

present in other tissues, including the reproductive system and urinary

system, from which MYCN-altered tumors arise (Figure 1B).
FIGURE 1

Frequency of MYC/MYCN alterations in various cancer types. (A) MYC alterations in multiple cancer types. (B) MYCN alterations in various cancer
types. (C) MYCN alterations in brain tumors. The top 20 cancer types are shown. Sourced from cBioPortal.org.
frontiersin.org
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MYCN is a proto-oncogene that is amplified in various types of

cancers, particularly pediatric brain tumors, which are the primary

focus of this review (Figure 1C). Childhood cancers, especially those

that appear very early in life, often exhibit embryonal characteristics

(11). Tumorigenic mutations in childhood cancer are more likely to

arise in stem or progenitor-like cells, which possess self-renewal

properties, and uncontrolled proliferation of these developmentally

immature cells results in tumor formation.

Pediatric brain tumors are the leading cause of cancer-related

deaths in children. CNS tumors are classified based on histological

and molecular features, as well as their presumed site of origin

within the brain. Embryonal tumors include medulloblastoma, CNS

neuroblastoma, pineoblastoma, atypical teratoid/Rhabdoid tumors

(ATRT), and embryonal tumor with multilayered rosettes (ETMR)

(12). Other subtypes include gliomas, which are categorized by

grade and other characteristics, as well as craniopharyngiomas and

pineal region tumors (13) (Figure 2). MYCN plays a significant role

in tumorigenesis, particularly in neuroblastoma, medulloblastoma,

high-grade gliomas, and atypical teratoid/rhabdoid tumor as

detailed below.
2 Overview of MYCN

2.1 Structure, function and regulation

TheMYCN gene, identified in 1983, is one of three members of

the MYC family oncogenes (4). These genes are located on different

chromosomes and are expressed at specific stages of development

(8). Spanning 6,455 nucleotides and consisting of three exons on

chromosome 2p24.3, MYCN (Gene ID: 4613) encodes a

transcription factor (14). Like other MYC family members,

MYCN regulates genes involved in the cell cycle, apoptosis, and

differentiation (14, 15). MYCN has a short half-life of about 30

minutes, but in MYCN-amplified neuroblastoma cells, MYCN

expression can be maintained at a high level (16).
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The MYCN protein, with a molecular weight of approximately

63 kDa, comprises 464 amino acids. Similar to MYC, it contains

both DNA-binding and transcriptional activation domains (TADs),

which include the MYC boxes MB0, MBI, MBII, MBIIIa, MBIIIb,

and MBIV, as well as a nuclear localization signal (17) (Figure 3B).

The DNA-binding domain at the C-terminal contains a basic helix-

loop-helix (bHLH) motif that recognizes specific sequences, such as

the E-box (CACGTG and CATGTG) (18, 19). In the case ofMYCN

amplification, this specificity is lost, allowing it to bind additional

non-classical E-box sites like CAACTG, CATTTG, and CATCTG

(19, 20) (Figure 3C). Upon binding, histone acetyltransferases

(HATs) are recruited to maintain chromatin in a transcriptionally

active state (21). The bHLH motif is also essential for protein

dimerization with MYC-associated protein X (MAX) (22). All MYC

family members form heterodimers with MAX, which preferentially

binds to specific target genes (23). MYCN remains functionally

inactive until it heterodimerizes with MAX, enabling it to interact

with DNA (22). MYC and MYCN share many of the same binding

partners, contributing to a more extensive protein network that

includes proteins like Max-dimerization partner (MXD), MAX

network transcriptional repressor (MNT), and MAX gene-

associated protein (MGA) (23, 24) (Figure 3D). While MYC/

MAX promotes cell proliferation and growth, the MXD/MAX

complex functions antagonistically, repressing transcription

through histone deacetylases (HDACs). Overexpression of MXD

can inhibit MYCN-driven cell proliferation.

BeyondMAX binding, MYCN regulates gene expression through

multiple mechanisms. It interacts with WD repeat domain 5

(WDR5), a subunit of the histone H3K4 methyltransferase

complex, and can directly regulate target genes by binding to the

E-box region of their promoters (25). Interestingly, when MYCN and

p53 are highly co-expressed, MYCN can form a complex with

tetramerized p53, influencing gene expression through E-box

sequences and p53 response elements (26).

