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Introduction: Current evidence on atlas-based auto-segmentation (ABS) in

radiotherapy primarily addresses organs at risk, whereas its application for

clinical target volume (CTV) delineation remains insufficiently explored.

Additionally, the optimal number of datasets required for ABS atlases is

debated. This study investigates ABS performance for automated CTV (aCTV)

segmentation in anal cancer patients with 18F-fluorodeoxyglucose positron

emission tomography/computed tomography (18F-FDG PET-CT)-positive

lymph node (LN) metastases, using varying atlas sizes.
Methods: A retrospective analysis was conducted on 51 anal cancer patients who

underwent 18F-FDG PET-CT-based treatment planning between 2009 and 2018.

Patients with FDG-positive LN metastases were identified. Manual CTV (mCTV)

delineation was performed in accordance with the UK National Guidance for

IMRT in Anal Cancer. The resulting 51 mCTV datasets were integrated into a

single ABS atlas, which was used to generate aCTVs for the 27 patients with FDG-

positive LNmetastases. For each of these 27 patients, five different atlas sizes (n =

10, 20, 30, 40, 50) were evaluated using a leave-one-out approach. Automated

and manual CTVs were compared using the Dice Similarity Index (DSI), the

percentage of FDG-positive LNs adequately covered, and volumes either

erroneously included (mistakenly contoured volume, MCV) or omitted (not

contoured volume, NCV) by the ABS process

Results: Of the 51 patients, 27 (52.9%) had FDG-positive LN metastases. The

mean DSI for atlas sizes of n = 10, 20, 30, 40, and 50 were 0.73, 0.78, 0.79, 0.79,

and 0.80, respectively. A DSI ≥ 0.7 was achieved in 24 patients (88.9%) across all

atlas sizes. The increase in DSI between n = 10 and n = 40 was statistically

significant (Bonferroni-adjusted p < 0.05). Mean relative NCV and MCV ranged

from 21.8–23.9% and 17.7–19.5% of the respective mCTV volume, with
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decreasing trends as atlas size increased. Segmentation inaccuracies

predominantly occurred in the upper mesorectal and lower ischiorectal regions.

Discussion: In conclusion, ABS facilitates the delineation of CTVs in anal cancer

patients and improves contouring efficiency. However, manual correction by

radiation oncologists remains necessary.
KEYWORDS

atlas-based auto-segmentation, CTV auto-segmentation, anal cancer, PET/CT, lymph
node metastases
1 Introduction

Although anal cancer is relatively rare, its incidence has been

increasing over the past two decades. The standard treatment

involves combined chemoradiotherapy (1, 2). Accurate and

efficient delineation of regions of interest (ROIs) is essential for

radiotherapy planning, as precise calculation of the spatial dose

distribution depends on objective and reproducible segmentation of

both organs at risk (OARs) and tumor volumes, including the gross

tumor volume (GTV) and the clinical target volume (CTV) (3). The

CTV encompasses areas at risk of subclinical disease spread, such as

lymphatic drainage regions, which are often not clearly visualized

on planning computed tomography (CT) scans. Since prognosis in

anal carcinoma is closely linked to lymph node (LN) metastases,

accurate definition of the CTV and adequate dosimetric coverage of

both macroscopic and microscopic disease are critical (4).

Manual delineation of ROIs is labor-intensive and time-

consuming. Given the association between delays in radiotherapy

and poorer clinical outcomes (5), there is a pressing need to

streamline this process without compromising quality. This need

is particularly acute in advanced techniques that require repeated

planning, such as adaptive radiotherapy addressing anatomical

changes throughout the treatment course.

Automated segmentation methods offer a promising alternative

to manual contouring. A wide array of auto-segmentation

techniques has been developed, aiming to enhance efficiency and

reproducibility in the delineation of OARs. Early approaches

involved basic image processing methods such as intensity

thresholding, region growing, and heuristic edge detection (6).
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These were followed by region- and probability-based methods,

and later by single-atlas and multi-atlas-based segmentation (ABS),

the latter of which has become widely adopted in clinical

practice (7).

