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Biliary tract cancers (BTCs), a group of rare aggressive malignancies, posed

significant clinical challenges due to late diagnosis and limited therapies. While

gut microbiota had been extensively studied in gastrointestinal cancers, the role

of oral microbiota—a primary microbial reservoir entering the digestive system—

remained poorly understood. Emerging evidence indicated that oral bacteria

might affect biliary carcinogenesis through direct colonization, immune

modulation, and metabolic interactions via the oral-gut-liver axis. This

narrative review analyzed current research connecting oral microbial

imbalance with BTCs. It explored how bacterial translocation, inflammatory

metabolites, and immune alterations could promote cancer development.

Established BTC risk factors—including gallstones, primary sclerosing

cholangitis, cirrhosis, and H. pylori infection—were evaluated for their

associations with oral microbiota changes. Epidemiological studies revealed

that periodontal disease and poor oral hygiene elevated BTC risk. Sequencing

analyses identified oral-origin bacteria (Prevotella , Fusobacterium ,

Streptococcus) in bile and tumor tissues, suggesting microbial migration

through swallowing or bloodstream. Mechanistic investigations showed

microbial components (e.g., lipopolysaccharides, membrane vesicles) activated

inflammatory pathways (TLR4/NF-kB, STAT3) and modified immune

checkpoints, while metabolites potentially altered biliary cell metabolism.

Different studies have found variable changes in oral microbiota in the

presence of BTCs, thus a novel “biphasic dysbiosis” hypothesis was proposed

to explain differing oral microbial diversity patterns across BTC subtypes. Despite

progress, critical knowledge gaps persisted regarding causality, spatial microbial

variations, and functional impacts of metabolites in BTCs. Future research was

recommended to employ multi-omics approaches, single-cell analysis, and AI

tools to enhance early detection and prevention strategies.
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1 Introduction

The human microbiota encompassed diverse communities of

microorganisms that exist in association with human hosts,

comprising microbes from various domains of life (1). These

microbial populations, spanning bacteria, fungi, viruses, and

archaea, play a dual role in host biology. On one hand, it played

essential roles in maintaining host homeostasis through immune

modulation, nutrient metabolism, and epithelial barrier integrity.

On the other, dysbiosis—an imbalance in microbial composition—

has been implicated in oncogenesis via chronic inflammation,

metabolic reprogramming, and immune evasion (2). Microbiota

composition is highly site-specific, varying considerably across

different anatomical locations such as the skin, oral cavity, gut,

and biliary tract. Each niche harbors a unique microbial ecosystem

influenced by age, environment, diet, genetics, and disease states.

The interplay between microbiota and host immunity represents a

critical determinant of health status, with alterations in local

microbial compositions being extensively associated with various

pathological conditions (3). Of these, the oral cavity is of particular

interest as it constitutes the second largest microbial habitat in the

body and serves as the initial gateway to the gastrointestinal system.

The oral microbiota comprises more than 700 bacterial species,

alongside fungi and viruses, and its balance can be disrupted by

factors such as tobacco use, alcohol consumption, poor dental

hygiene, periodontitis, and prolonged antibiotic exposure (4).

Biliary tract cancers (BTCs) represented a heterogeneous group

of malignant neoplasms originating from the epithelial cells of the

biliary system, including intrahepatic cholangiocarcinoma (iCCA),

perihilar cholangiocarcinoma (pCCA), distal cholangiocarcinoma

(dCCA) and gallbladder cancer. Despite their relatively low overall

incidence in the general population, BTCs demonstrate an

increasing global trend, with notably higher prevalence in Asian

regions (5). These malignancies presented significant clinical

challenges due to their asymptomatic early stages, frequent late-

stage diagnosis post-metastasis, high chemotherapy resistance, and

limited targeted therapeutic options. As a result, their five-year

survival rate remains below 30%, underscoring the urgent need for

improved prevention and early diagnostic strategies (6, 7).

The tumor microenvironment constitutes a complex ecosystem

comprising both host and microbial cells associated with neoplastic

tissue, in which resident microbiota actively participated in

modulating cancer progression. Emerging evidence illustrated

how microbiota shaped the tumor microenvironment through

direct contact with host tissues or via secreted metabolites (8, 9).

