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University of Chinese Medicine, Nanjing, Jiangsu, China, 3Department of Oncology, The First Affiliated
Hospital of Nanjing Medical University, Nanjing, Jiangsu, China, 4Department of Radiology, The First
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Purpose: This study aims to develop and validate a computed tomography (CT)-

based radiomics nomogram for predicting brain metastases in lung

adenocarcinoma with anaplastic lymphoma kinase positive (ALK+).

Methods: Of 117 patients were retrospectively reviewed, among them, 34

patients from another hospital. Patients were randomly allocated into training

(70%) and validation (30%) cohorts. We integrated the radiomics score

(Rad_score) with independent clinic-radiological variables to build the

nomogram model. The DeLong test and Decision curve analysis (DCA) were

utilized to evaluate performance of three models. Cox regression analysis was

used to identify statistically significant factors for progression-free survival (PFS)

in ALK-positive lung adenocarcinoma, with model discrimination evaluated by

the concordance index (C-index). The patients were divided into low-risk and

high-risk groups. Finally, the Log-rank test was used to ascertain significant

differences between the two risk groups in the nomogram models.

Results: From Stage III/IV lung cancer cases, we extracted 1834 radiomics

features, identifying two features can serve as standalone indicators of BM. The

AUC of radiomics model was 0.905 and 0.880 in the validation and external test

cohort, respectively. The AUC of nomogram model was 0.940 in the validation

cohort and 0.896 in the external test cohort, respectively. The statistical

difference merely exists between nomogram and clinical model (P=0.009,

P=0.012) in validation and external test cohorts, respectively. The multivariate

Cox regression analysis showed that lymphadenopathy (Hazard ratio (HR) = 5.41,

95% confidence interval (CI): 1.38-21.16, P = 0.015) and rad_score (HR = 25.67,

95% CI: 5.41–121.94, P< 0.001) were independent predictive factors for PFS. The

Concordance index (C-Index) for training cohort (C-Index(95%CI):0.887 (0.826-

0.956); testing cohort:0.798 (0.676-0.938), and the external cohort with 0.927

(0.857-0.996). Patients in the low-risk group showed a significantly better PFS

compared to those in the high-risk group in the training cohort and validation

cohort (P all < 0.010, respectively), whereas the results were not consistent in the

external test cohort (P=0.130).
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Conclusion: CT-derived radiomic signatures show promise as a tool for predicting BM within 2 years after detection of

primary lung adenocarcinoma detection with ALK+. Combing these radiomic signatures with clinical features can enhance

risk stratification for these patients.
KEYWORDS

lung adenocarcinoma, anaplastic lymphoma kinase, radiomics, brain metastasis, computed tomography
Introduction

When lung adenocarcinoma progresses, it has been observed that

approximately 30-43% of patients develop brain metastases (BM) (1–

3). The prognosis for patients with brain-metastatic non-small cell

lung cancer remains poor, with median overall survival (OS) typically

around 17 months for those with lung adenocarcinoma (4). Among

the various oncogenic drivers in patients with non-small cell lung

cancer (NSCLC), rearrangements in the anaplastic lymphoma kinase

(ALK) gene are considered to be potent drivers, presented in

approximately 5% of cases, second only to epidermal growth factor

receptor (EGFR) mutations (5, 6). Moreover, the research have

indicated that patients with ALK rearrangements are particularly

susceptible to developing brain metastases, with an incidence as high

as 66% in ALK-positive (ALK+) patients, whereas the overall

incidence in all lung adenocarcinoma cases is lower (7). The advent

of the ALK inhibitor, crizotinib, significantly improved the treatment

of ALK+ advanced lung adenocarcinoma, demonstrating better

outcomes than chemotherapy (8). Brain metastases are generally

considered to be the final stage of advanced disease (staging III/IV)

and deemed as an ominous sign of disease progression and death. In a

systematic review including 21 studies, the median OS for ALK-

positive NSCLC patients with baseline brain metastases was 23

months (9). A real-world study separately analyzed data from

patients with and without baseline brain metastases, showing that

the median OS for ALK-positive NSCLC patients with baseline brain

metastases was 27.1 months after first-line ALK tyrosine kinase

inhibitor (TKI) treatment, while it was 36.9 months for patients

without brainmetastases (10). However, the effectiveness of crizotinib

in controlling brain metastases is grim, as it struggles to penetrate the

blood-brain barrier. In response, second- and third-generation ALK

inhibitors have emerged (11), showing varying levels of control over

intracranial metastases. The median PFS could be 24.0 months.

Consequently, the brain remains the most common site of

progression in patients with or without baseline BM. BM status

may significantly influence prognosis and therapeutic response,

necessitating the development of accurate prediction models.

Developing reliable predictive and prognostic indicators for brain

metastases (BM) is imperative, not only pretreatment but also during

longitudinal surveillance. Therefore, developing a prognostic marker

for predicting the development of TKI resistance in ALK+ patients

would be very significant. This would allow for earlier identification
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of patients who may require alternative treatment options and could

potentially improve patient outcomes.

Ongoing research efforts are focused on utilizing radiomics

signatures to extract high-dimensional data from clinical images.

This data is then analyzed using data mining techniques to explore

the potential biological behavior of tumors and make preoperative

diagnoses for assessing therapeutic efficacy (12–14). The driver gene

status of lung cancer, such as the echinoderm microtubule-

associated protein-like 4 (EML4)-ALK fusion, highlights the

heterogeneity of tumors at the molecular level. Radiomics has

shown promise in predicting lymph node metastases across

various types of tumors (15–17). The nomogram was depicted

with the combination of clinic-radiological and radiomics features

can aid in prediction. However, few studies have investigated the

application of this integrated nomogram model in predicting brain

metastases specifically in stage III/IV lung adenocarcinoma.