More recently, deep learning (DL) models have been introduced

and have demonstrated superior accuracy compared to ABS in ROI

segmentation across various anatomical regions (8, 9). However, DL

models require large, high-quality datasets (7), extended training

times on high-performance graphics processing unit (GPU) clusters

(10–12), and are susceptible to overfitting. Their complex,

multilayered architectures complicate retraining, guideline

updates, and reproducibility (6, 10). As a result, ABS remains the

standard in many clinical workflows.

To date, most ABS studies have focused on the automated

segmentation of OARs (13), with validation studies in anatomical

sites such as the brain (14), head and neck (15), thorax (12, 16) and

prostate (13), emphasizing segmentation accuracy and contour

reproducibility. In contrast, automated segmentation of target

volumes remains underexplored and more challenging, primarily due

to tumor- or treatment-induced anatomical distortions. Automated

tools often struggle to accurately segment the primary tumor region.

However, the lymphatic drainage areas, particularly in cases without

major anatomical alterations due to surgery or extensive lesions, are

more consistently identifiable. In anal cancer, where such conditions

are frequentlymet, ABS tools may be capable of reliably segmenting the

pelvic lymphatic drainage pathways, and hence the CTV.

Nonetheless, auto-segmentation in the pelvic region presents

specific challenges (17). The normal anatomy is highly variable,

with organs such as the bladder, bowel, and genital structures

exhibiting significant intra- and inter-patient variability in shape,

filling status, and position (7, 18). Moreover, it remains uncertain

whether atlas-based – therefore anatomically-based CTV

segmentation adequately includes LNs that are involved but lack

clear CT morphological criteria of malignancy. Therefore,

Fluorodeoxyglucose positron emission tomography/computed

tomography (18F-FDG PET-CT) is recommended during initial

staging for the detection of LN metastases (19–21), offering high

sensitivity (93%) and is considered a reference standard (22–25). The

distribution of pathological and non-pathological LNs varies

significantly between individuals, potentially leading to complex
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https://doi.org/10.3389/fonc.2025.1585338
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Bieder et al. 10.3389/fonc.2025.1585338
and unexpected anatomical patterns. Dapper et al. reported that

approximately 20% of FDG-positive LNs in the inguinal, paraaortic,

and common iliac regions were located outside of the areas covered

by existing pelvic lymphatic delineation guidelines (26). This

contributes to inter-observer variability and complicates consistent

CTV definitions, particularly when evaluating automated

segmentation performance.

To the best of the authors’ knowledge, only seven studies have

addressed ABS-based CTV delineation in pelvic malignancies

(17, 27–32). Of these, only one has performed a clinical validation

of the ABS-generated CTV, and that study used an atlas derived

from just four datasets (32).

The present study, therefore, has two main objectives: (a) to

clinically validate an atlas-based CTV definition by comparing it to

manually defined CTVs using established similarity metrics; and (b)

to assess whether PET-positive LNs are adequately included within

the atlas-based CTV contours, thereby evaluating its accuracy in

encompassing metastatic involvement.
2 Materials and methods

Consecutive patients diagnosed with anal canal cancer or cancer

of the anal verge between 2009 and 2018, who underwent PET-CT-

based treatment planning, were retrospectively identified from the

institutional database (N = 51). Patients with distant metastases

(M1) were excluded. CT and PET-CT images were imported into

the treatment planning system RayStation version 10B (RaySearch

Laboratories, Stockholm, Sweden).

First, the CTV was manually delineated on the CT images using

the Structure Definition module. A single observer performed all

delineations based on anatomical landmarks in accordance with

standard guidelines proposed by Muirhead et al. (33)1. Following

these guidelines, the CTV included the following sub-volumes, each

contoured as a separate ROI: external and internal iliac, obturator,

presacral, inguinal, mesorectal, and ischiorectal regions. The

ischiorectal space was delineated in all patients, and the obturator

nodes were included within the internal iliac space.