For example, butyrate, a short-chain fatty acid produced by
Abbreviations: BTCs, Bi l iary tract cancers ; iCCA, Intrahepat ic

cholangiocarcinoma; dCCA, Distal cholangiocarcinoma; pCCA, Perihilar

cholangiocarcinoma; LPS, Lipopolysaccharide; HDAC, Histone deacetylase;

BA, Bile acids; PSC, Primary sclerosing cholangitis; O. viverrini, Opisthorchis

viverrini; H. pylori, Helicobacter pylori; WMS, Whole-metagenome shotgun; HR,

Hazard ratio; OMVs, Outer membrane vesicles; CI, Confidence interval; L.,

Lachnoanerobaculum; A., Atopobium; O., Oribacterium; S., Stomatobaculum.
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bacterial fermentation of dietary fiber, demonstrated anti-tumor

properties. It promoted cancer cell apoptosis and inhibited tumor

growth. These effects were mediated through multiple mechanisms,

including histone deacetylase (HDAC)—the enzymes that control

gene expression through chromatin remodeling—inhibition, G

protein-coupled receptor activation, and cellular metabolism

regulation (10).

While most microbiome-oncology studies have centered on the

gut, growing evidence suggested that oral microbes might also

influence systemic disease processes. With evidence has

established that various pathophysiological factors can induce oral

microbial dysbiosis, which include tobacco use, alcohol

consumption, prolonged antibiotic administration, dental caries,

and periodontitis. Such disruptions to the oral microbiome have

significant implications for oral health (11). As the initial segment

of the digestive tract, oral microbiota can translocate to downstream

digestive organs via swallowing (the oral-gut axis), entering

systemic circulation through inflamed or damaged oral tissues

(the oral-blood axis) or other ways (12, 13). These translocated

microbes and their metabolites could affect distant organs,

including the liver and biliary system, by disrupting local

microbial communities, triggering inflammatory responses, or

altering metabolic pathways. Recent investigations have

increasingly demonstrated both direct and indirect associations

between oral microbiota (particularly Porphyromonas gingivalis

and Fusobacterium nucleatum) and various digestive system

disorders, including colorectal cancer, inflammatory bowel

disease, and chronic liver diseases (14–17).

While significant advances have been made in understanding the

relationship between microbiota and digestive system malignancies,

the potential connection between oral microbiota and BTCs-a

significant component of digestive system cancers-remained

incompletely elucidated. Understanding this connection could open

new avenues for early diagnosis and intervention, particularly given

the oral cavity’s accessibility for non-invasive sampling.

This narrative review aimed to comprehensively examine the

mechanistic and clinical associations between the oral microbiota

and BTCs. We focused on the translocation pathways, metabolic

and immunological interactions, and the impact of oral microbial

dysbiosis on BTC risk and progression. We further evaluated the

relationship between established BTC risk factors—such as

cholelithiasis, primary sclerosing cholangitis (PSC), liver cirrhosis,

and Helicobacter pylori infection—and oral microbial alterations.

Our review synthesized findings from observational studies,

microbiome sequencing analyses, and mechanistic investigations.

The study was conducted with comprehensive searches performed

in PubMed and Web of Science databases from 2000 to April 17,

2025. The search terms included: (“oral microbiota” OR “oral

microbiome” OR “oral flora” OR “oral bacteria”) AND (“biliary

tract cancer”OR “biliary tract neoplasm”OR “cholangiocarcinoma”

OR “bile duct cancer” OR “gallbladder cancer”). Additional

searches were conducted using terms related to established risk

factors: (“oral microbiota” OR “oral microbiome” OR “oral flora”

OR “oral bacteria”) AND (“cholelithiasis” OR “primary sclerosing

cholangitis” OR “liver cirrhosis” OR “Helicobacter pylori”).
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By consolidating and critically interpreting the current

evidence, this review aims to clarify the biological relevance of the

oral microbiota in BTC development and highlight future research

directions. In doing so, it seeks to make this emerging field more

accessible to interdisciplinary audiences spanning oncology,

microbiology, hepatology, and oral medicine.
2 Normal oral microbiota

The oral cavity represents a complex microbial ecosystem,

serving as the second largest microbial reservoir in the human

body. Advanced DNA analysis of the oral microbiome has revealed

the presence of over 700 distinct bacterial species. Oral microbial

genera and species vary between individuals due to environmental

factors. However, the predominant bacterial phyla remain relatively

consistent in healthy individuals. This conservation of main

microbiota composition in health states provided valuable

insights into understanding the relationship between oral and

systemic health (11, 18).

The microbiota comprises various microorganisms, including

bacteria, fungi, viruses, archaea, and prokaryotes, but current

research predominantly focused on bacterial communities.

