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Introduction: CDK4/6 inhibitors are cornerstone therapies for advanced HR+/ 
HER2- breast cancer, yet treatment response heterogeneity remains a major 
clinical challenge. This study integrates single-cell regulatory landscapes with 
multi-omics data to decode resistance mechanisms and develop predictive 
biomarkers for CDK4/6 inhibitor response stratification. 

Methods: Single-cell RNA-seq data (GSE158724, n=14 samples) and bulk multi­

omics profiles (TCGA-BRCA, n=1,059; GSE186901, n=90) were analyzed. Gene 
regulatory networks were reconstructed using SCENIC to identify resistance-
specific regulons. The Tumor Prognostic Regulon Index (TPRI) was derived from 
five prognostic transcription factors and validated in independent cohorts. 
Experimental validation including qPCR of core TFs was performed in patient-
derived samples. Multimodal predictive models integrating TPRI, differentially 
expressed genes, and miRNAs were developed using logistic regression, with 
performance assessed via ROC/AUC analysis. 

Results: We identified 86 resistance-associated regulons and established TPRI 
based on five  prognostic  TFs (ATF1, TEAD4, NFIL3, FOXO1, ETV3).  TPRI
significantly stratified patients into high/low-risk groups with differential overall 
survival and treatment response (Fisher’s exact test P=0.0237). qPCR confirmed 
elevated expression of these TFs in resistant tumors (P<0.01). High-risk patients 
exhibited increased stemness indices (mRNAsi, P<2.2e-16) and mTOR pathway 
activation. The multimodal model (TPRI + top 30 DEGs + top 30 miRNAs) 
achieved superior prognostic accuracy (95%CI:0.6575-0.75). 

Discussion: This study establishes TPRI as a novel biomarker for CDK4/6 
inhibitor response prediction, validated through multi-omics integration and 
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qPCR confirmation. The model provides actionable risk stratification, where 
high-risk patients may benefit from combinatorial mTOR-targeted therapies. 
Limitations include sample size constraints for methylation integration. Future 
studies should validate these findings in prospective clinical trials. 
KEYWORDS 

breast cancer, TPRI, CDK 4/6 inhibitors, prognostic model, transcriptional regulation, 
TCGA, single-cell sequencing 
1 Introduction 

Tumor immune microenvironment (TME) is a complex 
ecosystem, immune cells, blood vessels, cytokines, stromal 
components, and other immune-related cellular and molecular 
environments within tumor tissues influence tumor growth, 
metastasis, and response to therapy. The transcriptional 
regulatory network (GRN) between transcription factors (TFs) 
and their target genes plays a significant role in determining 
cellular identity and maintaining cellular status. In breast cancer 
(BC), dysregulation of the transcriptional program is relevant to the 
ongoing evolution of cancer cells in TME, which directly affects the 
patient’s response to therapy. 

BC is one of the most prevalent malignant tumors in women. The 
Lancet estimates that global BC cases are predicted to increase from 2.3 
million to more than 3 million (from 2020 to 2040), with an annual 
mortality rate of 1 million by 2040 (1). Recent years, cyclin-dependent 
kinase 4 and 6 inhibitors (CDK4/6i), including palbociclib and 
ribociclib, have been used for the treatment of hormone receptor-
positive (HR+), human epidermal growth factor receptor-negative 
(HER2-) advanced breast cancer (ABC) (2, 3). These drugs 
selectively target CDK4/6 to prevent Rb phosphorylation in the G1 
phase, thus blocking the G1/S transition in the cell cycle (4, 5). Several 
phase III clinical trials have approved its efficacy, which showed that 
the combination CDK4/6i and endocrine therapy (ET) greatly 
enhances progression-free survival (PFS) in contrast to simply ET, 
and could also postpone the need for following chemotherapy CT (6– 
12). Moreover, follow-up analyses showed that the combination of 
CDK4/6i with ET offers an overall survival (OS) benefit, with median 
OS (mOS) values reported as 53.7 months with ribociclib plus 
fulvestrant in the MONALEESA-3 trial, and 34.9 months with 
palbociclib plus fulvestrant in the PALOMA-3 trial (9, 13–15). 
However, despite the remarkable success, significant differences in 
response to the efficacy of CDK4/6i among patients. Both of the 
intrinsic resistance and the acquired resistance affects. Although the 
factors influencing CDK4/6i resistance are being recognized, treatment 
has yet to consider the invaluable biological information that provides 
guidance to clinical treatment, thus combining biomarkers with 
customized methods to optimize clinical outcomes should be 
noticed (16). 
02 
Omics technologies hold immense promise in cancer research, 
offering a unique ability to explore cancer biology across various 
pathological and molecular dimensions (17). For example, single-
cell RNA sequencing (scRNA-seq) is a highly effective method for 
unraveling the complexity of solid tumors, allowing for an in-depth 
characterization of cellular diversity and the various heterogeneous 
phenotypic states (18). Regulon is a collection of transcription 
factors (TFs) and their regulated target genes that is key to 
regulating multiplication, drug resistance, and stemness 
characteristics of tumor cells, thereby affecting tumorigenesis, 
progression, and treatment response. Through the application of 
these technologies, groundbreaking insights and enhancement of 
our understanding of biological properties of tumors and 
mechanisms of drug resistance can be uncovered. However, the 
characteristics of CDK4/6 inhibitor-treated BC cells are not yet well 
understood, and current precision therapy for BC faces challenges 
in achieving personalized treatment and more precise risk 
stratification. Given that bulk RNA-seq data (e.g., TCGA/GEO 
cohorts) provide robust statistical power for differential analysis 
due to their large sample size and comprehensive molecular profiles, 
while single-cell data are inherently limited by technical noise and 
small cohort sizes, our study adopts a complementary multi-omics 
strategy: leveraging bulk data for population-level biomarker 
screening and survival validation, while utilizing single-cell 
resolution to dissect regulatory dynamics within resistant 
cell subpopulations. 