The MYCN protein is regulated in many ways, including

phosphorylation. As mentioned earlier, MYC boxes are across the
FIGURE 2

Pediatric brain tumor subtypes and their location. CNS-FOXR2: central nervous system with FOXR2 activation. ATRT, atypical teratoid/rhabdoid
tumor. DMG, diffuse midline glioma. Created using BioRender.org.
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MYCN protein. The MB1 domain plays a crucial role in stabilizing the

protein. Phosphorylation of MB1 at serine-62 promotes further

phosphorylation at threonine-58 by glycogen synthase kinase 3b
(GSK3b), leading to the ubiquitination of MYCN by the E3 ligase

SCFFBXW7 and its subsequent proteasomal degradation (27, 28)

(Figure 4A). On the other hand, MYCN stability is also indirectly

influenced by the phosphoinositide 3-kinase (PI3K) signaling pathway,

which inhibits GSK3b and stabilizes MYCN (29) (Figure 4B).

Additionally, several other factors, including Protein phosphatase 2A

(PP2A), play roles in MYCN protein stability (28) (Figure 4C). For
Frontiers in Oncology 04
example, in MYCN-amplified neuroblastoma cells, Aurora kinase A

(AurA) can bind to MYCN and stabilize the protein (30). The catalytic

domain of Aurora-A binds to the MYCN/SCFFBXW7 complex at

flanking sites found on residues 28–89 within MB1 and blocks the

ubiquitination mediated by SCFFBXW7 (31) (Figure 4D).

The N-terminal transcriptional activation domain (TAD),

conserved across the MYC family, recruits cofactors that enhance

transcription (32). In particular, the MYC boxes facilitate the

binding of specific factors; for example, MBI interacts with the

positive transcription elongation factor (P-TEFb), which enhances
FIGURE 3

MYCN gene and protein. (A) MYCN mutations in pediatric brain tumors, featuring hotspots and P44L mutation. Sourced by cBioPortal.org.
(B) Illustration of MYCN protein structure including different domains. (C) MYCN binding to E-box regions in the promoters of target genes involved
in cell proliferation and growth. In the right panel, amplified MYCN can bind non-classical E-box sites. (D) Pathway analysis, where % represents the
percentage of cases in pediatric brain tumors with those alterations. Sourced by cBioPortal.org.
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RNA polymerase II elongation, while MBII regulates the binding of

the coactivator transcription domain-associated protein (TRRAP),

which plays a role in chromatin remodeling (32, 33). Some other

cofactors include the acetyltransferase EP300 and components of

the super elongation complex, which are essential for the

transcriptional activation of MYCN target genes (16, 34). MYCN

can also suppress gene expression by interacting with Miz-1 or

EZH2 (35–37). Additionally, a study showed that EZH2 promotes

MYCN stabilization by counteracting SCFFBXW7-mediated MYCN

proteasomal degradation (38).

MYCN target genes play critical roles in all cell cycle stages,

particularly in the transition fromG1 to S phase, which is essential for

DNA replication (7, 14, 17). MYCN upregulates genes involved in the

cell cycle, such as cyclin-dependent kinase 4 (CDK4),

minichromosome maintenance (MCM) complex components,

Myb-related protein B (MYBL2), serine/threonine-protein kinase

checkpoint kinase 1 (CHK1), inhibitor of DNA binding 2 (ID2),

and S-phase kinase-associated protein 2 (SKP2) (39, 40). This

upregulation contributes to increased cell growth and progression

through the cell cycle. Notably, inhibition of MYCN has been shown

to decrease the G1 to S phase transition rate (41). As described earlier

in Figure 4B, PI3K promotes MYCN stabilization. It has been shown

that the repression of PI3K leads to the degradation of MYCN protein

(42). MYCN also negatively regulates p27, which inhibits G1 cyclin-

dependent kinases (CDKs) (43).
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Furthermore, MYCN plays a dual role in both cell survival and

apoptosis. MYCN sensitizes neuroblastoma cells to cytotoxic drugs

by cooperatively upregulating BAX (44). On the other hand, MYCN

suppresses p53 and its target PUMA (also known as BBC3) by

upregulating MDM2 (45). Additionally, a study showed that

MYCN upregulates the pro-apoptotic regulator NOXA (20).
2.2 Role of MYCN in normal neural
development

MYCN plays a critical role in normal brain development, in

particular in neural development, by influencing various stages of

cellular maturation and neural patterning. Recent studies have

shown the close link between neural development and the

formation of pediatric brain tumors (46–49). To elucidate the

pathogenic mechanisms of MYCN-altered brain tumors and their

therapeutic vulnerability, it is crucial to clarify the precise regulation

mediated by MYCN during neural development. During early

neurogenesis, MYCN expression is critical for the proliferation

and maintenance of neural progenitor cells (NPCs) (50, 51).

