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Background and objective: Accurate diagnosis of brain tumors significantly

impacts patient prognosis and treatment planning. Traditional diagnostic

methods primarily rely on clinicians’ subjective interpretation of medical

images, which is heavily dependent on physician experience and limited by

time consumption, fatigue, and inconsistent diagnoses. Recently, deep learning

technologies, particularly Convolutional Neural Networks (CNN), have achieved

breakthrough advances in medical image analysis, offering a new paradigm for

automated precise diagnosis. However, existing research largely focuses on

single-task modeling, lacking comprehensive solutions that integrate tumor

segmentation with classification diagnosis. This study aims to develop a multi-

task deep learning model for precise brain tumor segmentation and

type classification.

Methods: The study included 485 pathologically confirmed cases, comprising

T1-enhanced MRI sequence images of high-grade gliomas, metastatic tumors,

and meningiomas. The dataset was proportionally divided into training (378

cases), testing (109 cases), and external validation (51 cases) sets. We designed

and implemented BrainTumNet, a deep learning-based multi-task framework

featuring an improved encoder-decoder architecture, adaptive masked

Transformer, and multi-scale feature fusion strategy to simultaneously perform

tumor region segmentation and pathological type classification. Five-fold cross-

validation was employed for result verification.

Results: In the test set evaluation, BrainTumNet achieved an Intersection over

Union (IoU) of 0.921, Hausdorff Distance (HD) of 12.13, and Dice Similarity

Coefficient (DSC) of 0.91 for tumor segmentation. For tumor classification, it

attained a classification accuracy of 93.4% with an Area Under the ROC Curve

(AUC) of 0.96. Performance remained stable on the external validation set,

confirming the model’s generalization capability.
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Conclusion: The proposed BrainTumNet model achieves high-precision

diagnosis of brain tumor segmentation and classification through a multi-task

learning strategy. Experimental results demonstrate the model’s strong potential

for clinical application, providing objective and reliable auxiliary information for

preoperative assessment and treatment decision-making in brain tumor cases.
KEYWORDS

brain tumor diagnosis, deep learning, multi-task learning, medical image analysis,
Convolutional Neural Networks
1 Introduction

Brain tumors are common and severe central nervous system

diseases where early detection and accurate diagnosis are crucial for

treatment planning and prognosis evaluation. The three most

common types of brain tumors - gliomas, metastatic tumors, and

meningiomas - present similar imaging characteristics. Traditional

diagnostic procedures primarily rely on radiologists’ interpretation of

Magnetic Resonance Imaging (MRI) data. However, this subjective

assessment method has significant limitations in efficiency,

consistency, and accuracy. With continuous advancement in

medical imaging equipment and accumulation of clinical data,

artificial intelligence-based diagnostic support systems have shown

immense potential for application (1).Deep learning technologies,

particularly Convolutional Neural Networks (CNN), have achieved

breakthrough progress in medical image analysis. From the initial

LeNet to the revolutionary AlexNet, and then to deeper architectures

like VGGNet and ResNet, deep learning models have continuously

improved in feature extraction and pattern recognition capabilities.

In recent years, specialized networks for medical image segmentation,

such as U-Net and V-Net, have further advanced medical image

analysis. Notably, the successful application of Transformer

architecture in computer vision has opened new research directions

in medical image processing, with Vision Transformer (ViT) and

Swin Transformer models demonstrating exceptional performance in

various medical imaging tasks.

Current research in intelligent brain tumor diagnosis primarily

follows two directions: improving segmentation accuracy, which is

prerequisite for 3D image reconstruction, neural navigation, and 3D

printing technologies; and enhancing classification accuracy, which

forms the foundation of intelligent diagnostic assistance. In terms of

segmentation, researchers have proposed various improvement

strategies: Ahmed et al. (2) designed a segmentation network

based on 3D U-Net, achieving a Dice Similarity Coefficient (DSC)

above 0.85 through residual connections and depth-separable

convolutions; Wang et al. proposed an attention-enhanced

segmentation network (3), integrating multi-scale feature

extraction and spatial attention mechanisms, achieving significant

performance improvements on the BraTS dataset. Regarding

classification, Akhil et al. (4) utilized an improved ResNet
02
structure to extract discriminative information from ROI features,