Next, all sub-volume ROIs were combined into a single

manually contoured CTV (mCTV) using the union function in

the ROI algebra tool in RayStation. The resulting mCTV was then

manually refined to correct for any anatomical irregularities.

Subsequently, PET-CT and planning-CT images were co-

registered using RayStation’s Image Registration module for the

identification of LN metastases in the 27 patients clinically staged

as N1 or higher. PET images were rigidly aligned to the planning CT,

and metabolic activity was assessed by overlaying PET signal on the

CT anatomy using the Fusion view. LNs were classified as FDG-

positive if they demonstrated increased FDG uptake and measured

greater than 1.0 cm in size. These LNs were delineated in the

Structure Definition module and included in the GTV as
1 Note: An updated version of the national guidance for VMAT/IMRT in anal

cancer was published by the Royal College of Radiologists in 2024. The

present study was conducted in accordance with the 2016 guidance.
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macroscopic disease. The delineated LNs collectively constituted

the total LN volume ROI (Vt). The mCTV was subsequently

expanded to include these FDG-positive LNs and surrounding

areas to account for potential microscopic disease extension.

ABS was performed using RayStation’s dedicated ABS module.

The atlas was constructed from planning CT datasets of multiple

patients, each with a corresponding mCTV. To assess the effect of

atlas size on segmentation accuracy, all 51 planning CT datasets with

corresponding mCTVs were sequentially incorporated into the ABS

atlas in a predefined order using the Structure TemplateManagement

tool: the first 27 patients with LN metastases were followed by the 24

patients without LN involvement. Auto-segmented CTVs (aCTVs)

were generated using RayStation’s ABS algorithm, which applies rigid

image registration (RIR) followed by deformable image registration

(DIR) using the ANACONDA algorithm. This algorithm integrates

both intensity-based and ROI-based information. Based on similarity

metrics, the algorithm selected the most suitable atlas datasets

(“fusion atlases”) and merged their segmentations into a consensus

ROI. A leave-one-out approach was employed, excluding the target

CT dataset from the atlas during each segmentation. Mesh-based

structure adaptation (MBS) was enabled, and the number of fusion

atlases was set to 15.

To investigate the influence of atlas size on segmentation

performance, aCTVs were generated exclusively for the 27 patients

with FDG-positive LN metastases using five different atlas sizes (n =

10, 20, 30, 40, and 50), where n refers to the number of CT datasets

used during each segmentation. Because LN-positive patients were

added first, the five atlas configurations included the following

numbers of LN-positive patients: 10, 20, 27 (plus 3 LN-negative),

27 (plus 13 LN-negative), and 27 (plus 23 LN-negative), respectively.

The resulting aCTVs were compared to the corresponding

mCTVs using established similarity metrics (Figure 1). This

analysis was performed specifically in the 27 patients with FDG-

positive LN metastases. The shared volume (SV) between the

mCTV and aCTV represented the correctly contoured region

identified by the algorithm. Automatically segmented regions

extending beyond the mCTV were categorized as mistakenly

contoured volume (MCV), while areas of the mCTV not covered

by the aCTV were defined as mistakenly not contoured volume

(NCV). Both MCV and NCV values were calculated relative to the

respective mCTV volumes, resulting in the relative mistakenly

contoured volume (rMCV = MCV/mCTV) and the relative

mistakenly not contoured volume (rNCV = NCV/mCTV).