Knockdown of MYCN in mice reduces proliferation of NPCs and

results in reduced brain size. MYCN also inhibits the differentiation

of embryonic neuronal stem cells, while MYCN knockdown leads to

neuronal differentiation. In the developing cerebellum,
FIGURE 4

Regulation mechanisms of MYCN. (A) Phosphorylation of T58 by GSK3B followed by ubiquitination by the E3 ligase SCFFBXW7 and subsequent
proteasomal degradation. (B) Activation of PI3K and AKT signaling leads to the inhibition of GSK3B and proteasomal degradation. (C) Dephosphorylation
of S62 by PP2A promotes MYCN ubiquitination and proteasomal degradation. (D) Aurora-A binding to MYCN/FBXW7 complex blocking ubiquitination
and degradation.
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MYCN promotes the proliferation of granule neuron progenitors

(GNPs) by suppressing cyclin-dependent kinase inhibitors (51).

Furthermore, studies has shown that deletion or mutation of

MYCN can cause Feingold syndrome, a condition defined by

reduced brain size and learning disabilities, emphasizing the

importance of MYCN expression in maintaining NPCs (52).

In addition to the CNS, MYCN is highly expressed in the

developing peripheral neural crest and sympathetic ganglia (53). A

series of mouse studies demonstrated that N-myc null mice died

between 10.5 and 12.5 of gestation and showed reduced size of the

brain as well as cranial and spinal ganglia (53, 54). Given that

neuroblastomas originate from neural crest derived precursors,

these studies indicate the essential role of MYCN in both

peripheral nervus system development and neuroblastoma

development. One of the mechanisms through which MYCN

exerts its effects is the upregulation of the oncogenic miR-17∼92
microRNA (miRNA) cluster. Specifically, miR-18a and miR-19a

inhibit neuronal differentiation by downregulating estrogen

receptor alpha (ERa), a nuclear hormone receptor essential for

neural differentiation (55).

Given the pivotal role of MYCN in regulating differentiation and

proliferation, particularly in normal central nervous system

development, dysregulation of MYCN leads to uncontrolled

proliferation and impaired differentiation, ultimately driving

tumorigenesis. Indeed, a series of mouse studies have demonstrated

that MYCN can be an oncogenic driver for glioma, medulloblastoma,

primitive neuroectoderm tumor, and neuroblastoma (9, 10, 56).
3 MYCN in pediatric brain tumors

3.1 Neuroblastoma

While this review focuses on pediatric brain tumors, MYCN also

plays a crucial role in neuroblastoma, the most common extra-cranial

solid tumor in childhood mainly arising in the adrenal medulla or

sympathetic ganglia along the paraventral axis (57, 58). Unfortunately,

this pediatric cancer type is responsible for 15% of all pediatric

oncology deaths, and MYCN stands out as one of the most critical

factors in determining prognosis. Amplification of the MYCN locus is

found in around 22% of neuroblastomas, and is strongly associated

with advanced stages, rapid tumor progression, and poor clinical

outcomes. The prevalence of this amplification underscores its

significance as a major oncogenic driver in neuroblastoma.

Additionally, recent findings have shown alternative mechanisms to

increased MYCN protein levels beyond MYCN amplification.

Primary neuroblastoma originates from neural crest derived

precursors that can differentiate into either sympathetic neurons or

chromaffin cells (58). During the development, neural crest cells

migrate along a ventral pathway, influenced by signals from somites,

ventral neural tube, and other surrounding structures. MYCN

expression is elevated in the early stages of development, but

decreases progressively, suggesting that appropriate maturation of

these cells requires low or absent MYCN expression. Specifically,

following migration, MYCN expression is restricted to cells that are
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actively involved in neuronal differentiation. If MYCN levels remain

abnormally elevated beyond the developmental window, these

progenitor cells fail to mature and instead proliferate uncontrollably,

contributing to neuroblastoma formation. This dysregulation

of MYCN expression is associated with the persistence of

undifferentiated and proliferative cells, a histopathological feature of

neuroblastoma (11, 58). Moreover, histone modifications play a role in

regulating MYCN expression. During normal neural crest

development, there is a transition from active H3K4me3 mark

to repressive H3K27me3 mark, which helps downregulate MYCN

during neuronal differentiation. However, in MYCN-amplified

neuroblastoma, the H3K4me3 mark persists, sustaining MYCN

expression and promoting tumorigenesis (59).
3.2 Central nervous system neuroblastoma
with FOXR2 activation

CNS neuroblastomas with FOXR2 activation represent a novel

pediatric brain tumor subtype identified by Sturm et al. in 2016

(60). This subtype is characterized by the aberrant expression of the

transcription factor FOXR2 due to genomic rearrangements (60,

61). CNS-NB FOXR2 is a rare form of neuroblastoma, with a peak

incidence at the age of five, typically presenting as a mass in the

cerebral hemisphere (61).