Contemporary technological advances, including 16S rRNA high-

throughput sequencing, metagenomics, single-cell genomics, and

integrated multi-omics analysis, enabled comprehensive and precise

characterization of oral microbiota structure and function. Current

evidence established the major bacterial phyla in the oral cavity, in

order of prevalence: Firmicutes (including Streptococcus, Gemella,

Eubacterium, Selenomonas, Veillonella), Actinobacteria (including

Actinomyces, Atopobium, Rothia), Proteobacteria (including

Neisseria, Eikenella, Campylobacter), Bacteroidetes (including

Porphyromonas, Prevotella, Capnocytophaga), Fusobacteria

(including Fusobacterium and Leptotrichia), TM7, Spirochaetes,

OD2, and Synergistetes. The predominant genera include

Streptococcus, Haemophilus, Neisseria, Prevotella, Veillonella, and

Rothia (19, 20).
3 Oral microbiota and BTCs

The oral cavity, serving as the initial segment of the digestive

tract, functioned as an endogenous reservoir for gut microbiota. Oral

microorganisms demonstrated multiple pathways of translocation to

the digestive tract through direct colonization, immune mediator

regulation, and metabolite diffusion. Through the oral-gut axis, oral

microbiota directly migrated and colonized the intestinal mucosa via

swallowing and blood circulation (21). Upon entering the intestinal

tract, oral microbiota interact with resident gut microbes and alter the

intestinal microbial composition and immune microenvironment

through mechanisms such as competition, symbiosis, and nutrient

sharing (21, 22). Once established in the gut, oral microbiota can

modulate the enterohepatic circulation of bile acids, influencing their

conversion into secondary bile acids by the intestinal microbiota.

These secondary bile acids affect liver metabolism and immune
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responses, leading to altered bile acid signaling through FXR and

TGR5, which may contribute to chronic inflammation and immune

dysregulation, potentially promoting the development of BTCs (23).

Moreover, gut microbiota and their metabolites, including short-

chain fatty acids, secondary bile acids, and lipopolysaccharides (LPS),

exert significant effects on the hepatobiliary system through gut-liver

axis signaling mechanism (24). (See Figure 1 for schematic

representation of these pathways).

Oral microbiota exerted indirect influence on digestive organs

through the production of diverse metabolites (e.g., proteins,

peptides, short-chain fatty acids, nucleotides, lipids). Through

interactions with host cell receptors, these metabolites can

modulate local inflammatory responses, metabolic functions, and

even carcinogenic processes. For instance, butyrate produced by

Prevotella was believed to regulate intestinal immune barriers, while

LPS produced by Veillonella could exacerbate chronic inflammatory

conditions in the biliary tract (13).

Poor periodontal health is associated with alterations in oral

microbial diversity (25). And in a prospective study of 65,869

women, a history of periodontal disease was significantly

associated with an elevated risk of BTCs (hazard ratio, 1.73; 95%

confidence interval, 1.01-2.95) (26). Additionally, a United

Kingdom-based cohort study involving 286 BTCs cases revealed

that self-reported poor oral health correlated with increased risk of

biliary system malignancy in unadjusted analyses (1.32; 95% CI,

0.95-1.80) (27). These findings suggested a potential relevance

between oral microbiota, as key determinants of oral health, and

increased BTCs risk.

Bile, a light yellow fluid synthesized by hepatocytes, comprises

bile acids (BA), cholesterol, phospholipids, and proteins, and

undergoes transport from the liver and gallbladder to the intestine

via bile ducts (28). The biliary microbiota predominantly consists of

Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria phyla,

with additional phyla including Verrucomicrobia, Chlamydiae,

Acidobacteria, Planctomycetes, Cyanobacteria, Spirochaetes, and

Fusobacteria present in lower proportions (0.05-0.5%) (29). In a

study of 14 patients with pCCA, increased abundance of oral-

associated Prevotella genera was observed. Analysis of 9 patients

with dCCA revealed elevated levels of Streptococcus, Prevotella, and

Actinomyces genera (30). Through 16S rRNA sequencing analysis of

biliary microbiota from 8 dCCA patients, Chen et al. demonstrated

that while overall phylum-level composition remained relatively

stable, significant increases occurred in Gemmatimonadetes,

Nitrospirae, and Planctomycetes phyla abundance, accompanied by

notable reduction in Chloroflexi (31). In another 16S rRNA

sequencing analysis involving 60 BTCs patients, Dietzia and

Pseudomonas genera were identified as the predominant

inhabitants of the biliary tract tumor tissue. Additionally,

enrichment of Bifidobacteriaceae was observed in cases with

Opisthorchis viverrini infection (32). Notably, Dietzia genera

primarily constitute skin and oral microbiota components, while

Pseudomonas and Bifidobacteriaceae, as opportunistic pathogens,

may colonize the oral cavity through environmental exposure

before subsequent biliary tract translocation (33, 34). In a

multicenter case-control study encompassing 100 BTCs patients,
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Avilés-Jiménez et al. documented significant increases in

Fusobacterium and Prevotella genera abundance, accompanied by

decreased levels of Rothia, typically considered a normal oral

microbiota constituent (35).