achieving 92% classification accuracy through multi-modal data

fusion strategies; Li et al.’s Transformer-based classification

framework demonstrated superior performance to traditional

CNN models through effective capture of global contextual

information via self-attention mechanisms. However, existing

research mostly adopts independent or sequential approaches to

handle segmentation and classification tasks. This separated

approach has several disadvantages: 1) high model training costs,

requiring separate models for different tumors and tasks, 2) low

computational efficiency potentially leading to inconsistent

expressions, and 3) high operational costs of multiple dispersed

models unsuitable for clinical applications.

Addressing these issues, this study proposes a novel network

architecture, BrainTumNet, achieving unified modeling of brain

tumor segmentation and classification. The network innovatively

designs a dual-path feature extraction module, integrating CNN’s

local feature learning capabilities with adaptive masked Transformer’s

global modeling advantages. Through a multi-scale feature fusion

mechanism, it achieves information complementarity and

collaborative optimization between segmentation and classification

tasks, solving automatic segmentation and classification of different

tumors through an end-to-end one-stop model.

The main innovations of this study include: (1) proposing a

unified multi-task learning framework BrainTumNet; (2) designing a

feature fusionmechanism and adaptive mask attention mechanism to

effectively integrate spatial and semantic information; (3) achieving

superior comprehensive performance compared to existing methods,

providing a reliable diagnostic assistance tool for clinical practice.

This research presents a new technical solution for the development

of intelligent medical image analysis.
2 Materials and methods

2.1 Experimental preprocessing

2.1.1 Data collection and selection
As shown in Figure 1, the study retrospectively utilized a dataset

of 485 brain tumor cases, comprising 167 cases of gliomas, 156 cases
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of metastatic tumors, and 162 cases of meningiomas. Of these, 378

cases were allocated to the training set and 109 cases to the test set,

with all data being screened by professional physicians. Each case

consisted of CE-T1 magnetic resonance imaging, accompanied by

pixel-level tumor segmentation annotations and pathological type

labels. The brain tumor CE-T1 data were collected from Yibin

Second People’s Hospital, Chinese PLA General Hospital, and

Nanjing Jinling Hospital. The data acquisition was performed by

professional physicians using three scanners: a 1.5T scanner

(Erlangen, Siemens Espree, Germany) and a 3T scanner (GE) to

obtain MRI images from all patients (6). Axial T1CE DICOM

images were collected with a slice thickness of 1mm. The T1CE

imaging parameters included a slice thickness of 1 mm, echo time of

3.02 ms, voxel dimensions of 0.997 × 0.997 × 1 mm³, matrix size of

512 × 512 × 176, field of view of 130 mm, repetition time of 1650

ms, and flip angle of 15°. Following the acquisition of the original

DICOM format MRI data, standard data preprocessing procedures

were implemented. This study was approved by the ethics

committee of the Second People’s Hospital of Yibin City.

2.1.2 Data preprocessing
The dataset was proportionally divided into training and testing

sets for model training. Image data underwent initial preprocessing

(5), where CE-T1 imaging modality data were normalized to the

(0,1) interval. Data augmentation techniques, including random
Frontiers in Oncology 03
flipping and rotation, were applied. In the random rotation method,

the rotation angle range was set from -30° to +30°, with random

horizontal and vertical flips applied to images at a probability of 0.5.

These image augmentation techniques enhance data diversity and

enable the model to learn features from multiple perspectives. The

3D volumetric data were then sliced into 2D images and cropped to

256×256 dimensions, with 20 representative slices selected from

each case, resulting in a total of 9,700 slices.

2.1.3 Evaluation metrics
This study conducted comprehensive comparisons of various

advanced image segmentation models for brain tumor

segmentation tasks. The selected models included U-Net, nnU-

Net, TransUNet, SwinUNet, and DeepLab, chosen for their

exceptional performance and widespread application in image

segmentation (7). The primary quantitative metrics for evaluating

segmentation accuracy included the Dice Similarity Coefficient

(DSC), Hausdorff Distance (HD), and Intersection over Union

(IoU). These metrics comprehensively reflect model accuracy and

robustness in segmentation tasks and are widely accepted in the

field of image segmentation (8), providing an objective and

standardized framework for model performance comparison.