The similarity of mCTVs and aCTVs was evaluated using the

Dice similarity index (34):

DSI =
2�mCTV
SV +   aCTV

SV   –  shared volume;  mCTV   –  manually contoured target volume;

aCTV   –  automatically contoured target volume

A DSI of 1.00 corresponds to entire mutual covering of target

volumes (value and position). Non-overlapping target volumes lead

to a DSI of 0.00. In line with previous studies, a DSI of ≥0.70 was
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considered a threshold for clinical acceptable segmentation

performance (13, 35). A LN ratio (QLN) was defined as the

amount of FDG-positive LN volume sufficiently covered by the

aCTV [QLN = Vc/Vt (Vc - LN volume covered by aCTV; Vt – total LN

volume)]. A QLN of 100.0% indicated a complete covering of PET-

positive LN volumes while LNs were fully excluded from the aCTV

if QLN was 0.0%.

For statistical analyses, SPSS® Statistics Version 27 (IBM®,

Armonk, NY, USA) was used. Differences between the five aCTVs

regarding DSI, rMCV, rNCV and QLN were assessed using the

Friedman Test. In cases of statistical significance (p-value <0.05),

post-hoc analyses were performed using Dunn-Bonferroni tests to

identify the specific values of n responsible for the observed

differences. The Bonferroni correction was applied to adjust the

alpha error rate, accounting for multiple comparisons following the

Friedman test. The study was approved by the local ethics

committee under Reg.-Nr. 2023-2909-Daten and consent was

obtained from one patient for the publication of exemplary

CT slices.
3 Results

51 consecutive patients were identified, who all underwent PET-CT

based treatment planning. Table 1 represents the patient characteristics.

In the context of radiation planning, 29 patients were initially

classified as FDG-positive (N-Stage ≥1). However, two of these
Frontiers in Oncology 04
patients showed doubtful FDG-positivity and were therefore

reclassified as N-Stage 0 for this study. Consequently, 27 of 51

patients (52.9%) were considered FDG positive. Among these, a

median number of two LNs showed an increased FDG-uptake.

FDG-positive LNs were most frequently located in the inguinal

region (77.8%, N=21), followed by the external and internal iliac

(29.6%, N=8, respectively), the mesorectal (25.9%, N=7) and

presacral space (18.5%, N=5). Figure 2 provides a representative

visualization of CTV contours across different atlas sizes, displayed

on selected CT slices, highlighting the variations in segmentation

accuracy as the atlas size increases.

The DSI value of 0.18 for patient 2 with n=10 was identified as

an outlier based on the deviation of the interquartile range. It was

excluded from the analyses to prevent distortion of the results. The

DSIs ranged from 0.67 (patient 19, n=10) to 0.85 (patient 16, n=50).

The average DSIs for n=10, 20, 30, 40 and 50 amounted 0.78, 0.78,

0.79, 0.79 and 0.80, respectively. The median DSIs ranged from 0.79

(n=10) to 0.80 (n=30; 50) (Table 2). There was a statistically

significant increase of the DSI between n=10 and n=40; n=50

(Friedman Test: p<0.05; post-hoc-test: Bonferroni adjusted p1 =

0.012; p2 = 0.006, respectively). Figure 3A depicts the boxplots for

the different DSIs.

The rMCVs varied from 6.1% (patient 6, n=50) to 48.1%

(patient 19, n=20) (Table 3). The aCTV in patient 19 showed

noticeable overextension beyond the intended anatomical regions

in the upper mesorectal and lower ischiorectal spaces. The inguinal

aCTV partially covered the psoas muscles laterally and dorsally. The
FIGURE 1

Considered volumes; aCTV, automatically generated clinical target volume; mCTV, manually delineated clinical target volume; LN, lymph node.
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boxplots of the five rMCVs (Figure 3B) depict a statistically

significant decrease of the rMCV with increasing n (Friedman

Test, p<0.01). Statistically significant differences between the

rMCVs with n=10 to n=20; n=10 to 30; n=10 to 50 were

identified (Friedman Test: p<0.05; post-hoc-test: Bonferroni

adjusted p1<0.001; p2<0.001; p3 = 0.011; respectively). There was

no statistically significant difference between n=10 and n=40.