Uguz A et al. examined pancreatic samples from 10 patients with

dCCA or ampullary cancer (AC). The microbiota was dominated by

the phyla Firmicutes, Actinobacteria, Proteobacteria, Bacteroidetes, and

Acidobacteria. Firmicutes were the most abundant, while Bacteroidetes

and Acidobacteria were significantly enriched. At the genus level,

microbial profiles varied markedly between individuals. Sequence

alignments of saliva and pancreatic samples identified Prevotella,

Streptococcus, and Fusobacterium as the oral genera most frequently

enriched in pancreatic tissue (36). These findings further suggest the

potential impact of oral microbiota on peritumoral BTC tissues.

Based on the gut-liver axis theory, intestinal microbiota and

their metabolites can directly affect the hepatobiliary system
Frontiers in Oncology 04
through the portal venous circulation, participating in the

development and progression of various diseases (37). In BTCs

patients, increased abundances of Veillonella, Parabacteroides, and

Enterobacter genera were observed, along with elevated levels of

Firmicutes and Actinobacteria phyla, revealing the correlation

between dysbiosis and carcinogenesis. Further studies

demonstrated that the intestinal microbiota can drive BTCs

progression through key regulatory points, including energy

metabolism reprogramming and cell proliferation control via the

AMPK and mTOR signaling pathways (38).

The mechanisms of oral bacterial metabolites in BTCs

development require further investigation. For instance, P.

gingivalis-derived LPS activates the TLR4/NF-kB pathway in

microglial cells, triggering inflammatory cascades (39). And

sustained inflammatory microenvironment promotes aberrant cell

proliferation and carcinogenesis through multiple signaling
FIGURE 1

Possible oral microbiota-mediated pathways in biliary tract cancer development. Through the oral-gut axis, oral microorganisms directly colonize
intestinal mucosa via swallowing. Their metabolites, including secondary bile acids and LPS, influence the hepatobiliary system through the gut-liver
axis. Microbial metabolites interact with host cell receptors to modulate local inflammatory responses and cellular metabolism through metabolic
reprogramming. Bacterial genera such as Streptococcus and Prevotella survive in the bloodstream, where their secreted toxins and bacterial outer
membrane vesicles (OMVs) modulate host immune responses and reshape the cancer immune microenvironment. Created in
https://BioRender.com.
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pathways, including NF-kB and STAT3 (40). While it was relatively

clear that the aforementioned oral microbiota metabolites might have

influenced the development and progression of BTCs by modulating

inflammatory pathways and metabolic reprogramming, their

temporal distribution, precise concentrations, and specific targets

within the biliary microenvironment had not been adequately

clarified (41). With the advancement of relevant technologies,

future studies urgently need to employ techniques such as isotope

labeling-based metabolic analysis and targeted metabolomics analysis

in both vivo and vitro experiments. These approaches are expected to

clarify the local dynamic changes and specific mechanisms of these

metabolites, thereby defining their precise roles in the pathogenesis

of BTCs.

During BTCs development, changes occur not only in the

biliary and gastrointestinal microbiota but also in the oral

microbiome composition. A study of gallbladder cancer patients

(n=272) demonstrated that these patients exhibited significantly

higher a-diversity and abundance of rare species in their oral

microbiota compared to healthy controls. They also successfully

developed a high-reliability predictive model for BTCs’ probability

using a marker set comprising three genera—Actinomyces,

Alloprevotella, and Lautropia. This model revealed the feasibility

of utilizing changes in the oral microbiota as an auxiliary diagnostic

indicator for BTCs (42). However, another study of 10 patients with

dCCA or ampullary cancer found that oral microbial diversity was

lower in the cancer group than in healthy controls (36). Peculiarly,

Oh S. et al. compared the oral microbiota of 14 BTC patients with

14 healthy controls and found no significant difference (p = 0.1)

(43). Although variations in sample size, sequencing depth, and

control of confounding factors may have caused these differences,

Oh S. et al. observed that cancers at different anatomical sites

produced distinct shifts in the oral microbiota. This finding

demonstrated that the anatomical site determines the pattern of

microbial change (43). It is acknowledged that iCCA is propelled by

chronic inflammation and is characterized by a highly

immunosuppressive tumor microenvironment, which includes

elevated PD-L1 expression and MDSC accumulation (44). In this

context, it is hypothesized that these mechanisms could weaken

immune surveillance and can contribute to systemic immune

dysregulation, potentially affecting sites such as the oral mucosa.