A series of studies showed that FOXR2 could bind to both MYC

and MYCN proteins, stabilizing them, and activating target gene

transcription (5, 62, 63). Since MYCN proteins are considered

short-lived and are implicated in tumorigenesis of poorly

differentiated tumors, their stabilization by FOXR2 is significant.

It is important to note that this post-translational mechanism

increases MYCN protein level without MYCN amplification.

Furthermore, absence of MYCN amplification in CNS-NB FOXR2

reinforces the crucial role of FOXR2 in neuroblastoma (63, 64).
3.3 Medulloblastoma

Medulloblastoma (MB) is one of the most common malignant

brain tumors in children, classified as a WHO grade IV embryonal

tumor that arises in the cerebellum. It comprises approximately

60% of all intracranial embryonal tumors, originating from

progenitor or neuronal stem cell populations (65, 66). MB

exhibits significant clinical and biological heterogeneity, with a

peak of diagnosis between 6 to 8 years old, even though it can

also occur in infants or adults (66).

Medulloblastoma is divided into four molecular subgroups: WNT-

MB, Sonic hedgehog (SHH)-MB, Group 3, and Group 4. The latter two

also known as non-WNT/non-SHH (66, 67). Each group displays

different prognosis depending on its genetic and molecular profile.

Notably, Groups 3 and 4 present the greatest clinical challenges (65).

High-level MYCN amplification is considered the most recurrent and

clinically significant genetic alterations (66, 68, 69).

In the cerebellum development, MYCN have critical functions

regulating the proliferation and maturation of precursor cells,
frontiersin.org
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therefore playing a fundamental role in orchestrating both normal

and abnormal development (67). Its role is especially important

during early development, where MYCN functions downstream of

SHH, an extracellular signaling molecule essential for growth

regulation and differentiation in the developing brain (70, 71).

The SHH signaling is the primary driver of the expansion of

cerebellar granule cell precursors (GCPs) by directly upregulating

MYCN expression (72, 73). This upregulation occurs via a

suppression of GSK-3ß, preventing MYCN protein destabilization

and subsequent proteasomal degradation (27) (Figure 4B). Most of

SHH-MB cases are a result of uncontrolled proliferation of GCPs.

MYCN expression is strictly regulated during development, with

high levels observed in progenitor cells, followed by a

downregulation to ensure cell cycle arrest and consequent

differentiation and maturation of cells (67).

Among MB subtypes, subgroup SHH-MB is the most well

characterized. Patients frequently present gain of chromosome 2,

which harbors the MYCN gene, leading MYCN amplifications in

approximately 7% of cases (66, 74). A significant worse prognosis is

observed when patients with MYCN amplification also present

TP53 mutations (74, 75). Schwalbe et al. also determined the

relevance of clinicobiological heterogeneity within MYCN levels,

highlighting that SHH-MYCN amplified TP53mut MBs or very high

risk MYC-amplified patients exhibited a dismal survival irrespective

of treatment. This underscores the urgent need for novel

therapeutic approaches (75).

Group 3 MB is characterized by high-level MYC amplification,

found in approximately 17% of cases (66). The presence or absence

of this amplification guides patient stratification, which strongly

correlated with prognosis. A unique feature of some tumors from

group 3 MB is gene fusions involving MYC and Plasmacytoma

Variant Translocation 1 (PVT1), a long non-coding RNA

implicated in a variety of human cancers. PVT1 gene fusion is

linked to chromothripsis and MYC amplification on chromosome

8q24, further contributing to tumor progression (76).

Beyond MYCN amplification in MB, chromosome 17p loss has

also been identified as a significant predictor of poor survival.

Presence of both is associated with detrimental survival outcomes,

especially in patients under three years of age (77). Interestingly,

MYCN amplification in neuroblastoma has showed association with

17q gain (78).

Further studies have highlighted the role of post-transcriptional

regulation inMYC-drivenMB cells. Protein arginine methyltransferase

5 (PRMT5) has been shown to interact with MYC/MYCN proteins,

protecting them from degradation. Silencing of PRMT5 leads to

reduced MYCN levels and impaired tumor cell growth, suggesting

that PRMT5 inhibitors could serve as potential therapeutic agents

for MYC/MYCN-driven MB (79).
3.4 High-grade gliomas

Pediatric high-grade gliomas (pHGGs) are a diverse group of

aggressive CNS tumors, accounting approximately 17% of pediatric

CNS malignancies (80). While histologically similar to adult
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glioblastomas, pHGGs are a heterogeneous group that exhibit

distinct genetic and epigenetic alterations and molecular

characteristics (81). Among the genetic alterations identified in

pHGGs, MYCN amplification has emerged as a key driver in a

subset of highly aggressive tumors. pHGGs can be classified in

molecular subgroups based on IDH and histone H3 mutations,

including IDH-wildtype, IDH-mutant, H3.3/H3.1 K27-mutant

diffuse midline glioma (DMG; also known as diffuse intrinsic

pontine glioma or DIPG), and H3.3G34R/V-mutant gliomas (80).