In the experimental design for classification tasks,

representative deep learning models including ResNet, DenseNet,

and GoogleNet were selected for performance comparison. These
FIGURE 1

The flowchart of the braintumnet model, which sequentially enters the segmentation module and classification module to complete the process
from segmentation to classification.
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models have been widely adopted for their efficiency and accuracy

in image classification tasks. As shown in Equations 1–3, To

comprehensively evaluate the classification performance of these

models, the study employed statistical metrics including Accuracy

(ACC), Sensitivity, Specificity, F1 Score, and Receiver Operating

Characteristic (ROC) Curve. These metrics collectively form a

multidimensional performance evaluation system, providing in-

depth analysis of each model’s classification capabilities. Notably,

the ROC curve offers a performance visualization across different

threshold settings, while the F1 score provides a balanced measure

of performance by considering both precision and recall.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Sensitivity =
TP

TP + FN
(2)

Specificity =
TN

TN + FP
(3)

HD = max (max
a∈A

min
b∈B

d(a, b),max
b∈B

min
a∈A

d(a, b)) (4)

In these metrics, TP (True Positive) represents the number of

correctly predicted positive samples, TN (True Negative) represents

the number of correctly predicted negative samples, FN (False

Negative) represents the number of incorrectly predicted negative

samples, and FP (False Positive) represents the number of

incorrectly predicted positive samples.

2.1.4 Training
The experiments employed 5-fold cross-validation on the

training set. An Adam optimizer was utilized with an initial

learning rate of 1e-4, which decayed according to a cosine

strategy. The batch size was set to 16, and training continued for

250 epochs. The weights for segmentation and classification losses

were set to 1.0 and 0.7, respectively (9). As shown in Equations 4–6,

Dice Loss and DiceCELoss were selected as the loss functions. The

final model performance was evaluated on the test set and

compared with other methods.

The proposed model’s segmentation performance was

compared with commonly used segmentation models including

U-Net, nnU-Net, TransUNet, SwinUNet, and DeepLab. For tumor

classification performance, comparisons were made with classifiers

such as ResNet, GoogleNet, and DenseNet (10). Additionally,

comparisons were conducted against two-stage (segmentation

followed by classification) models. This experimental design and

arrangement enables comprehensive evaluation of BrainTumNet’s

segmentation and classification capabilities on glioma and

metastatic tumor data, allowing fair comparison with other

methods to validate the model’s effectiveness (11).

The study also analyzes the impact of key modules such as

Transformer and Inception on model performance, providing a

basis for model optimization. The rational selection of evaluation

metrics and experimental procedures ensures the credibility and
Frontiers in Oncology 04
persuasiveness of the experimental results.

DiceLoss = 1 −
2oN

i Pigi

oN
i P

2
i +oN

i g
2
i

(5)

DiceCELoss = 1 −
2oN

i Pigi

oN
i P

2
i +oN

i g
2
i

−oN
i gi log (Pi) (6)
2.2 Model and architecture

BrainTumNet is a dual-module network integrating segmentation

and classification, designed for precise localization and diagnosis of

brain tumors. As shown in Figure 2, the segmentation model adopts a

convolutional encoder-decoder architecture. The encoder comprises

multi-layer convolutions with downsampling structures, using

different-sized convolutional layers for feature capture. The branch

consists of multiple BT Blocks containing Masked attention, self-

attention mechanisms, and MLP modules, effectively modeling long-

range dependencies. The decoder employs a symmetric upsampling

Pyramid multi-scale feature fusion strategy, with each layer including

upsampling, skip-connection fusion CBAM modules, and BT Blocks

for feature restoration (12). Skip-connect connections between

encoder-decoder layers incorporate CBAM channel attention

modules for enhanced feature fusion, effectively improving model

segmentation accuracy (13). The module introduces adaptive masked

transformer, which restricts attention to local regions within

prediction masks, unlike traditional Transformer decoders that

attend to all positions. The adaptive masked transformer divides

input images into patches, transforms them through Patch

Embedding, and uses a lightweight MLP network to predict patch

importance scores, generating dynamic masks. This approach

improves small object segmentation capability while reducing

computational complexity.