Weakended immune surveillance allows rare oral bacteria taxa to

flourish, increasing overall oral microbiota diversity. In contrast,

dCCA is usually accompanied by bile duct obstruction and repeated

biliary inflammation. These conditions often require early and

frequent antimicrobial treatment, which suppresses some species

and lets a few dominant pathogens take over, thereby reducing

diversity (45, 46). In addition, factors such as malnutrition, oral

dryness, reduced food intake, and preoperative antibiotic use in

some advanced dCCA patients lowered oral microbial diversity.

These findings also underscore the shortage of studies examining

heterogeneity driven by anatomical subtypes. Future work should

clarify the underlying pathways and involve large-scale, multicenter

cohorts. (See Table 1 for summary of clinical evidence regarding

oral microbiota changes in BTC patients).
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4 The oral microbiota and risk factors
for BTCs

BTCs encompasses two main subtypes: bile duct cancer and

gallbladder cancer. Established risk factors for bile duct cancer

included primary sclerosing cholangitis (PSC), Caroli’s disease,

intrahepatic bile duct stones, and liver fluke infection. Primary

risk factors for gallbladder cancer included cholelithiasis and

primary sclerosing cholangitis, among others (5). (See Figure 2

for microbial alterations associated with established BTC

risk factors).
4.1 Cholelithiasis

Cholelithiasis can occur at any location within the biliary system,

encompassing the gallbladder and both intrahepatic and extrahepatic

bile ducts (47). Current evidence demonstrated a positive correlation

between cholelithiasis and increased risk of biliary tract and

gallbladder carcinoma, with notably 70-90% of gallbladder cancer

patients presenting with antecedent gallstone disease (48).

Multiple investigations have elucidated the role of microorganisms

in cholelithiasis pathogenesis (49). As previously established, oral

microbiota maintained intimate associations with oral hygiene status.

A population-based survey in the United States demonstrated a

significant positive correlation between poor oral hygiene and

ultrasonographically confirmed cholelithiasis, further supporting the

connection between oral microbiota and gallstone disease (50). Using

whole-metagenome shotgun (WMS) and 16S sequencing, Shen et al.

identified 25 oral/respiratory tract-derived microorganisms among 54

microbial species in bile samples from patients with common bile duct

stones. Notably, these oral-derived bacterial species exceeded the

quantity of intestinal-derived species. Furthermore, among 13 newly

discovered species in bile, 8 belonged to oral microbial groups,

suggesting a substantial association between oral microbiota and

cholelithiasis (51). Additional studies using 16S sequencing revealed

elevated levels of Escherichia and Klebsiella in bile samples from

cholelithiasis patients, with Chryseobacterium also being detected in

the bile (52). Moreover, oral microbiota-associated genera including

Lachnoanerobaculum, Atopobium,Oribacterium, and Stomatobaculum

demonstrated persistent presence in the bile of cholelithiasis patients,

with their abundance increasing during disease onset and

progression (53).
4.2 Primary sclerosing cholangitis

PSC represents a chronic inflammatory liver condition

characterized by progressive scarring of bile ducts and intrahepatic

biliary system, potentially predisposing to BTCs development (54).

Multiple studies have confirmed increased abundances of

Streptococcus, Veillonella, and Enterococcus genera in the

intestinal microbiota of PSC patients (55–57). Analysis of saliva
frontiersin.org

https://doi.org/10.3389/fonc.2025.1585923
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang and Zhang 10.3389/fonc.2025.1585923
and fecal samples from PSC patients revealed significant

enrichment of eight bacterial species, including Streptococcus

salivarius, Veillonella parvula, Actinomyces, and Bifidobacterium,

suggesting potential oral microbiota translocation and colonization

as crucial factors in PSC pathogenesis (57).
4.3 Liver cirrhosis

Evidence and mechanisms supporting liver cirrhosis as a

premalignant condition for BTCs have been established (58).