The rNCVs ranged from 12.1% (patient 4, n=40) to 36.3%

(patient 6, n=30). The small rNCV in patient 4 was mainly due to a

correctly contoured ventral inguinal aCTV. Sources of mistakes

were the inguinal aCTV spaces in obese patients 6 and 15 (numbers

28–30 and 74–75 in Figure 3) as they were not sufficiently expanded

ventrally to the recommended 5 mm from the skin surface (33).

While the aCTV in the upper mesorectal and lower ischiorectal

spaces was often overextended, this inconsistency also contributed

to missed target volumes in adjacent or critical regions. The

boxplots for the rNCV suggested a decreasing trend of rNCVs

with increasing n (Figure 3C). A statistically significant decrease of

the rNCV was found between n=10 to n=40; n=50 and from n=20

to n=40; n=50 (post-hoc-test: Bonferroni adjusted p<0.05,

respectively). The median rMCVs were consistently smaller than

the median rNCVs across all five atlas sizes (Table 3).

In 8 of the 27 patients with LN metastases (29.6%), the LN

volume was completely covered by the aCTV, regardless of the
Frontiers in Oncology 05
template size. In two patients, an entire covering of the FDG-

positive LN volume was achieved from n=30 (7.4%). The median

QLN increased with the number of datasets after it passed a

minimum at n=20 (Figure 3D). From n=20 to n=40, the QLN

improved with statistical significance (post-hoc-test: Bonferroni

adjusted p<0.05). Three patients (19, 21 and 27) were outliers

with median QLN less than 40.0%. In Patient 19 (91-95, Figure 3),

one presacral LN near the promontory and one mesorectal LN was

not adequately covered because of an insufficient upper expansion

of the mesorectal aCTV. In the CTs of patients 21 and 27 (101-105;

131-135, Figure 3), the aCTV was contoured correctly but was not

expanded according to the individual requirements. In both

patients, external iliac LN volumes were partially localized outside

the recommended 7 mm medial to the external iliac vessels (33).
4 Discussion

While previous studies on ABS have predominantly addressed

the delineation of OARs (13, 36–38), investigations focusing on the

automated segmentation of entire CTVs remain limited. This study

evaluated whether ABS can generate clinically acceptable CTVs for

anal cancer, particularly in the context of PET-CT-identified LN

metastases and explored the influence of atlas size on segmentation

performance. Three main findings emerged: (1) the DSI

significantly increased with growing atlas size, indicating

improved segmentation accuracy; (2) median rMCVs were

consistently smaller than rNCVs and decreased with larger atlas

sizes; and (3) in the majority of cases, LN metastases were

insufficiently covered by aCTVs, necessitating manual corrections.

Manual CTV delineation in radiotherapy planning is labor-

intensive (39), and treatment delays are associated with an elevated

risk of local recurrence (40). Moreover, manual segmentation

introduces intra- and inter-observer variability (41, 42), which is

exacerbated by the low soft tissue contrast and artifact susceptibility

of planning CT scans, potentially affecting planning target volume

coverage. These challenges may result in inadvertent irradiation of

healthy tissue or incomplete tumor coverage (11, 41).

Automated segmentation methods offer potential solutions to

these issues. ABS can expedite the workflow for radiation

oncologists and has demonstrated time-saving advantages in

delineating both OARs and CTVs (43). Additionally, consistent

use of the same algorithm and atlas improves reproducibility and

contouring consistency (44).

Several algorithmic approaches exist. Intensity-based methods

classify voxels using criteria such as Hounsfield unit thresholds and

are suited for regions with distinct contrast (11). Deformable shape

models adjust predefined contours according to image data to

generate ROIs (11). More recently, ABS and machine learning

approaches—including both conventional and DL methods—have

advanced significantly.