The Adaptive Masked Transformer enhances model performance

by dynamically adjusting the computational patterns of its attention

mechanism. The core concept of this architecture enables the model to

automatically determine the scope and intensity of attention

computations based on input content, thereby optimizing

computational efficiency while maintaining powerful feature

extraction capabilities. In terms of structural design, the Adaptive

Masked Transformer primarily consists of three key components: an

Adaptive masked generator, a self-attention computation layer, and a

feed-forward network. The dynamic mask generator analyzes the

spatial distribution and semantic content of input features to

generate unique soft masks for each attention head. These mask

values are continuously distributed between 0 and 1, enabling precise

control over the degree of attention computation participation at

different positions. The self-attention computation layer incorporates

both local window attention and global sparse attention modes,

automatically selecting the most suitable computational approach

for the current input features through learnable weight parameters.

This Adaptive Masked Transformer architecture demonstrates
frontiersin.org
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significant advantages across multiple vision tasks. In terms of

computational efficiency, benefiting from the dynamic masking

mechanism, it reduces redundant computations by focusing on

core regions.

The classification module T-InceptionNet extracts tumor

region features from segmentation results. Its backbone comprises

multiple T-Inception Blocks with parallel convolution modules

(1x1, 3x3, 1x3, 3x1) suitable for capturing multi-scale feature

patterns. The Inception-Transformer module employs various

convolution sizes for feature capture and classification. The

classification head consists of pooling, fully connected, and

Dropout layers (14), supporting binary (glioma/metastatic) and

multi-class output using Softmax activation.

The model adopts a two-stage cascade structure, performing

segmentation followed by classification. BrainTumNet integrates

Masked Transformer’s self-attention capabilities with CNN’s local

perception abilities. The encoder excels at capturing long-range

dependencies, while the decoder’s Skip-Transformer ensures

feature propagation. The Inception module complements

attention mechanisms through multi-scale feature extraction (15).
3 Results

The experimental study utilized an MRI dataset comprising 485

cases of gliomas (GBM), metastatic tumors (MET), and

meningiomas, comprehensively evaluating BrainTumNet’s

performance in tumor segmentation and classification tasks. The

experiments compared several models including U-Net, nnU-Net,

TransUNet, SwinUNet, and DeepLab, with comparative analyses

demonstrating the superior performance of the proposed model.
Frontiers in Oncology 05
In the segmentation experiments, the model was tested on all

three tumor types. As shown in Table 1, for glioma segmentation,

the U-Net model achieved an IoU score of 0.75 (16) and a Dice

coefficient (DSC) of 0.752, demonstrating basic tumor region

segmentation capability. nnU-Net showed improved performance

with an IoU of 0.79 and DSC of 0.793. TransUNet performed better,

achieving 0.80 and 0.815 for IoU and DSC respectively. SwinUNet

also demonstrated excellent performance with scores of 0.874 and

0.88 (17). MedFormer achieved a DSC score of 89.5 and an IoU

score of 0.89.BrainTumNet achieved a mean DSC of 0.902 on the

test set, significantly outperforming U-Net (0.752), nnU-Net

(0.793), and other classical segmentation models including

TransUNet and SwinUNet. On the critical Hausdorff Distance

(HD) metric, BrainTumNet achieved 12.13, substantially better

than U-Net (32.21) and nnU-Net (22.53), validating its superior

capability in precise tumor localization and boundary

detail capture.

For meningioma segmentation, As shown in Figure 3, U-Net

achieved an IoU score of 0.76 and DSC of 0.761. nnU-Net

demonstrated better performance with IoU and DSC scores of 0.81

and 0.791 respectively. TransUNet achieved an IoU of 0.81 and DSC

of 0.813. SwinUNet’s performance approached that of BrainTumNet,

achieving an IoU of 0.87 and DSC of 0.876. MedFormer achieved a

DSC score of 90.2 and an IoU score of 0.88.BrainTumNet achieved an

IoU of 0.92 and DSC of 0.914 in this task, further demonstrating its

excellence in medical image segmentation.