The H3.3G34-mutant subgroup, which primarily arises in the

cerebral hemisphere, exhibits MYCN upregulation. Specifically,

the H3.3 G34V mutation upregulates MYCN expression

potentially through histone H3K36me3 mark (82).

The remaining tumors that present neither histone H3 nor

IDH1 mutations (H3/IDH1-WT) account for 50% of pHGGs. This

has led to the emergence of new molecular subgroups, where

MYCN amplifications plays a key role (80). Three molecular

subgroups are defined in pontine gliomas: H3K27M-mutant,

MYCN-amplified, and MYCN-silent (83). Notably, MYCN

amplifications are significantly less likely to occur in tumors

harboring the H3K27M mutation, and MYCN-amplified tumors

maintained the H3K27me3 mark (83, 84). MYCN-amplified

pHGGs exhibit distinct clinical and molecular features, including

a significant lower median age (9 years) compared to other pHGGs

and predominant hemisphere location with a modest predilection

for the temporal lobes. Other defining aspects of this subtype are

hypermethylation, high-grade histology, and chromothripsis on

chromosome 2p that leads to recurrent high-level amplification of

MYCN and ID2 (84, 85). Whole-exosome sequencing has revealed

a consistent co-amplification of ID2, a gene implicated in

glioma tumorigenesis, suggesting a potential interplay between

MYCN and ID2. It has been suggested that ID2 might acts as a

MYCN effector, promoting tumor initiation and maintenance (86).

Interestingly, ID2 is also overexpressed in H3K27M-mutant

gliomas, suggesting a converging oncogenic pathway among these

different subgroups (84).
3.5 Atypical teratoid/rhabdoid tumor

Atypical teratoid/rhabdoid tumors (ATRT) are rare and

aggressive embryonal tumors of the CNS, which mostly affect

infants and young children. These tumors are also characterized

by the inactivation of SMARCB1, a tumor suppressor that plays a

large role in chromatin remodeling. Molecular studies have

demonstrated that ATRTs can be classified into 3 subgroups (87).

Subgroup ATRT-SHH is distinguished by the upregulation of

MYCN and key components of the SHH signaling pathway (88). In

this subgroup, the loss of SMARCB1 results in enhanced activity of

MYCN and SHH pathway genes, which drive tumor cell growth and

survival (89). High levels of MYCN also promotes metabolic

adaptation, allowing ATRT cells to sustain rapid division and

evade apoptotic mechanisms.

The clinical implications of MYCN overexpression in ATRT-

SHH remain under investigation. MYCN has been shown to
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regulate neural progenitor proliferation and differentiation, which

may contribute to the neuronal-like transcriptional profile observed

in ATRT-SHH tumors (87). Gene enrichment analyses suggest that

ATRT-SHH tumors (also referred to as group 1 ATRT) upregulate

genes associated with neuronal development and axon guidance

compared to other subtypes, suggesting they may originate from a

distinct neural precursor (87, 89).

Given its oncogenic role, MYCN presents a potential

therapeutic target in ATRT-SHH. Also, the interactions between

MYCN and the SHH signaling raises the possibility of combined

SHH/MYCN-targeted therapies, similar to those used in SHH-

subgroup medulloblastomas (90).
3.6 Other childhood brain and non-brain
tumors

Pineoblastoma (PB) is a rare, aggressive tumor of the pineal

gland. Although there is not much research onMYCN amplification

in pineoblastoma, studies have shown that MYCN can be highly

expressed in this tumor subtype even without gene amplification.

Research by Kees et al. established two pineoblastoma cell lines,

PER-452 and PER-453, from an 8-month-old patient (91). These

cell lines exhibited MYCN expression levels comparable to those in

cells with 200-foldMYCN amplification, despite lacking actual gene

amplification. The study provides an idea that MYCN-driven

oncogenesis is not only dependent on gene amplification but can

also depend on transcriptional and post-translational regulations.