As previously noted, periodontal status is closely associated with

the oral microbiome (25). A direct causal relationship existed between

liver cirrhosis and periodontitis (59). The study involving 164 non-

alcoholic fatty liver disease patients demonstrated that those with P.

gingivalis infection in saliva and deeper periodontal pockets exhibited

higher liver stiffness values compared to patients without periodontal

disease. Patients with increased liver stiffness showed elevated serum

antibody titers against P. gingivalis strains FDC381 and SU63. Logistic

regression analysis confirmed the correlation between periodontal

disease and liver stiffness (60). The subgingival microbiota in

cirrhosis-associated periodontitis consisted of a distinct bacterial
Frontiers in Oncology 06
community that was typically unrelated to conventional

periodontitis, likely resulting from dysbiosis due to compromised

immune function (61). The oral cavity represented a significant

source of inflammation in liver cirrhosis. Periodontal treatment can

improve endotoxemia, salivary inflammation, and systemic

inflammation in cirrhotic patients, while also regulating dysbiosis in

salivary and fecal microbial communities (62).

Regarding the characteristic changes in salivary microbiota of

patients with liver cirrhosis, there is a decreased relative abundance

of indigenous bacteria (such as Streptococcus), while potentially

pathogenic families (Enterobacteriaceae and Enterococcaceae) show

significantly increased relative abundance. These findings suggested

that oral dysbiosis could be associated with the progression of liver

disease (63). In oropharyngeal swabs from cirrhotic patients with

pneumonia, compared to those without pneumonia, there were

increased populations of Bacteroides, Neisseria, and Actinomyces,

while the Streptococcus population was decreased (64).

Due to the persistent presence and high abundance of

lantibiotics genes in the gut microbiome of cirrhotic patients, oral

Streptococcus C150 and Streptococcus vestibularis, which encode

lantibiotics before their translocation to the intestine, are potential

risk factors for liver cirrhosis (65).
TABLE 1 Evidence of oral microbiota alterations in biliary tract cancer.

Authors Year Sample size Key findings Statistical data

Nwizu NN et al. (26) 2017 65,869 Women
History of periodontal disease associated with
elevated risk of biliary tract cancer.

HR = 1.73 (95% CI:
1.01-2.95)

Jordão HW et al. (27) 2019 286 BTC cases
Self-reported poor oral health correlated with
increased risk of biliary system malignancy.

HR = 1.32 (95% CI:
0.95-1.80)

Li Z et al. (30) 2022
14 pCCA cases Prevotella ↑ p < 0.05

9 dCCA cases Streptococcus, Prevotella, Actinomyces ↑ p < 0.05

Chen B et al. (31) 2019
8 dCCA patients’
biliary microbiota

Gemmatimonadetes, Nitrospirae, and
Planctomycetes phyla ↑
Chloroflex ↓

p < 0.05

Chng KR et al. (32) 2016 60 BTCs cases

Predominant inhabitant of BTCs tissue:
Dietzia,Pseudomonas
Opisthorchis viverrini infection:
Bifidobacteriaceae ↑

p < 0.05

F. Avilés-Jiménez et al. (35) 2016 100 CCA cases
Fusobacterium, Prevotella ↑
Rothia ↓

p < 0.05

Uguz A et al. (36) 2025

Pancreas of 10 dCCA/
AC patients

Prevotella, Streptococcus, and Fusobacterium
are the oral microbial genera most frequently
found to be enriched in pancreatic tissue.

p < 0.05

Saliva of 10 dCCA/
AC patients

Oral microbial diversity was lower in the
cancer group.
Provetella, Rothia, Veillonella, Acytinomyces,
Porphyromonas, Fusobacterium ↑
Streptococcus, Neisseria ↓

p < 0.05

B.-C. Rao et al. (41) 2022
oral cases of 272
BTC patients

Firmicutes, Fusobacteriota, Spirochaetota,
Synergistota ↑
Streptococcus, Veillonella, Haemophilus ↑

p < 0.05

Oh S et al. (42) 2025
oral cases of 14 BTC
patients and 14 HC

No significant differences between BTC and
healthy controls.

P=0.1
This table summarized major clinical studies reporting changes in oral bacterial communities among BTCs patients. It highlights whether specific genera showed increased (↑) or decreased (↓)
abundance and provides corresponding statistical measures. BTC, biliary tract cancer; CCA, cholangiocarcinoma; pCCA, perihilar cholangiocarcinoma; dCCA, distal cholangiocarcinoma; AC,
ampullary cancer; HC, healthy controls; HR, hazard ratio; CI, confidence interval; p, significance level (p<0.05 indicates statistical significance).
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In a quantitative metagenomic analysis of gut microbiome from 98

cirrhotic patients and 83 healthy controls, there were 66 clusters

representing homologous bacterial species that differed between the

cirrhotic and healthy groups. Among the 28 bacterial species enriched

in cirrhotic patients, the majority originated from the oral cavity (66).