Comparative studies, such as one evaluating the DL-based

software DLCExpert (Mirada Medical Ltd., Oxford, UK) versus

ABS for OAR segmentation in head and neck, thoracic, and pelvic

CTs, found DL to produce a greater proportion of clinically
TABLE 1 Patient characteristics.

Characteristic Count N Percentage (%)

Gender
male 19 37.3

female 32 62.7

Tumor
localization

anal canal 28 54.9

anal verge 19 37.3

anal canal and
anal verge

4 7.8

T-Stage

T1 10 19.6

T2 19 37.3

T3 15 29.4

T4 6 11.8

n.a. 1 2.0

N-Stage

N0 22 43.1

N1 13 25.5

N2 11 21.6

N3 5 9.8

M-Stage 0 51 100.0

Grading

1 1 2.0

2 35 68.6

3 11 21.6

4 1 2.0

n.a. 3 5.9
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acceptable segmentations (8). Gibbons et al. reported that DL

outperformed ABS in anatomically variable organs due to DL’s

superior adaptability, achieved through large-scale datasets and

millions of parameters (11, 12). However, DL requires extensive

datasets and powerful computing infrastructure (e.g., GPU clusters)

and is prone to overfitting when models become overly complex
Frontiers in Oncology 06
(10). Moreover, the opacity and limited reproducibility of deep

neural networks hinder correction of systematic errors and

adaptation to evolving guidelines. In contrast, ABS requires fewer

datasets and can be run on standard workstations, rendering it a

more cost effective, practical and widely adopted solution in current

clinical settings (11).
FIGURE 2

Manually contoured clinical target volume (mCTV, purple, patient 1) and automatically generated clinical target volumes for different atlas sizes: n =
10 (orange), n = 20 (blue), n = 30 (green), n = 40 (red), n = 50 (yellow). Axial CT slices of the pelvis are shown from cranial to caudal levels: (a–f).
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The heterogeneous distribution of LN metastases in anal cancer

complicates ABS-based CTV segmentation (26, 45, 46).

Conventional ABS algorithms do not typically incorporate PET-

CT data and are limited in adapting to highly variable anatomy (11).

Nevertheless, ABS can encompass areas at high risk for LN
Frontiers in Oncology 07
involvement, and standardized atlases based on consensus

guidelines may enhance segmentation accuracy. However, the

degree to which current ABS algorithms adequately cover LN

metastases remains uncertain.

In multi-atlas ABS, a library of segmented datasets serves as the

reference. Image registration—typically based on mutual information

—is used to map atlas ROIs to the target CT scan (11). Although

segmentation accuracy generally improves with larger atlas sizes,

computational costs also increase (37). Hence, identifying the

optimal atlas size is essential. Current literature reports varying

recommendations, depending on anatomical regions and ABS

algorithms used (47). For example, Sjöberg et al. used 15 atlas

datasets for pelvic LN segmentation and achieved median DSIs

around 0.7 (48). Li et al. compared atlas sizes ranging from 20 to

120 for cervical cancer CTV and OAR delineation and found no

significant differences between groups (36). Anders et al. stratified an

atlas by patient sex and reported mean DSIs of up to 0.83 for

automatically segmented substructures in anorectal cancer (35).
TABLE 2 Descriptive statistics of Dice similarity index (DSI).

DSI

Number n of datasets within the
atlas template

10 20 30 40 50

Mean 0.73 0.78 0.79 0.79 0.80

95%-Confidence-
Interval

[66.2-
80.2]

[76.9-
79.7]

[0.78-
0.80]

[0.78-
0.80]

[0.78-
0.81]

Median 0.78 0.79 0.80 0.80 0.80

Standard deviation 0.18 0.04 0.03 0.03 0.03
FIGURE 3

Boxplots depending on number n of datasets within the atlas; Dice similarity index – DSI (a); related mistakenly contoured volume – rMCV (b);
related mistakenly not contoured volume – rNCV (c); lymph node ratio – QLN (d).
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In our study, similarity metrics between aCTVs and mCTVs

were in line with these findings. According to Anders et al. and

Aoyama et al., a DSI > 0.7 reflects acceptable geometric similarity

(13, 35). This threshold was met in 88.9% (24/27) of cases across all

atlas sizes. Median DSIs ranged from 0.67 to 0.85. In a few instances

(patients 2, 19, and 24), the threshold was not reached for certain

atlas sizes.