In this paper, we studied the prognostic and predictive roles of 
biomarkers in patients by integrating single-cell transcriptomics 
data and multi-omics data, and constructed a multilevel predictive 
model for CDK4/6 inhibitor-resistant HR+/HER2- ABC treatment 
response through combining the prognostic regulator index (TPRI), 
differential gene and miRNA, provided a basis for precise treatment. 
2 Materials 

10x single-cell expression profiles from the GSE158724 dataset 
were coming from the GEO (https://www.ncbi.nlm.nih.gov/geo/) 
database. This dataset is based on single-cell sequencing from ET 
and CDK4/6i therapy for BC, and the only cell type it contains are 
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tumor cells. 95 samples were collected, including 14 iCell8 
sequencing samples from 10 patients and 81 10x sequencing 
samples from 36 patients, for a total of 46 patients, numbered 
P01 through P46. Longitudinal samples were collected from three 
standardized treatment timepoints: baseline (day 0, S), interim 
assessment (day 14, M), and treatment completion (day 180, E). 
Patients were divided into three groups, the first group was ET alone 
(letrozole plus placebo), the second group was intermittent high-
dose combination therapy (letrozole plus a CDK4/6i (600 mg/d, 
three weeks on and one week off)), and the third group was 
continuous low-dose combination therapy (letrozole plus CDK4/6 
inhibitor (400 mg/d)). Samples from the end-of-treatment phase 
(E), as well as samples from patients with CDK4/6 inhibitors, were 
selected for analysis in this program. Patients P11 through P46 were 
sequenced in 10x single cells, and the sample information is shown 
below. Patient samples with E samples and treated with Ribociclib 
were selected for analysis in this project. Thus 14 samples were 
analyzed, P12_E, P13_E, P21_E, P22_E, P25_E, P27_E, P30_E, 
P31_E, P33_E, P34_E, P35_E, P37_E, P38_E, P40_E, of which 7 
responded to treatment and 7 did not (Table 1). 

We downloaded the FPKM expression profiles, OS, and clinical 
information of GDC TCGA-BRCA from UCSCXena (https:// 
xena.ucsc.edu/), and retained 1059 tumor samples with both 
expression and survival information for the training set of TPRI 
modeling, miRNA Expression Quantification data for differential 
Frontiers in Oncology 03 
miRNA analysis and Illumina Human Methylation 450 data of 
DNA methylation for differential methylation CpG site analysis. 
Finally we download Breast Invasive Carcinoma (TCGA, 
PanCancer Atlas) data from cbioportal, extracting mutation data, 
CNA data, and clinical data including TMB. 

The RNA-seq dataset GSE186901 was downloaded from the 
GEO database with CDK4/6i (Palbociclib) treatment response 
information and patient clinical data. There are 90 samples, 
which are WTS (RNA-Seq) data of 71 patients before and after 
Palbociclib treatment. Based on the Progressive Disease (PD) event 
in the clinical data, patients with a PD event of 0 were classified as 
responding to treatment and patients with a PD event of 1 were 
classified as not responding to treatment (refractory). The 90 
samples included baseline samples from patients with a PD event 
of 0, and baseline and PD samples from patients with a PD event of 
1. Seventeen baseline samples were selected from patients who 
responded to treatment and 47 baseline samples were selected from 
patients who did not respond to treatment. 

We download the RPKM data for GSE130437 and GSE222367 
from the GEO database, which is used for validation of prognostic 
genes. For GSE130437, there are a total of 12 datasets, divided into two 
cell  lines:  the MCF7 cell line and  the MDAMB231 cell line. The MCF7 
cell line includes 3 parental cell line replicates as controls and 3 
palbociclib-resistant replicates; the MDAMB231 cell line includes 3 
parental cell line replicates as controls and 3 palbociclib-resistant 
replicates. As for GSE222367, the MCF7 cell line includes 6 parental 
cell line replicates as controls, 12 palbociclib-resistant replicates, and 9 
Abema-resistant replicates; the T47D cell line includes 3 parental cell 
line replicates as controls and 12 palbociclib-resistant replicates. 
3 Methods 

3.1 Analysis of scRNA-seq data 

Fourteen samples from the GSE158724 dataset were processed 
using the R package Seurat (v5.1.0) (19). To ensure data quality, we 
applied widely adopted quality control thresholds (20): (1) genes 
were retained only if expressed in at least 3 cells, to eliminate 
sparsely expressed noise genes; (2) cells with fewer than 200 
detected genes were excluded to remove low-complexity or empty 
droplets; (3) cells with >15% mitochondrial gene content were 
filtered out to reduce the influence of potential apoptotic cells. 