Following segmentation and image preprocessing, the model

was validated on the test set using five-fold cross-validation,

evaluating accuracy for tumor, edema, and whole regions across

three tumor types (18). As shown in Table 2, the tumor region

achieved five-fold accuracies of 91%, 94%, 93%, 92%, and 93%, with
FIGURE 2

The model structure diagram of BrainTumNet, a brain tumor segmentation and classification model.
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a mean accuracy of 92.6%. The whole region achieved accuracies

of 89%, 83%, 91%, 85%, and 87%, averaging 87.2%. For the edema

region, the model achieved five-fold accuracies of 87%, 83%, 86%,

85%, and 85%, with a mean accuracy of 0.85. The model

demonstrated highest recognition accuracy in the tumor region,

while the edema region also reflected tumor type characteristics

(19). As shown in Figure 4, BrainTumNet achieved a ROC

score of 0.93.
Frontiers in Oncology 06
For classification tasks, as presented in Table 3, U-Net achieved

0.78 accuracy, ResNet reached 0.87, DenseNet performed better at

0.88, and GoogleNet achieved 0.90. BrainTumNet achieved a

classification accuracy of 0.93 (20), surpassing standalone ResNet

(0.87) and DenseNet (0.88) classifiers by 2–3 percentage points. As

shown in Figure 5, the model achieved an F1 score of 0.89 (21),

outperforming other models and demonstrating the significant

advantages of incorporating auxiliary classification branches and
FIGURE 3

The segmentation results of brain tumors include the tumor areas of gliomas, metastases, and meningiomas, as well as the edematous parts.
TABLE 1 The results of multiple segmentation models, including DSC, IoU, HD and other indicators.

Model Glioma Meningioma Metastatic

Dsc↑ HD↓ IOU↑ DSC↑ HD↓ IOU↑ DSC↑ HD↓ IOU↑

Unet 75.2 32.21 0.75 76.1 31.61 0.76 73.8 29.13 0.73

Nnunet 79.3 22.53 0.79 79.1 21.8 0.81 79.1 22.6 0.78

Transunet 81.5 18.25 0.80 81.3 18.3 0.81 82.1 18.32 0.82

Deeplab 84.5 17.61 0.83 82.6 17.84 0.83 84.6 17.49 0.85

swinunet 87.4 15.16 0.88 87.6 15.73 0.87 88.3 14.47 0.88

Medformer 89.5 13.24 0.89 90.2 13.58 0.88 89.8 12.69 0.88

BrainTumNet 90.2 12.13 0.91 91.4 12.73 0.92 90.1 11.78 0.91
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pre-trained encoders. Figure 4 displays BrainTumNet’s ROC curves

for different tumor types, achieving an AUC value of 0.964.

Further comparison with traditional two-stage segmentation-

then-classification approaches showed that, under identical

backbone networks and training configurations, the end-to-end

multi-task model improved DSC by 2.1% in segmentation and

classification accuracy by 2.7%, demonstrating the effectiveness and

efficiency of multi-task learning compared to two-stage methods.

The external dataset is the MRI data set of 51 cases of glioma,

metastatic tumor and meningioma, as shown in Table 4, the

BrainTumNet demonstrates robust performance on external datasets,

achieving an IoU of 91%, DSC of 92.1%, and HD of 11.47. These three

segmentation metrics indicate stable performance. Furthermore, on the

BraTS 2019 public dataset, the model achieves an IoU of 92% and DSC

of 91.2%, surpassing the corresponding metrics of other segmentation

methods, highlighting its superior segmentation capability.

In the evaluation of classification tasks on the External dataset,

the performance metrics of various models are shown in Table 5. The

results reveal significant differences among models with different

architectures in terms of accuracy and area under the curve (AUC).