Moreover, these models offer a valuable platform to further explore

the molecular mechanisms driving pineoblastoma (91). Further

studies could look at the molecular mechanisms behind the

enhanced MYCN expression, such as epigenetic modifications,

transcription factor involvement, or altered stability of RNAs and

proteins. Recent studies have uncovered four PB subgroups based

on bulk tumor analysis of DNA methylation and mutation

landscapes (92). Interestingly, PB MYC/FOXR2 subgroup was

characterized by overexpression of FOXR2, which can bind and

stabilize MYCN (62, 63).

Recent studies have identified MYCN amplification as a key

driver of aggressive spinal ependymomas in pediatric patients (93).

An analysis of 13 cases identified a distinct molecular subgroup

called spinal ependymoma with MYCN amplification (SP-EPN-

MYCN), in which all patients exhibited MYCN amplification.

Despite intensive treatment, SP-EPN-MYCN patients faced

significantly poorer outcomes, with a median progression-free

survival of 17 months and overall survival of 87 months, showing

the aggressive nature of this subtype (93). Additionally, along with

these findings, another study reported a 12-year-old male with a

spinal ependymoma harboring MYC amplification (94). DNA

methylation analysis classified the tumor within the SP-EPN-

MYCN subgroup, indicating the shared function between MYC

and MYCN. These findings underscore the importance of

molecular diagnostics in identifying high-risk ependymoma

subtypes in pediatric patients. Other pediatric brain tumors with

MYCN alterations are described in Table 1.
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4 Clinical implications and targeting
MYCN in pediatric brain tumors

Recent efforts to target MYCN in pediatric brain tumors, including

neuroblastomas, medulloblastomas, high-grade gliomas, atypical

teratoid/rhabdoid tumors, ependymomas, and pineoblastomas, have

faced significant challenges. Developing a drug that passes through the

blood brain barrier and specifically targets MYCN has been a challenge

for researchers due the protein structure, in particular the DNA

binding domains which are composed by two alpha helices without

apparent surface for binding small molecules (106). More challenges

are due to protein’s complex regulatory network, nuclear localization,

undefined topology, resistance mechanisms, minimal hydrophobic

domains, and intractable effects on healthy transcription; coining the

term “undruggable” (107). However, despite the difficulty in targeting

MYCN itself, recent therapeutic strategies have emerged focusing on

indirect MYCN inhibition by obstructing upstream regulators,

repressing transcription, or disrupting downstream interactions using

small molecules (108).
4.1 Targeting BET

Bromodomain and extra-terminal domain (BET) inhibitors,

such as BRD4 inhibitors, have emerged as promising treatment

for pediatric tumors by indirectly inhibiting the expression of

MYCN. BET proteins are constructed of bromodomains, referred

to as BD1 and BD2. These proteins facilitate the transcription of

MYCN as well as its target genes by binding to acetylated histones,

particularly those located at super enhancers (109) (Figure 5A).

BMS-986378, a BRD4 inhibitor, was investigated in a clinical

trial which focused on treating pediatric tumors associated with

MYCN amplification (NCT03936465) (see Table 2). The trial

encompassed 41 pediatric solid tumor patients associated with

MYCN amplification, under the age of 21, who exhausted all

curable measures prior to the study without any improvement in

condition. Phase 1 of the Interventional study began in September

2019 and was completed in March 2024, however, to date, the

results have not yet been posted. This trial excluded patients with

CNS tumors, leaving the efficacy of BMS-986378 on MYCN-

overexpressing pediatric brain tumors unknown.

JQ1, another BRD4 inhibitor, is considered a small molecule

that inhibits BRD4 binding to the genome and prevents

proliferation of cells (110). JQ1 consists of a Triazole ring which

allows it to exist within the acetylated lysine binding site using

hydrogen bonds (111). Preclinical studies showed that combining

JQ1 with Alisertib, an Aurora-A kinase inhibitor, significantly

exhibited anti-tumor benefits in neuroblastoma models (108).

However, the clinical efficacy of BET inhibitors has been limited

by dose-l imiting side effects , including grade 3 or 4

thrombocytopenia, fatigue, nausea, vomiting, and diarrhea (112).

MZ1 is a proteolysis-targeting chimera (PROTAC) that was

designed based on JQ1 (113). MZ1 binds to BRD4 protein

and recruits E3 ubiquitin ligases for degradation (114).

Preclinical in vitro studies showed that MZ1 reduces the tumor
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TABLE 1 MYCN expression, role and clinical relevance in other pediatric non-brain tumors.

Tumor Type Description MYCN expression Clinical relevance

Retinoblastoma (RB) Rare pediatric eye tumor.
MYCN-amplified, RB1-
proficient retinoblastomas
accounts for 1.5% to 2%
of all RB cases (95).