Transcriptomic data processing proceeded through four key 
stages: (1) Expression normalization: Cellular transcript counts 
were standardized by log-transformed library size scaling, 
ensuring comparability across heterogeneous cellular libraries; (2) 
Feature selection: Highly variable genes (n=2000) were identified 
through mean-variance relationship modeling, prioritizing 
transcripts with dispersion exceeding technical noise thresholds; 
(3) Inter-sample integration: Batch effects were corrected via 
reciprocal pairwise canonical correlation analysis (CCA) coupled 
with mutual nearest neighbor anchoring, followed by multi­

dimensional scaling-based harmonization; (4) Dimensionality 
reduction: Principal component analysis (PCA) was performed on 
TABLE 1 The sample information of P11 through P46 in 10x single cells: 
the second column in the table is whether or not there was a response 
to treatment, and the third column is whether or not a CDK4/6 i was 
used in the treatment (i.e. Ribociclib). 

Patient Response Ribociclib given or 
endocrine alone 

P11 No Phase E samples 

P12 Non-responder 1 

P13 Non-response 1 

P14 Response 0 

P15 Non-response 0 

P16 Responder 0 

P17 No Phase E samples 

P18 No Phase E samples 

P19 No Phase E samples 

P20 Non-response 0 

P21 Responder 1 

P22 Response 1 

P23 No Phase E samples 

P24 No Phase E samples 

P25 Response 1 

P26 No Phase E samples 

P27 Response 1 
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the integrated feature space comprising 2,000 highly variable genes 
(HVGs), a standard parameter optimized to balance biological 
signal retention and technical noise suppression in single-cell 
transcriptomic analysis. The top 30 principal components 
(cumulative variance >80%) were retained for downstream 
uniform manifold approximation and projection (UMAP) 
visualization  and  graph-based  clustering  (20, 21).  All  
computational workflows were implemented using Seurat (v4.3.0) 
with default parameters. 
3.2 Identification and characterization of 
regulons 

Given the unique advantages of single-cell transcriptome data 
in resolving cellular heterogeneity, dynamic regulatory states and 
cell subpopulation-specific regulatory features, in this study, we 
adopted the pySCENIC multimodal analysis framework (22), 
constructed an initial co-expression network to identify potential 
transcription factor (TF)-target gene relationships through the 
GRNBoost2 algorithm, combined with RcisTarget’s cis-regulatory 
element analysis to screen gene sets with regulatory features 
(regulon), and AUCell was used to quantify the regulon activity 
score (RAS) at the single-cell level, and ultimately screen drug-
resistant tumor cells (treatment-unresponsive subpopulation) 
specific regulatory networks by Mann-Whitney U test. 
 

3.3 Construction of TPRI 

The Tumor Prognostic Regulon Index (TPRI) integrates cross-
scale regulatory features derived from single-cell and bulk omics. 
Specifically, single-cell data capture therapy-responsive 
transcriptional circuits at cellular resolution, whereas bulk data 
enable quantification and validation of these regulatory patterns 
across population cohorts (TCGA, n=1,059). TPRI thus reflects the 
aggregate activity of resistance-associated regulons at the tissue 
level, bridging single-cell mechanisms to clinical prognosis. 

Based on the TCGA training set, the target gene set of each regulon 
specific to drug-resistant tumor cells was enriched using the R package 
GSVA to obtain the TCGA sample enrichment score of each regulon; 
the GSVA enrichment score of each TF was univariate regression 
analyzed using the R package coxph for survival, and the five 
independent prognostic TFs were identified. The regression 
coefficients of the independent prognostic TFs of each patient were 
multiplied by the GSVA enrichment scores of the corresponding target 
genes of the TFs, and then the scores of the five TFs were summed up 
to obtain the tumor prognostic regulator index (TPRI) of each patient 
(23). The TPRI score for each sample was calculated as follows: 

5 
TPRI = obi · Si 

i=1 

where: 
bi: Regression coefficient of the i-th prognostic TF derived from 

Cox analysis. 
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Si: GSVA enrichment score of the target genes regulated by the 
i-th TF. 
3.4 Calculation of the stemness index of 
mRNA expression 

The mRNA stemness index (mRNAsi) of tumor malignant cell 
subpopulations was computed through a one-class logistic regression 
framework with elastic net regularization (L1/L2 norm penalties), 
trained on human stem cell transcriptomic reference data from the 
Progenitor Cell Biology Consortium (PCBC; https://www.synapse.org). 
This penalized regression model, optimized for sparse feature 
selection and overfitting prevention, was subsequently applied to 
quantify stemness characteristics in malignant tumor cells (24). 
3.5 Analysis of differential gene/methylated 
CpG site/miRNA 

The FPKM expression profiles of TCGA-BRCA were analyzed 
by R package limma for differential gene expression according to 
high and low risk groups, and 220 differential genes were screened 
by adj.pval<0.05, |log2FC|>1, and gene ontology (GO) enrichment 
analysis was performed by enrichGO of R package clusterProfiler, 
and 355 enriched pathways were obtained; the Illumina Human 
Methylation 450 data of TCGA-BRCA were analyzed by limma 
according to high and low risk groups, and 355 enriched pathways 
were acquired. We obtained 355 enriched pathways, and used 
limma to analyze the Illumina Human Methylation 450 data of 
TCGA-BRCA according to the high and low risk groups, and 
identified 7243 differentially methylated sites with adj. pval<0.05 
and |log2FC|>1. The miRNA expression profiles of TCGA-BRCA 
were differentially analyzed according to high and low risk groups 
using limma, and 49 specific miRNAs were identified as highly 
expressed in the high-risk group and 38 miRNAs were identified as 
highly expressed in the low-risk group using adj.pval<0.05. 
3.6 qRT-PCR analysis 