Analysis of segmentation errors revealed consistent inaccuracies

in the upper mesorectal and inguinal regions. Particularly in the

mesorectum, anatomical variability and low tissue contrast complicate

registration. In contrast, the internal iliac regions were segmented

more accurately, likely due to their boundaries being defined by

hyperdense pelvic bones, which favor automatic contouring.

Coverage of FDG-positive LN metastases by aCTVs was

suboptimal, necessitating manual corrections. Manual CTV

delineation was guided by the UK IMRT recommendations for anal

cancer. Despite its accuracy in the study by Dapper et al., up to 20% of

LNs remained uncovered in the common iliac, para-aortic, and inguinal

regions (26). The absence of consistent recommendations—especially

for inguinal coverage—likely contributes to these limitations in ABS.

Only 8 of 27 patients (29.6%) had complete LN coverage by

aCTVs. In 2 additional cases (7.4%), increasing atlas size led to full

LN inclusion. As noted in earlier studies (49, 50), the inguinal

region, particularly its ventral boundary in obese patients, posed

challenges due to ABS’s limited adaptability to patient-specific

anatomy (11). Expanding the atlas with anatomical outliers may

help address this issue. Insufficient cranial expansion of the CTV

and LN locations outside the recommended 7 mm boundary of

external iliac vessels also contributed to inadequate coverage,

highlighting ABS’s current inability to incorporate PET-CT data.

Despite guideline adherence, such discrepancies necessitate manual

review and correction by radiation oncologists.
Frontiers in Oncology 08
Our data indicate a progressive improvement in CTV quality

with increasing atlas size. A median DSI of 0.80 was achieved with

30 datasets. Although no definitive optimal atlas size could be

established, the consistent improvements up to 50 datasets suggest

that larger atlases yield better results. This finding contrasts with Li

et al. (36), who observed no significant improvement beyond 20

datasets in cervical cancer radiotherapy.

A limitation of this study is its focus on geometric metrics, which

do not capture contour complexity (11). However, incorporating

clinically relevant aspects, such as FDG-positive LN coverage,

strengthens the analysis. Further research including dosimetric

evaluations and OAR involvement is warranted. The small sample

size limited the study to descriptive statistics.

The impact of atlas composition remains unclear. Although a leave-

one-out approach was used for validation, the non-randomized

sequential inclusion of datasets may introduce bias. In this study, LN-

positive patients—representing more complex anatomies—were

included first, leading to an uneven distribution of clinical phenotypes.

Whether nodal status alone affects CTV variability or whether other

factors, such as sex, pelvic morphology, or BMI, play greater roles

remains to be determined. Future studies can benefit from subgroup-

specific analyses to identify anatomical features that systematically affect

segmentation accuracy. Nonetheless, segmentation quality improved

even when LN-negative cases were added, supporting the robustness

of larger atlases. Future studies should explore stratification strategies,

such as phenotype balancing or subgroup-specific atlases.

Given that a commercial ABS platform was used, results may

vary with different algorithms. However, algorithm-specific settings

(e.g., number of fusion atlases) were optimized per manufacturer

recommendations to ensure reproducibility and performance.

In conclusion, ABS can generate high-quality whole CTVs for anal

cancer. In 88.9% of cases, acceptable DSI thresholds (≥0.7) were met

across all atlas sizes, with performance improving alongside atlas

expansion. However, persistent inaccuracies—particularly in

anatomical outliers and LN coverage—necessitate manual adjustments.