Specifically, the UNet model achieved an accuracy of 0.77 and an

AUC of 0.816, indicating relatively limited classification performance

on this dataset. In contrast, the ResNet model improved accuracy to

0.81 and reached an AUC of 0.841, demonstrating enhanced

classification ability. The DenseNet model further optimized

performance, with an accuracy of 0.85 and an AUC of 0.918,
Frontiers in Oncology 07
highlighting its significant advantages in feature extraction and

classification precision. The GoogLeNet model further enhanced

classification performance with an accuracy of 0.89 and an AUC of

0.937, showcasing its robust feature learning capability. the

BrainTumNet model stood out with an accuracy of 0.92 and an

AUC of 0.964, achieving the best classification results.

Overall, these comprehensive experimental results validate

BrainTumNet’s exceptional performance in both brain tumor

segmentation and classification tasks, demonstrating its significant

potential for improving clinical diagnosis quality and efficiency

(22). The model’s innovative design facilitates efficient extraction of

visual and semantic features from medical images, enabling mutual

enhancement between segmentation and classification tasks, thus

improving diagnostic accuracy. The Figure 6 reflects the

classification accuracy of the two types of tumors: gliomas and

metastatic tumors.

As shown in Figure 7, in the three-part image classification,

BrainTumNet achieved higher classification accuracy in tumor

regions compared to whole regions, with edema regions showing

the lowest accuracy. The model’s excellent performance in both

segmentation and classification tasks demonstrates its potential for

improving brain tumor diagnostic accuracy and efficiency,

providing an effective intelligent diagnostic tool for clinical practice.
4 Conclusion

This paper presents an innovative multi-task BrainTumNet

model for simultaneous precise brain tumor segmentation and

accurate classification. The model integrates advanced designs

including pre-trained encoders and adaptive masked Transformer

modules, enabling efficient extraction of visual and semantic features

from medical images. BrainTumNet achieves mutual enhancement

between segmentation and classification tasks, significantly

improving overall performance.
FIGURE 4

Roc curves of glioma and metastatic tumors.
TABLE 2 Accuracy table of various types of slices.

Model Fold1 Fold2 Fold3 Fold4 Fold5 Average

Core 0.91 0.94 0.93 0.92 0.93 0.926

Overall
parts

0.89 0.83 0.91 0.85 0.87 0.872

Edema 0.87 0.83 0.86 0.85 0.85 0.852
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We comprehensively evaluated the model on a dataset

containing 485 cases of gliomas and metastatic tumors. In

segmentation tasks, BrainTumNet achieved an average Dice

similarity coefficient of 0.91 and Hausdorff distance of 12.3, both

surpassing classical segmentation models like U-Net and nnU-Net,

validating its excellence in precise tumor localization and boundary

detail capture. For classification tasks, the model achieved 93.4%

classification accuracy, 0.912 F1 score, and 0.964 AUC-ROC,

significantly outperforming ResNet and DenseNet-based

classifiers (23). The introduction of auxiliary classification

branches and pre-trained encoders played crucial roles in

improving classification performance.

Compared to traditional two-stage segmentation-then-

classification workflows, BrainTumNet achieves functional unity,

demonstrating the effectiveness of the multi-task learning

paradigm. Our work demonstrates BrainTumNet’s immense

potential in improving brain tumor diagnostic quality and efficiency.
Frontiers in Oncology 08
5 Discussion

BrainTumNet’s key innovation lies in its efficient dual-branch

structure, specifically designed for simultaneous segmentation

and classification tasks. The segmentation branch employs

convolutional blocks and adaptive masked transformers for

feature recognition, precisely reconstructing tumor boundaries

and locations (24). The classification branch utilizes multi-scale

inception convolution modules combined with fully connected

layers for tumor type prediction.

The adaptive masked Transformer’s core strength lies in the

synergy between its mask generation mechanism and self-attention

mechanism. A lightweight mask generation network dynamically

produces spatial attention masks, adaptively adjusting pixel-wise or

regional importance weights based on input image content (25).

The mask generation network is jointly optimized using low-level

and high-level semantic features (26), ensuring both local detail
FIGURE 5

Classification accuracy and F1 score results of multiple models.
TABLE 3 Classification accuracy of three types of brain tumors: gliomas, metastases, and meningiomas.