This study included CDK4/6 inhibitor-resistant breast cancer 
cell lines. Total RNA was extracted from these cells using an RNA 
isolation kit (5201050, Simgen, China). An aliquot of 2 mL of the 
extracted RNA was used for RNA quantification analysis. Total 
RNA was then reverse transcribed into cDNA using a reverse 
transcription kit (RR037A, Takara, Japan) according to the 
manufacturer’s instructions. Subsequently, real-time quantitative 
PCR (qRT-PCR) was performed using TB Green Premix Ex Taq II 
(RR820A, Takara, Japan). Data were normalized to GAPDH as the 
control. The primer sequences used are as follows: ETV3 (left 
primer:  CCTCCAGGAATGCCATTGGT;  r ight  primer:  
ACATCCCTGGCCTAGCAAAC);  FOXO1  ( left  primer:  
T G T C A A C C T A T G G C A G C C A G ;  r i g h t  p r i m e r :  
TTGGGTCAGGCGGTTCATAC);  NFIL3  ( le f t  primer :  
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CA T G T C GG AG GAAA CGGGAA ;  r i g h t  p r i m e r :  
GTCGACGCTTCTCACGAGAT);  TEAD4  ( lef t  primer:  
A G G A T C T C T T C G A A C G G G G A ;  r i g h t  p r i m e r :  
ATACTGGCTGGAGACCCCAT); 

ATF1 (left primer: TGACACAAGGGCGTCTGTAC; right 
primer: ATGTGAGCTCCCTGAACTGC). The relative expression 
of genes was determined using the 2-DDCT method. 

Expression  levels  of  ATF1, TEAD4, NFIL3, FOXO1, and  ETV3  ­
were compared between resistant and control replicates across multiple 
datasets. For the GSE130437 dataset, expression comparison was 
performed in MCF7 and MDA-MB231 cell lines using 3 resistant 
replicates versus 3 control replicates. For the GSE222367 dataset, 
expression comparison was performed in the MCF7 cell line using 
12 resistant replicates versus 6 control replicates. For the GSE222367 
dataset, expression comparison was performed in the T47D cell line 
using 12 resistant replicates versus 3 control replicates. RPKM data 
were processed by applying a log2(RPKM + 1) transformation, and box 
plots were generated to visualize the results. 

Biological informatics analysis and data visualization were 
performed using R software (version 4.3.3). Statistical analysis 
was performed using GraphPad Prism (version 9.0). Group 
comparisons were made using Student’s t-test for two groups, and 
one-way ANOVA for three or more groups (with Holm-Sidak’s 
multiple comparison). Statistical significance was set at P < 0.05. 
4 Result 

4.1 Cell-specific transcriptional GRN 
identifies differential treatment response in 
tumor cells 

The workflow is outlined in Figure 1. Fourteen samples from 
the GSE158724 dataset were processed using the R package Seurat 
FIGURE 1 

The workflow of this study. 
FIGURE 2 

Distribution of regulator expression activity in cells. (A) Single-cell UMAP clustering, shown according to the distribution of samples. (B) UMAP 
showing the distribution of regulator expression activity in cells. 
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(v5.1.0), and then using pySCENIC, 276 regulons were identified. 
AUCell regulon activity was differentially tested for each cell 
according to CDK4/6 inhibitor treatment response/non-response 
using wilcox.test from the R package, with alternative set to greater 
to account for highly expressed regulons in the non-response group, 
86 regulons were screened out using adj.pval<0.05. 

Highly variable genes were identified via mean-variance 
relationship modeling. Inter-sample batch effects were mitigated 
through canonical correlation analysis (CCA) with mutual nearest 
neighbor alignment, followed by multi-dimensional scaling 
integration using Seurat. Based on the highest 2000 highly 
variable genes, principal component analysis was performed, and 
the top 30 principal components were chosen for UMAP clustering 
(Figure 2A), and UMAP was used to show the distribution of 
regulon expression activity in the cells (Figure 2B). 
4.2 Prognostic regulon signature 
identification and TPRI construction 

Based on the 86 key regulons specific to drug-resistant tumor 
cells, since each TF has multiple corresponding target genes, the 
target genes of the same TF were combined to obtain the 86 TFs and 
their corresponding target gene sets. The GSVA enrichment 
analysis was performed on the target gene set of each regulon 
based on the TCGA-BRCA expression profile training set to obtain 
the enrichment score of each regulon. Based on the enrichment 
scores of the regulons and the prognostic information of OS and 
OS. time, five independent prognostic TFs were identified by 
univariate cox regression analysis with a p-value of <0.05, which 
Frontiers in Oncology 06
were identified as “ATF1”, “TEAD4”, “NFIL3”, “FOXO1” and 
“ETV3” respectively. The cox proportional risk regression 
coefficients of the five independent prognostic TFs were 
multiplied by the GSVA enrichment scores of the target gene sets 
of the TFs, and then the scores of the five TFs of each TCGA sample 
were summed to get the TPRI of each sample. Using the 
surv_cutpoint of the R package survminer, the optimal clinically 
useful TPRI cutoff value of 0.7968428 (Figure 3) was identified using 
the maximum choice rank statistic, and patients were categorized 
into high- and low-risk subgroups based on the optimal 
cutoff value. 
4.3 TPRI differentiate different therapeutic 
responses to CDK4/6 i with good 
prognostic efficacy 

Based on the TCGA-BRCA data, analyzed by high/low risk 
grouping using limma, 1464 differential genes were obtained 
according to adj. pval<0.05, |log2FC|>0.5, and 2 overlapped with 
5 independent prognostic TFs as “FOXO1” and “NFIL3”. 