Unlike the typical pathway driven by RB1 mutations, MYCN
amplification represents an alternative oncogenic mechanism.
Overexpression of MYCN drives tumorigenesis. Despite
functional RB1 genes, the retinoblastoma protein (pRb)
becomes inactivated due to phosphorylation, leading to
uncontrolled cell cycle progression (96).

These tumors exhibit DNA hypomethylation and
increased expression of genes involved in protein
synthesis, contributing to their aggressive
nature (96).

Rhabdomyosarcoma
(RMS)

Tumor that affects skeletal
muscle and affects
children and young
adults (97).

MYCN is expressed in both alveolar and embryonal subtypes of
RMS, with higher expression levels observed in alveolar RMS
and associated with a poorer prognosis (97, 98).

Elevated MYCN expression contributes to
tumorigenesis by promoting cell proliferation
and inhibiting differentiation. Studies have
demonstrated that sustained reduction of MYCN
levels in RMS cell lines decreases cell
proliferation and increases apoptosis, displaying
MYCN as a potential therapeutic target
(99, 100).

Wilms tumor (WT) Fourth most common
pediatric tumor, also
known as nephroblastoma.
A renal cancer found in
children younger than
five (101).

Analyses have shown that MYCN gain occurs in approximately
8.7% to 18.5% of WT cases, with a higher instance in tumors
characterized as diffuse anaplasia, a high-risk subtype (102).

This alteration results in poorer relapse-free and
overall survival rates (103). MYCN dysregulation
in WT can result from various mechanisms, one
of which is recurrent somatic mutations like
P44L and specific DNA hypomethylation events
(104) (Figure 3A).

Osteosarcoma Most common malignant
bone tumor, primarily
affects children and
adolescents. It is known
for its aggressive nature
and high metastatic
potential, particularly to
the lungs.

One study by Mukae et al. (2023), MYCN was overexpressed in
human-induced pluripotent stem cell (hiPSC)-derived neural
crest cells carrying TP53 mutations, leading to anchorage-
independent growth and transformation into highly malignant
chondroblastic osteosarcoma. Analysis showed that MYCN-
amplified osteosarcoma cells showed amplification of GLI1, a
gene common in osteosarcoma malignancy.

MYCN knockdown reduced the proliferation of
osteosarcoma cells, proving its role as a key
oncogenic driver. MYCN-amplified
osteosarcoma cases in vivo showed worse
prognosis (105).
F
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FIGURE 5

Mechanisms of MYCN regulation by BET inhibitors (A) and Aurora-A kinase inhibitors, such as Alisertib (B).
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growth rate and, in some cases, induces apoptosis. Additionally,

mouse models revealed that MZ1 completely blocks the MYCN

downstream pathway as well as the MAPK signaling. MZ1 remains

a relatively novel drug with great potential for targetingMYCN (113).

Due to the limitations of single-agent therapies, combination

treatments have been investigated for MYCN-amplified tumors. A

preclinical study examined the synergistic effects of JQ1 (BRD4

inhibitor) and Alisertib (AURKA inhibitor) in MYCN-amplified

neuroblastoma cell lines and mouse models (108). The findings

indicated that the JQ1/Alisertib combination enhance survival more

effectively than either drug alone (108). While these promising

results led to recommendations for further clinical research, clinical

trials have yet to be conducted.

BRD4 inhibitors have also been explored in combination with

other agents, such as CDK7 inhibitors. Recent studies demonstrated

that YKL-5-124, a novel covalent CDK7 inhibitor, combined with

JQ1, induced synergistic cytotoxicity in vitro and significant tumor

regression in patient-derived xenograft neuroblastoma models (115).
4.2 Targeting aurora-A Kinase and other
MYCN-stabilizing proteins

Inhibiting kinases responsible for the stabilization of MYCN

protein stands as a potential therapeutic approach. Aurora-A

kinase (AurA) protein is primarily located in the nucleus and is

utilized in the M phase of the cell cycle, inducing proliferation of cells.

This kinase is also associated with a poor prognosis for patients with

neuroblastomas (116). AurA binds to MYCN and prevents its

degradation (30, 31). Therefore, inhibiting AurA has been explored

as a strategy to reduce MYCN levels. Inhibition of AurA by siRNA

knockdown in aMYCN-amplified neuroblastoma cell line has shown

to reduce MYCN protein levels and lower cell viability (30).