To improve robustness, ABS atlases should include anatomically diverse

datasets reflecting different tumor stages and patient morphologies.

Compared to DL-based segmentation, ABS requires fewer

datasets and allows more flexible adaptation to changing

guidelines. Further studies are needed to determine the ideal atlas

size, structure, and the potential benefits of incorporating

anatomical outliers.
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47. Delpon G, Escande A, Ruef T, Darréon J, Fontaine J, Noblet C, et al. Comparison
of automated atlas-based segmentation software for postoperative prostate cancer
radiotherapy. Front Oncol. (2016) 6:178. doi: 10.3389/fonc.2016.00178

48. Sjöberg C, Lundmark M, Granberg C, Johansson S, Ahnesjö A, Montelius A.
Clinical evaluation of multi-atlas based segmentation of lymph node regions in head
and neck and prostate cancer patients. Radiat Oncol. (2013) 8:229. doi: 10.1186/1748-
717X-8-229

49. Chang Y, Li G, Yang Z, Han G, Li X, Zhao Y, et al. Inguinal nodal clinical target
volume delineation based on analysis of anatomical locations of normal and metastatic
lymph nodes in pelvic Malignant tumors. Radiother Oncol. (2023) 183:109634.
doi: 10.1016/j.radonc.2023.109634

50. Nilsson MP, Undseth C, Albertsson P, Eidem M, Havelund BM, Johannsson J,
et al. Nordic anal cancer (NOAC) group consensus guidelines for risk-adapted
delineation of the elective clinical target volume in anal cancer. Acta Oncol. (2023)
62:897–906. doi: 10.1080/0284186X.2023.2240490
frontiersin.org

https://doi.org/10.4149/neo_2020_191229N1350
https://doi.org/10.1016/j.ijrobp.2008.08.070
https://doi.org/10.1016/j.radonc.2014.04.013
https://doi.org/10.1259/bjr.20170370
https://doi.org/10.3390/cancers15112967
https://doi.org/10.1016/j.critrevonc.2018.03.013
https://doi.org/10.1186/s12885-019-5970-0
https://doi.org/10.1186/1748-717X-8-188
https://doi.org/10.1186/1748-717X-8-188
https://doi.org/10.1186/1748-717X-7-160
https://doi.org/10.1186/s13014-020-01562-y
https://doi.org/10.3389/fonc.2022.945053
https://doi.org/10.1002/jmrs.64
https://doi.org/10.1016/j.radonc.2011.08.043
https://doi.org/10.1259/bjr.20140342
https://doi.org/10.1016/j.radonc.2011.08.043
https://doi.org/10.3389/fonc.2022.945053
https://doi.org/10.1016/j.neuroimage.2009.02.018
https://doi.org/10.1186/s13014-015-0579-1
https://doi.org/10.1007/s00066-014-0634-0
https://doi.org/10.1016/j.radonc.2007.11.016
https://doi.org/10.1016/j.radonc.2016.09.009
https://doi.org/10.1038/s41598-021-82541-5
https://doi.org/10.3109/0284186X.2016.1173723
https://doi.org/10.3109/0284186X.2016.1173723
https://doi.org/10.1016/j.ijrobp.2010.04.063
https://doi.org/10.1186/s12885-021-08187-8
https://doi.org/10.1016/j.ijrobp.2011.12.058
https://doi.org/10.3389/fonc.2016.00178
https://doi.org/10.1186/1748-717X-8-229
https://doi.org/10.1186/1748-717X-8-229
https://doi.org/10.1016/j.radonc.2023.109634
https://doi.org/10.1080/0284186X.2023.2240490
https://doi.org/10.3389/fonc.2025.1585338
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Clinical evaluation of atlas-based auto-segmentation for contouring pelvic CTVs in the treatment of anal cancer with FDG-PET-positive lymph node involvement
	1 Introduction
	2 Materials and methods
	3 Results
	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