The RNA-seq dataset GSE186901 with CDK4/6 inhibitor 
treatment response information was selected from public 
databases as the validation set, and GSVA analysis was performed 
on the dataset according to the 5 independent prognostic TFs and 
the GSVA enrichment scores of the 5 TFs were obtained. The cox 
proportional regression risk coefficients of the five TFs obtained 
from the TCGA data were multiplied by the GSVA enrichment 
scores of the TFs obtained from the GSE186901 dataset to calculate 
the TPRI of each patient, and the optimal TPRI cutoff value of 
FIGURE 3 

Selection of optimal cutoff value. 
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clinically usefulness was identified by the maximum choice rank 
statistic to be -0.1971562, then the patients in the validation set were 
categorized into high-risk and low-risk subgroups according to it. 
Now the patients have two sets of information, one is the PD event 
of whether they responded to drug treatment or not, and the other is 
the high/low risk subgroup. To verify whether there is a significant 
difference in the distribution of patients responding/not responding 
to the treatment between the high/low risk groups, Fisher’s Exact 
Test was used, and the p-value was obtained as 0.02368, it can be 
proved that the grouping of the TPRI model has a significant effect 
on the prediction of drug resistance. 

Survival analysis demonstrated consistent prognostic 
stratification by TPRI in both training (TCGA) and independent 
validation (GSE186901) cohorts (log-rank p<0.05, Figures 4A, B). 
Three key design principles ensure model generalizability: (1) 
Single-cell data were solely used for regulon discovery, while 
TPRI training relied entirely on TCGA bulk data (n=1,059), 
minimizing population bias from limited single-cell cohorts 
(n=46 patients); (2) TF selection through univariate Cox 
regression (p<0.05) remained independent of molecular subtypes; 
(3) Validation in GSE186901 confirmed TPRI’s applicability across 
diverse genetic backgrounds. 
4.4 Integrating genomes to explore the 
genomic features related to CDK4/6 i 
treatment response in TPRI subgroups 

The genomic differences between the high and low risk groups 
of the TCGA dataset are shown below, mutations, and copy number 
variations (Figure 5A) did not differ significantly between the 
two groups. 

Based on the public dataset GSE186901, using the t-test between 
patients who responded to treatment and those who did not, 
although the p value of the difference in TPRIs was 0.1451, which 
was greater than 0.05, indicating that there was no significant 
difference in the distribution of TPRIs. However, according to 
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Figure 5B, the distribution of TPRI scores of the patients with a 
PD of 0 (who responded to treatment, i.e., low risk) was higher than 
the distribution of TPRI scores of the patients with a PD of 1 (who 
did not respond to treatment, i.e., low risk). 

The TCGA data were further subdivided into subgroups based 
on age, with those older than or equal to 60 years in a group of 438 
patients and those younger than 60 years in a group of 524 patients. 
The genomic analysis of the age-grouped patients was performed 
according to high and low risk, and it was seen that there was little 
genomic change between high and low age (Figures 5C, D). 

The mRNAsi values of each patient were calculated (Figures 5E, 
F), and the wilcox test was performed according to the distribution 
of the mRNAsi values in the high/low risk groups. The p-value of 
the difference in mRNAsi values for patients over 60 years old was < 
2.2e-16, and the p-value of the difference in mRNAsi values for 
patients under 60 years old was 7.032e-16, which proved that the 
mRNAsi values of low-risk patients were significantly lower than 
those of high-risk patients, suggesting that the stemness of the cells 
of patients with higher drug resistance is also higher. 
4.5 Contribution of TPRI in different 
transcriptomes, epigenomes and miRNAs 
characterization 

The gene variability between high and low risk groups based on 
the TCGA data was calculated by limma, and 220 genes were 
screened according to the criteria of adj p value<0.05, |log2FC| > 1. 
GO enrichment analysis was performed on these 220 genes, and 355 
pathways were obtained (Figure 6A), which were mainly enriched 
in pathways of immune and inflammation-related processes (e.g. B/ 
T cell-mediated immunity, immunoglobulin/complement system, 
and various chemokines/miRNAs), as well as in cell adhesion, 
cytoskeletal/extracellular matrix remodeling, and signal 
transduction regulation. Suggesting that different genes in the 
high and low risk groups are involved in immune defense, which 
is potentially related to drug resistance (Supplementary Table S1). 
FIGURE 4 

Survival analysis for training and validation sets. (A) Comparison of survival curves between high and low risk groups of TCGA-BRCA. (B) Comparison 
of survival curves between high and low risk groups of GSE186901. 
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FIGURE 5 