Model Glioma Meningioma Metastatic

Sen Spe ACC Sen Spe ACC Sen Spe ACC

Unet 0.77 0.79 0.78 0.78 0.81 0.79 0.76 0.78 0.77

Resnet 0.85 0.89 0.87 0.85 0.87 0.86 0.83 0.85 0.84

Densenet 0.87 0.90 0.88 0.86 0.92 0.89 0.85 0.89 0.87

Googlenet 0.91 0.92 0.90 0.89 0.93 0.91 0.87 0.91 0.89

BrainTumNet 0.92 0.95 0.93 0.93 0.95 0.94 0.90 0.94 0.92
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capture and global semantic information representation. Compared

to other transformer-based segmentation models, TransUNet

achieves global context modeling by incorporating Vision

Transformer, yet its standard self-attention mechanism presents

two critical limitations: it requires dense attention computations

across all pixel positions (27), resulting in excessive computational

complexity when processing high-resolution medical images; it

employs a fixed attention pattern (28), lacking the ability to

adaptively focus on key anatomical structures or lesion regions

based on image content.

Although Swin-UNet reduces computational complexity by

introducing hierarchical window-based attention mechanisms, its

fixed window partitioning scheme lacks flexibility when handling

multi-scale targets commonly found in medical images. Moreover,

it requires complex window-shifting operations to facilitate cross-

window information exchange. In contrast, the Adaptive Masked

Transformer innovatively introduces a learnable dynamic masking

mechanism that automatically generates attention weight

distribution maps based on input image features (29). This

enables the model to intelligently concentrate computational

resources on diagnostically valuable key regions while

significantly reducing computational overhead in irrelevant
Frontiers in Oncology 09
background areas. This content-aware sparse attention

mechanism not only reduces computational complexity but also

achieves faster inference speeds through efficient sparse matrix

operations, allowing the architecture to process large-scale data

such as high-precision medical images efficiently while maintaining

high accuracy.

While the adaptive masked Transformer demonstrates

significant advantages in image segmentation tasks (30),

particularly in dynamic global context modeling and key region

focusing, its computational complexity increases when processing

high-resolution images or long sequence data (31). With the rapid

advancement of Transformer technology in medical image analysis

(32), its robust feature modeling capabilities have established a new

research paradigm for multimodal medical data analysis. However,

adaptive masked transformer models demonstrate limitations in

processing multimodal data, as variations in resolution and contrast

across different modalities increase the complexity of mask

generation (33). Future research should focus on developing

modality-adaptive dynamic masking strategies and constructing

multi-branch mask generation networks (34), where each branch

specifically processes feature distributions of distinct modalities,

while optimizing for practical applications, addressing mask

mechanism design and training stability challenges, maintaining

performance, and reducing model sensitivity to hyperparameters.
TABLE 5 Accuracy of brain tumor classification in external data sets,
including sensitivity, specificity, accuracy, AUC index.

Model External dataset

Sen Spe ACC AUC

Unet 0.76 0.78 0.77 0.816

Resnet 0.79 0.83 0.81 0.841

Densenet 0.84 0.86 0.85 0.918

Googlenet 0.87 0.91 0.89 0.937

BrainTumNet 0.90 0.94 0.92 0.964
f

FIGURE 6

Glioma and metastatic tumor accuracy heatmap.
TABLE 4 Image segmentation result table of public data set and
external data set, including DSC, IoU, HD and other indicators.

Model 2019 BraTS External dataset

Dsc↑ HD↓ IOU↑ DSC↑ HD↓ IOU↑

Unet 74.4 31.19 0.74 75.5 29.78 0.77

Nnunet 78.5 23.27 0.77 79.3 21.8 0.78

Transunet 80.8 19.48 0.81 82.3 17.2 0.81

Deeplab 83.9 19.27 0.84 84.6 17.84 0.83

swinunet 87.9 14.79 0.86 88.6 14.25 0.88

Medformer 89.7 12.12 0.88 90.2 12.12 0.89

BrainTumNet 91.2 11.25 0.92 92.1 11.47 0.91
FIGURE 7

Accuracy chart of tumor, edema, and overall partial classification.
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