Japanese researchers have demonstrated that patients with liver fibrosis

show increased relative abundance ofClostridium strains and decreased

relative abundance of Faecalibacterium in their gut microbiota (67).
4.4 Helicobacter pylori

Specific H. pylori strains clearly associate with increased BTCs

risk (35, 68).

The oral microbiota, being upstream of the stomach, serves as a

primary source of gastric microbiota. Research showed that
Frontiers in Oncology 07
H. pylori infection was not only associated with the degree of

coexistence between oral and gastric mucosal microbiota, but H.

pylori infection itself can also influence the composition of oral

bacterial communities through altering local pH or competitive

colonization (69, 70). The oral microbiota influenced the

transmission and colonization of H. pylori through co-

aggregation, symbiotic biofilm formation, and endosymbiotic

translocation colonization (71).

Interestingly, recent research has shown that abnormal

abundances of specific oral bacteria—such as Gemella and

Holdemanella—significantly affect the risk of gastric cancer (43).

These species were not only closely linked to gastric cancer and

may, through their complex interactions with H.pylori, alter the

bacterium’s growth and ability to cause disease. Consequently, this

could influence the risk of BTCs. Such dysbiosis may impair both

oral and gastric mucosal barriers. It can also modulate H. pylori’s
FIGURE 2

The association between oral microbiota and risk factors in biliary tract cancer. Four established risk factors-gallstones, PSC, liver cirrhosis and
Helicobacter pylori infection-were each linked to distinct shifts in oral microbial communities. Gallstones and poor oral health correlate with higher
levels of oral bacteria such as Escherichia, Klebsiella and Chryseobacterium in biliary samples, while there was a persistence of Lachnoanerobaculum
(L), Atopobium (A), Oribacterium (O) and Stomatobaculum (S). PSC patients exhibit increased Streptococcus salivarius, Veillonella parvula and
Enterococcus in intestinal microbiota. Cirrhosis−related gum disease showed loss of native flora in saliva (e.g., Streptococcus) alongside a rise of risk
factors (e.g., S. C150, S. Vestibularis) and oral oringin microbiota in the gut. H. pylori infection reshaped oral communities by promoting co-
aggregation and the formation of biofilms by species such as Gemella and Holdemanella, as well as endosymbiotic translocation. These microbial
changes may contribute to cancer development through direct colonization, immune modulation and chronic inflammation. Created in
https://BioRender.com.
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pathogenicity through bacterial coaggregation, co−formation of

biofilms, and internal translocation. These processes could

contribute to BTCs initiation and progression. Future research

should clarify how oral microbiota and H. pylori interact and

determine how these microbial interactions influence BTC risk

and disease course.
5 Conclusions and future directions

Accumulating evidence indicates that the oral microbiota can

influence biliary tract carcinogenesis via three principal

mechanisms: direct bacterial colonization of biliary tissues,

modulation of the local immune microenvironment, and

microbial metabolic interactions (21–24). Opportunistic oral

bacteria such as Porphyromonas gingivalis are capable of

ectopically colonizing the bile ducts and triggering chronic biliary

inflammation (e.g., through TLR4/NF-kB activation), which in

turn promotes abnormal epithelial proliferation and DNA

damage. Additionally, bacterial products like OMVs can dampen

anti-tumor immune responses for instance, by upregulating

the PD-1/PD-L1 immune checkpoint, and can act in concert with

host pro-inflammatory cytokines to create a tumor-promoting

immunosuppressive niche Under gut-liver axis regulation,

Veillonella-derived LPS and secondary bile acids cooperatively

drived biliary cell metabolic reprogramming through oxidative

stress and FXR receptor signaling. These mechanistic links are

supported by clinical observations: epidemiological studies have

correlated poor oral health (e.g., periodontitis) with elevated risk of

BTC, and oral bacterial taxa such as Fusobacterium and Prevotella

have been detected within bile and tumor tissue of BTCs patients.

Contemporary research substantiates a significant correlation

between oral microbiota dysbiosis and BTCs risk, with periodontal

disease history and poor oral health linked to 73% (HR=1.73) and

32% (HR=1.32) increased risk, respectively (26, 27). Molecular

biological evidence has revealed enrichment of oral-origin

bacteria genera in bile and biliary tissues of BTCs patients,

including Fusobacterium, Prevotella, and Streptococcus (30, 35).