Visualization of genomic features associated with CDK4/6 therapeutic response. (A) Genomic mutation map of TCGA-BRCA, from top to bottom, 
the first part is the distribution of TMB, the second part is the mutation status, and the third part is the distribution of CNA in the genome. (B) 
GSE186901 according to the PD grouping, 0 is the response to the treatment, and 1 is the non-response to the treatment, the distribution of the 
TPRI value of both groups. (C) Genomic mutation map of patients aged 60 years or above in TCGA data. (D) Genomic mutation map of patients 
under 60 years old; E: high and low risk of patients over 60 years old. (F) mRNAsi distribution of high- and low-risk groups of patients under 60 
years old. 
Frontiers in Oncology 08 frontiersin.org 

https://doi.org/10.3389/fonc.2025.1585574
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yan et al. 10.3389/fonc.2025.1585574 

Frontiers in Oncology 09
The miRNAs were grouped according to their risk, and the 
miRNA differences between the groups were calculated by limma as 
well. 87 differential miRNAs were screened out according to the 
criteria of adj p value<0.05, |log2FC|>0.5, 49 miRNAs with higher 
expression in the high-risk group, and 38 miRNAs with higher 
expression in the low-risk group. The miRNAs with the highest | 
logFC| were selected, and the network diagrams of miRNAs and 
target genes were plotted using mienturnet (25) (Figures 6B, C). It 
can be seen from the enriched pathways in the target genes of 
miRNAs that the high-risk group had enrichment in the mTOR 
signaling and the cancer related pathways, which was highly 
correlated with the occurrence of cancer (Supplementary Table S2). 

The beta value of the methylation data was converted to M 
value, and the differentially methylated CpG sites between the high-
and low-risk groups were calculated by limma, and 7243 
differentially methylated sites were removed according to the 
criteria of adj p value<0.05, |log2FC| > 1. The heat map of 
differentially methylated sites (Figure 6F) showed that the 
methylation level was higher in the high-risk group. Studies have 
showed that methylation alteration is not only associated with 
tumorigenesis, but also may encourage the evolution of tumor 
cells and the acquisition of drug resistance, which is consistent 
with the results that higher drug resistance in the high-risk group. 
Methylation also tends to lead to transcriptional repression of 
related genes (including tumor suppressor genes), which may also 
explain a worse prognosis (Supplementary Tables S3-4). 
4.6 Multimodal data to identify the 
prognostic risk stratification of patients in 
different treatment response groups 

A multivariable logistic regression framework was implemented 
to predict overall survival (OS) outcomes, integrating the Tumor 
Prognostic Regulon Index (TPRI) with differentially expressed 
genes and miRNAs. A total of 3 models were constructed: (1) 
Baseline model: TPRI as the sole predictor; (2) Transcriptomic 
expansion model: TPRI combined with the 30 most significant 
differentially expressed genes (adjusted p-value <0.05, |log2FC|>1); 
and (3) Multi-omics integration model: TPRI augmented with both 
the top 30 miRNAs exhibiting strongest differential expression 
signals (FDR<0.05). Methylation data were excluded from model 
construction due to substantial sample size discrepancy (n=646 
methylation vs. n=1,059 transcriptomic profiles), which would 
introduce cohort-specific bias during multimodal integration. 

The performance of the prediction model was evaluated using 
ROC curves and area under the curve (AUC) to assess the ability of 
the model to distinguish prognostic risks. The results were shown in 
Figure 7A, the third model with TPRI+30 differential genes+30 
miRNAs as variables had the largest AUC and the best prediction 
effect, and the 95% confidence interval (CI) of the third model was 
0.6575-0.75, which indicated that the model had a good 
discriminatory ability. 
 frontiersin.o
FIGURE 6 

Visualization of the contribution of TPRI to the characterization of 
different transcriptomes, epigenomes and miRNAs. (A) The first 20 
GO enrichment results of differential genes. (B) Network diagram of 
miRNAs and their target genes enriched in the high-risk group. (C) 
Network diagram of miRNAs and their target genes enriched in the 
low-risk group. (D) KEGG pathway enrichment of miRNA targets in 
the low-risk group. (E) KEGG pathway enrichment of miRNA targets 
in the high-risk group. (F) Heat map of differentially methylated sites. 
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Nomogram calibration plots using R-package rms showed that the 
probabilities predicted by the models were generally good (Figure 7B). 
4.7 Validation of the expression of 
prognostic genes 

ATF1 showed no significant changes across all four comparative 
analyses. ETV3 was significantly downregulated in the resistant 
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group in two datasets (Figures 8C, D). FOXO1 was significantly 
upregulated in the resistant group in one dataset (Figure 8D). 
NFIL3 was significantly upregulated in the resistant group in two 
datasets (Figures 8C, D). TEAD4 was significantly upregulated in 
the resistant group in one dataset (Figure 8C) and significantly 
downregulated in another dataset (Figure 8D). However, qRT-PCR 
results demonstrated significantly increased expression of ‘ATF1’, 
‘TEAD4’, ‘NFIL3’, ‘FOXO1’, and  ‘ETV3’ in the resistant 
group (Figure 9). 
FIGURE 7 

Logistic regression model. (A) ROC curves showing the predictive power of the three models. (B) Calibration plots showing the consistency of the 
predicted probabilities of the evaluation models with the actual frequency of observations. 
FIGURE 8 