Alisertib (MLN8237) is a synthesized drug that prevents AurA

from interacting with MYCN protein (117) (Figure 5B). A phase II

clinical trial conducted by the Children’s Oncology Group evaluated

the potency and effects of Alisertib in relapsed-refractory

neuroblastoma pediatric patients (NCT01154816) (118). This trial

was performed based on the results from a preclinical study that
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indicate MLN8237’s ability to inhibit neuroblastoma growth in a

mouse model (117). However, although alisertib showed activity in

preclinical models and strong pharmacokinetic-pharmacodynamic

relationships, objective response rate in children and adolescents

from the phase II study was below 5%. Moreover, alisertib treatment

led to significant toxicities, with 13% of patients experiencing dose-

limiting effects including myelosuppression. The most common

grade 3 or 4 toxicities included neutropenia, leukopenia and

thrombocytopenia (see Table 2).

A recent study demonstrated the combined effect of EZH2,

another protein that stabilizes MYCN, and PARP inhibitors in

treating MYC-amplified MB. PARP inhibitors, well-known

anticancer therapeutic agents, block the PARP mediated repair of

single-strand DNA breaks (119). The inhibition of EZH2

significantly enhanced the sensitivity of these cells to PARP

inhibitors (120).
4.3 Targeting CDK

An alternative strategy to lower MYCN levels involves targeting

cyclin-dependent kinase 7 (CDK7) to interfere with the

transcription of amplified MYCN in neuroblastoma cells. THZ1,

a covalent CDK7 inhibitor, effectively downregulated MYCN

expression, resulting in significant tumor regression in a high-risk

neuroblastoma mouse model without inducing systemic toxicity or

off-target effects. The selectivity of this treatment is due to the

preferential downregulation of super-enhancer-associated genes,

including MYCN and other oncogenic drivers. These findings

suggest that CDK7 inhibition could be a promising therapeutic

strategy for MYCN-driven cancers by selectively targeting

mechanisms that sustain global transcriptional amplification in

tumor cells (115, 121).
5 Discussion

The MYCN oncogene is essential for neural development.

Aberrant expression of MYCN contributes to the tumorigenesis
TABLE 2 Completed interventional clinical trials focusing on targeting regulation pathways of MYCN in pediatric brain tumors.

Identifier
number

Study Title Phase n Intervention Objective Results

NCT03936465 Study of the Bromodomain
(BRD) and Extra-Terminal
Domain (BET) Inhibitors
BMS-986158 and BMS-986378
in Pediatric Cancer

I 41 BET Inhibitor:
BMS-986158
Trotabresib:
BMS-986378

Measure MYC protein levels before and after drug use; to
investigate the toxicities, response rate, and PK/PD of the
drug for pediatric patients; to establish a dosage amount
to use in phase 2 of clinical trial

Antitumorigenic
properties of
BMS-986158

NCT01154816 A Phase II Study of MLN8237,
a Selective Aurora A Kinase
Inhibitor in Children with
Recurrent/Refractory Solid
Tumors and Leukemias

II 118 MLN8237:
Alisertib

To measure Aurora A Kinase levels before and after drug
use; To investigate the toxicities, response rate, and PK/
PD of both drugs for pediatric patients; to observe the
various of UDP-glucuronosyltransferase gene UGT1A1
when introduced to MLN8237;
to study Aurora A Kinase Gene variant- Phe31Ile
and Val57Ile

Antitumorigenic
properties
of MLN8237
Inhibitors are indicated in bold. Information provided from clinicaltrials.gov.
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of various embryonal and non-embryonal pediatric brain tumors by

regulating important genes involved in neuronal proliferation

and differentiation.

Beyond its role in oncogenesis, MYCN amplification is a critical

factor for patient stratification, with high-risk patients exhibiting higher

MYCN levels. It can also serve as a potential prognostic biomarker,

contributing to risk assessment and treatment decisions. However,

while targeting MYCN remains a significant challenge, emerging

therapeutic strategies are being explored. These include MYCN

destabilization (Aurora-A kinase inhibitors), epigenetic modulation

(BET inhibitors), and global transcriptional amplification (CDK7

inhibitors), all of which show potential in disrupting tumorigenesis.

Significant progress has been made in understanding the role of

MYCN in tumorigenesis, although its complex regulatory network,

nuclear localization, and other factors have made it a challenging

therapeutic target. The development of preclinical models is essential

for testing new therapies and exploring drug resistance mechanisms.

Future directions should focus on understating vulnerabilities of

MYCN-amplified tumors to develop new personalized treatment

strategies. Additionally, future research should emphasize on

targeting MYCN-regulated pathways and exploring novel

combination therapies to enhance clinical outcomes.

Despite efforts have been made to reduce MYCN levels to

improve prognosis across multiple cancer types, including

pediatric brain tumors, further research is essential to refine

therapeutic strategies and enhance survival outcomes in patients

with MYCN-amplified tumors.
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