AUTHOR=Lv Cheng , Shu Xu-Jun , Liang Quan , Qiu Jun , Xiong Zi-Cheng , Ye Jing bo , Li Shang bo , Liu Cheng Qing , Niu Jing Zhen , Chen Sheng-Bo , Rao Hong TITLE=BrainTumNet: multi-task deep learning framework for brain tumor segmentation and classification using adaptive masked transformers JOURNAL=Frontiers in Oncology VOLUME=Volume 15 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2025.1585891 DOI=10.3389/fonc.2025.1585891 ISSN=2234-943X ABSTRACT=Background and objectiveAccurate diagnosis of brain tumors significantly impacts patient prognosis and treatment planning. Traditional diagnostic methods primarily rely on clinicians’ subjective interpretation of medical images, which is heavily dependent on physician experience and limited by time consumption, fatigue, and inconsistent diagnoses. Recently, deep learning technologies, particularly Convolutional Neural Networks (CNN), have achieved breakthrough advances in medical image analysis, offering a new paradigm for automated precise diagnosis. However, existing research largely focuses on single-task modeling, lacking comprehensive solutions that integrate tumor segmentation with classification diagnosis. This study aims to develop a multi-task deep learning model for precise brain tumor segmentation and type classification.MethodsThe study included 485 pathologically confirmed cases, comprising T1-enhanced MRI sequence images of high-grade gliomas, metastatic tumors, and meningiomas. The dataset was proportionally divided into training (378 cases), testing (109 cases), and external validation (51 cases) sets. We designed and implemented BrainTumNet, a deep learning-based multi-task framework featuring an improved encoder-decoder architecture, adaptive masked Transformer, and multi-scale feature fusion strategy to simultaneously perform tumor region segmentation and pathological type classification. Five-fold cross-validation was employed for result verification.ResultsIn the test set evaluation, BrainTumNet achieved an Intersection over Union (IoU) of 0.921, Hausdorff Distance (HD) of 12.13, and Dice Similarity Coefficient (DSC) of 0.91 for tumor segmentation. For tumor classification, it attained a classification accuracy of 93.4% with an Area Under the ROC Curve (AUC) of 0.96. Performance remained stable on the external validation set, confirming the model’s generalization capability.ConclusionThe proposed BrainTumNet model achieves high-precision diagnosis of brain tumor segmentation and classification through a multi-task learning strategy. Experimental results demonstrate the model’s strong potential for clinical application, providing objective and reliable auxiliary information for preoperative assessment and treatment decision-making in brain tumor cases.