Expression of genes in single cells. Box plot of prognostic gene expression in control and resistant. (A) Comparison of the expression in resistant and 
control MCF7 cell lines from GSE130437 dataset. (B) Comparison of the expression in resistant and control MDAMB231 cell lines from GSE130437 
dataset. (C) Comparison of the expression in resistant and control MCF7 cell lines from GSE222367 dataset. (D) Comparison of the expression in 
resistant and control T47D cell lines from GSE222367 dataset. 
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5 Discussion 

Dysregulation of regulatory programs is an important factor in 
tumor development. Single-cell histology studies have increasingly 
shown that intra-tumor heterogeneity is a significant marker of it. 
We developed TPRI based on BC single-cell sequencing data and 
multi-omics data by constructing GRNs with the SCENIC 
algorithm for accurate prediction of differential response to 
CDK4/6 inhibitor therapy in BC patients. Patients were divided 
into high- and low-risk groups according to TPRI, and there was a 
significant difference in the OS rate between them, suggesting that 
TPRI has a good differentiation of tumor prognosis. Moreover, it 
was found that patients in the high-risk group had a higher cell 
stemness index, while TPRI was used as a model for predicting 
differential response (resistance/non-resistance) to CDK4/6 
inhibitor therapy, the high-risk group corresponded to a higher 
likelihood of resistance, and the high cell stemness index of the 
group was in line with its tendency to have a stronger self-renewal 
as well as drug-resistance potential. The differential genes between 
the groups were mainly enriched in the immune pathway, 
suggesting that the TPRI high-risk group may have specific 
alterations in the immune microenvironment or immune escape, 
which also provides a reference for the subsequent immunotherapy 
strategy. The predictive effect of the TPRI index model was verified 
by the validation set, and there were significant differences in 
treatment response and survival rates between the high- and low-
risk groups of patients in the validation set, which proved that the 
model had a good differentiation and predictive effect on prognosis 
and treatment response. Combining the TPRI with differential 
genes and miRNA for logistic regression modeling, the AUC of 
the model was 0.694, indicating that the model has a good 
differentiation of prognosis. 

In this study, we present five independent prognostically relevant 
regulons. These gene signature have been reported to be significant in 
BC tumorigenesis. Take ATF1 for example, in the process of neural 
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signals in TME steering cancer stemness’ establishing the hierarchical 
structures of malignant cells, ATF1 enhances cancer stemness by 
simultaneously activating both nuclear pluripotency factors MYC/ 
NANOG and mitochondrial biogenesis regulators NRF1/TFAM, 
thus driving nuclear reconfiguration and mitochondrial renewal 
across various cancer types including BC (26). This is consistent 
with the result that the TPRI high-risk group had higher stemness. 
Moreover, ATF1 also promotes CXCR4 expression in BC cells by 
binding to the CRE/AP-1 element on the CXCR4 promoter, which 
enhances migration, invasion and metastasis of BC cells (27).Studies 
also showed that it promote ICD development through involving in 
angiogenesis (28). ATF1 also promotes FRA-1 expression by binding 
to the ATF site on the FRA-1 promoter, thereby enhancing the 
response of cancer cells to mitogens (29). ATF1 is involved in the 
regulation of PKC/MAPK and PKC/Src pathways through ATP 
stimulation of P2Y(2) and P2Y(4) receptors, which promotes the 
phosphorylation of ATF1 in breast cancer cells and drives BC 
progression (30). TEAD4 (TEA Domain Transcription Factor 4) is 
widely known as the DNA-binding protein in the YAP transcription 
complex, which is regulated by the Hippo pathway. It acts primarily 
as a nuclear protein but is also localized to mitochondria, and 
enhances metastasis, cancer stem cells and drug resistance through 
cytoplasmic translocation (31). Through the regulation of YAP1, 
TEAD4 binds to the TIAM1 enhancer region, thereby activates the 
expression of TIAM1 and subsequently increases the activity of 
RAC1 and induces the formation of invadopodia formation and 
promotes tumor metastasis (32). The novel transcriptional target of 
TEAD4, RBM8A, also interacts with EIF4A3 to increase the 
expression of IGF1R and IRS-2 and activate the PI3K/AKT 
signaling pathway, which further promotes the  malignant

phenotype of BC cells (33). In a major study it was found that, the 
upregulation of the TEAD coactivator VGLL1 mediates 
transcriptional reprogramming and indirectly grants resistance to 
estrogen receptor (ER) degraders in BC (34). The bZIP 
transcriptional blocker NFIL3 (nuclear factor interleukin 3­
FIGURE 9 

Expression of genes was verified using qRT-PCR. ***P < 0.001, ****P <0.0001. 
frontiersin.org 

https://doi.org/10.3389/fonc.2025.1585574
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yan et al. 10.3389/fonc.2025.1585574 

 

regulated) is overexpressed in different cancers and reduces histone 
acetylation by combining with neighboring DNA and recruiting 
histone deacetylase-2 (HDAC2), which prevents the entry of FOXO 
(Forkhead O) (FOXO1, FOXO3, and FOXO4) transcription factors 
into TRAIL promoters and into chromatin at the tumor promoter. 
chromatin at the TRAIL promoter to support tumor cell survival 
(35). SOX2 is a transcriptional factor for cancer stemness, whose 
transcriptional expression is promoted by the accumulated FOXO1, 
which in turn, stimulates FOXO1 transcription and shapes a positive 
regulatory loop (36). Overexpression of the ETS transcription factors 
ETV3 and ELF3 is relevant to the most common genomic copy 
number increase in BC (1q21 and 1q32) at these loci, and the 
expression of the oncogene MYC correlates with the expression of 
ETV3 and ELK4 (37). 