Opportunistic pathogens such as Deinococcus and Pseudomonas

may contribute to carcinogenesis through oral-biliary ectopic

colonization. Further mechanistic studies indicate that oral

bacterial metabolites (such as P. gingivalis LPS) can induce

chronic inflammation by activating the TLR4/NF-kB pathway,

working synergistically with pathways like STAT3 to drive

abnormal cell proliferation (39, 41). According to gut-liver axis

theory, BTCs patients show intestinal dysbiosis. This condition,

marked by increased Veillonella and Enterobacteriaceae, may

promote tumors through AMPK/mTOR-mediated metabolic

reprogramming (38). Given the significantly increased oral

microbial a-diversity and abnormally elevated abundance of oral

dominant bacteria (Firmicutes, Streptococcus) in gallbladder cancer

patients, dynamic changes in oral microbiota showed promise as

biomarkers for BTCs development.

Overall, we proposed a novel mechanistic hypothesis in section

3 to explain the variations in oral microbiota diversity observed
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across different types of BTCs. Dysbiosis of the oral microbiota

associated with biliary cancer may have shown a “biphasic pattern”.

Specifically, this biphasic pattern refers to the observation that,

although both iCCA and dCCA are subtypes of BTCs, oral

microbial diversity is higher in iCCA patients than in healthy

controls, whereas it is lower in dCCA patients (36, 42). In some

cases (e.g., iCCA), weakened immune surveillance and prolonged

low-grade inflammation supported the coexistence and

proliferation of multiple opportunistic pathogens in the oral

cavity, leading to increased microbial diversity. This enriched

microbial community continuously released bioactive molecules,

such as LPS and metabolic byproducts, which affected liver immune

responses. These changes contributed to the development of a

chronic inflammatory microenvironment that promoted

malignant transformation of biliary epithelial cells (44). In

contrast, in other cases (e.g., dCCA), repeated acute inflammation

and medical interventions led to colonization by only a few

dominant pathogenic species, resulting in reduced diversity (45,

46). Though these dominant microbes had stronger pro-

inflammatory and carcinogenic potential. Both two types of

dysbiosis eventually contributed to cholangiocarcinogenesis

through both direct and indirect pathways mentioned above.

Despite significant progress, current researches exhibits several

limitations. The predominance of cross-sectional study designs

precluded establishment of clear temporal relationships between

oral dysbiosis and BTCs development. Limited sample sizes in some

studies (n<50) constrain the identification of specific bacterial

signatures (30, 36, 43). Analysis of specific metabolic regulatory

networks remains incomplete, particularly regarding the

quantification of dynamic concentrations and targets of oral

bacterial metabolites in the biliary microenvironment (41).

Additionally, spatial heterogeneity of microbiota across

gallbladder anatomical subsites requires further investigation.

Future research should validate causality through multicenter

longitudinal cohort studies and humanized mouse models. These

studies could lead to novel therapeutic approaches targeting

metabolic pathways and microbiota. One potential strategy is to

leverage machine learning on microbiota data to enable early cancer

prediction and diagnosis. Large-scale analyses of oral and gut

microbiota from gastrointestinal cancer patients have already

enabled machine learning models to distinguish cancer cases with

high accuracy (AUC>0.8) (72, 73). These findings encourage the

development of AI-driven oral microbiome diagnostics for GI and

hepatobiliary cancers as a complement to or even replacement for

more invasive screening methods. And multi-omics AI models are

being explored: an integrative graph convolutional network that

combined microbiome features with exposome data achieved about

90% accuracy (AUROC ~0.89) in detecting pancreatic cancer (74).

Larger, long−term studies and validations across diverse

populations are needed to bring these AI−powered microbiome

models into routine cancer screening. Saccharomyces cerevisiae has

been validated as a novel microbial platform for delivering agents to

gastrointestinal tumors (75). Future work could engineer strains to

express BTCs-specific antigens. This strategy may overcome the

poor mucosal penetration and high systemic toxicity of
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conventional therapies. Additionally, integrating single-cell and

spatial omics with metabolic tracing and intelligent delivery

systems could accelerate the discovery of tumor–microbe

interaction mechanisms. It could also enable microbiome-based

early screening and targeted interventions, offering new

translational avenues for BTCs that have poor prognosis and lack

reliable biomarkers.
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