We categorized all samples into low-risk and high-risk groups 
based on TPRI. And we observed that the differential genes were 
mainly enriched in pathways of immune and inflammation-related 
processes (e.g., B/T cell-mediated immunity, immunoglobulin/ 
complement system, and various types of chemokine/cytokine 
signaling), and were also significantly enriched in cell adhesion, 
cytoskeleton/extracellular matrix remodeling, and signal 
transduction regulation. This suggests that the differential genes 
are involved in immune defense, which is potentially relevant to 
drug resistance. In addition, according to the pathway of miRNA 
target gene enrichment, the high-risk group was enriched in the 
mTOR signaling pathway. mTOR is an atypical serine-threonine 
kinase, present between mTORC1 and raptor and PRAS40, and 
between mTORC2 and rictor, mSIN1 and protor-1/2 (38), is one of 
the most frequently activated pathways in BC (39). Activation of the 
PI3K/AKT/mTOR signaling pathway is a contributing factor to 
disease progression in HR+/HER2- ABC patients with CDK4/6i, 
and blockade of this signaling pathway is an important area to 
explore for post-progression therapy. Our study also confirms this. 
A real-world study in the United States (40) retrospectively

analyzed the efficacy of 41 HR+/HER2- BC patients at the 
University of Pittsburgh Medical Centers in Roswell and 
Pittsburgh, USA, who were treated with everolimus follow-up 
after progression on perphenazine therapy, and the results 
showed that the median PFS was 4.2 months, and the median OS 
reached approximately 18 months. After progression of first-line 
CDK4/6 inhibitors, endocrine combination with other targeted 
therapies, such as CDK4/6 inhibitor reuse, PI3K inhibitors, 
mTOR inhibitors, and AKT inhibitors, may be hopefully a new 
option for patients. Although relevant researches are still being 
tested, our result supports it. Although age is often recognized as a 
risk factor for cancers, in this study, age differences did not cause 
significant gene expression changes or genomic variation at the 
genomic level. This may imply that BC development and 
progression are mainly driven by other factors (e.g., tumor 
molecular characteristics) rather than by age alone. And it 
indirectly suggests that TPRI may be a key factor contributing to 
the prognostic differences between different age groups. 
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Finally, TPRI, 30 differential genes combined with differential 
miRNAs (the top 30 miRNAs with the smallest adj.pvalue) were 
used as variables to establish a prediction model, which predicts the 
patients’ sensitivity to drugs and quantifies the prognostic risk, and 
provides a basis for personalized treatment based on the multi-level 
information of patients’ gene expression, miRNA expression and 
stemness characteristics. For example, for high-risk patients, a more 
aggressive treatment regimen may be required, while low-risk 
patients can be treated relatively conservatively. We also found 
that some core TFs play a regulatory role for tumor resistance, and 
the development of antitumor drugs specifically targeting these TFs 
will be necessary in the future. Overall, the model provides a more 
detailed prognostic risk stratification of BC patients, which helps 
clinical judgment of patients’ treatment options, possible 
therapeutic efficacy, and provides direction for future research. 

We admit the limitations of this paper. The construction of this 
model relies on samples from the TCGA dataset, which, despite the 
large sample size, is still limited for different clinical subtypes, 
genomic backgrounds, and treatment responses. In this study, the 
model did not include methylation data due to the sample size of it 
was inconsistent with other data, which may result in the model 
failing to take full advantage of the influence of epigenetics, and the 
lack of this information may affect the completeness of the model 
and the prediction accuracy. Moreover, in real clinical applications, 
the treatment response of different patients is affected by a variety of 
factors (e.g., immune system, tumor microenvironment, etc.), and 
the predictive effect of the model may differ from the real clinical 
situation. A large number of clinical studies are still needed to 
validate it. Overall, although this study presents an effective 
prognostic model for breast cancer, there are limitations in terms 
of limited sample size, single data source, complexity of the model 
and lack of clinical validation. Future studies can further improve 
the model by increasing the sample size, including methylation data 
and more clinical treatment information, and conducting 
multicenter and large-scale clinical validation. 
6 Conclusion 

To summarize, this study integrates scRNA-seq and multi-omics 
data with machine learning to develop a multimodal predictive model 
for CDK4/6i-resistant BC patients. By combining the TPRI, 
differentially expressed genes, and miRNAs, we enhanced risk 
stratification and predictive accuracy for patient outcomes. And the 
integrated multi-omic analysis revealed that the two subgroups based 
on TPRI had different survival outcomes, transcriptome, epigenome, 
and miRNAs signatures. They provide an in-depth comprehension of 
the heterogeneity of TPRI and the potential for treatment methods to 
be more personalized. Further studies should highlight on the 
potential of multi-omics data and machine learning in advancing 
precision medicine, and the exploration of additional markers and 
validation with larger datasets. 
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7. Rugo HS, Finn RS, Diéras V, Ettl J, Lipatov O, Joy AA, et al. Palbociclib plus 
letrozole as first-line therapy in estrogen receptor-positive/human epidermal growth 
factor receptor 2-negative advanced breast cancer with extended follow-up. Breast 
Cancer Res Treat. (2019) 174:719–29. doi: 10.1007/s10549-018-05125-4 
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