Therefore, the aim of the aforementioned study was to develop

and validate predictive radiomics models and nomogram models

that can serve as reliable auxiliary tools for predicting BM in

patients with ALK-positive lung adenocarcinoma, thereby

providing valuable insights to improved patient management and

treatment decision-making.
Materials and methods

Study cohort

This retrospective study at a dual medical institution strictly

adhered to the principles outlined in the Declaration of Helsinki.

This study was reviewed and approved by the ethics committee of

the first affiliated hospital of Nanjing medical university (Permit

Number: 2023-SRFA-337). The written informed consent was

waived because of the retrospective and anonymous nature of the

data analysis.

The study encompassed patients with lung adenocarcinoma

confirmed to harbor ALK-positive mutations through pathological

analysis from June 2016 to August 2023. The inclusion and

exclusion of participants were elucidated in (Supplementary

Data 1.1).

In our hospital study, before exclusion, a total of 117

participants were diagnosed with lung adenocarcinoma with

ALK-positive, and finally, 83 patients were ultimately confirmed
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as stage III/IV NSCLC through medical imaging, who were

categorized according to the 7th Edition of the American Joint

Committee on Cance (AJCC) Cancer Staging Manual [2010] being

included in the study (18). These participants were then categorized

into two groups based on the presence or absence of brain

metastasis (BM). The presence of BM (BM+) group consisted of

26 patients who were diagnosed with brain metastasis within a

minimum follow-up period of 2 years. The absence of BM(BM-)

group, on the other hand, consisted of 57 patients who did not

develop brain metastasis during the follow-up period of at least 2

years. Patients were randomly assigned to the training set(n=58),

with 37 participants from the BM+ group and 21 from the BM-

group. The remaining 25 participants were assigned to the

validation cohort, with 5 participants from the BM+ group and

20 participants from the BM- group.

In addition to the internal study cohort, we also included an

external test cohort from another hospital. This cohort consisted of

34 cases, with 16 cases of ALK+ lung adenocarcinoma with brain

metastasis and 18 cases of ALK+ lung adenocarcinoma without

brain metastasis. The same methods used in the internal study were

applied to review and analyze the patients in the external test

cohort. The entitle workflow is visualized in Figure 1.
Clinical observation

In this study, we used various imaging techniques, routinely

used in clinical practice for diagnosing BM (16), specially contrast-

enhanced T1-weighted imaging (T1-CE), T2 fluid-attenuated

inversion recovery (T2-FLAIR), T2-weighted imaging (T2WI),

and diffusion-weighted imaging (DWI). All magnetic resonance

(MR) scans were performed using a 3.0 T MR scanner (Siemens

Medical Solutions) with an eight-channel head and neck coil

following standard brain imaging procedures. To ensure the

accuracy of the diagnosis, all MR scans were reviewed and

analyzed by experienced radiologists who were board-certified

with a minimum of 5 years of experience in interpreting brain

imaging (Authors #2, #4). The dual reporting system involving two

radiologists helped minimize the risk of diagnostic error and

ensured reliable confirmation of brain metastasis.

Beyond MR scans, the study also included routine laboratory

tests and other imaging modalities, such as chest CT enhancement

scan with a full abdominal CT enhancement scan, to monitor

disease progression and evaluate metastasis in other areas of the

body. The follow-up interval for these assessments was typically 4-

6 weeks.

To capture all relevant clinical information, we also collected data

from our hospital’s Electronic Medical Records System (EMRS) and a

collaborating hospital, encompassing age (<56 year, ≥56 year), Gender

(male, female), smoking history (no, yes), clinical stage (III/IV), and

distant metastasis status. Data collection protocols were harmonized

between institutions to ensure consistency.
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Image acquisition and evaluation

Pre-treatment thoracic CT images were acquired with a

Siemens Somatom Sensation CT scanner (Siemens Healthineers,

Erlangen, Germany). The scan encompassed the area from the chest

inlet to the lower level of the costophrenic angle, bilaterally

including the axillary regions. The detailed CT parameters are

exhibited in (Supplementary Data 1.2). Two board-certified

radiologists (author #1 with 5 years’ experience and author #2

with 3 years’ experience in thoracic imaging), independently

interpreted the CT images blinded to patients’ pathological

diagnoses. A senior radiologist (author #5 with 30 years of

experience) adjudicated any assessments discrepancies between

the initial readers. The morphological assessment included

comprehensive evaluation of the tumor characteristics and

surrounding features, such as maximal axial diameter, location,

pleural indentation, pleural effusion, lymphadenopathy, and

carcinomatous lymphangitis (CL). The final maximal axial

diameter measurements represent the mean values from both

primary readers. For quantitative analysis, regions of interest

(ROIs) within the nodule or mass were manually outlined along

the tumor margins.

Authors #1, #4, and #2 subsequently evaluated a separate cohort

of stage III/IV ALK+ lung adenocarcinoma patients from another

hospital (Figure 2).
Interobserver and interobserver
reproducibility evaluation

To assess the inter-observer reproducibility of the 1843 radiomics

features, two authors #2 and #1 independently performed the tumor

segmentation procedure for all cases approximately 3 months later

using the same annotation tool to minimize recall bias. The inter-

observer and intra-observer agreement of the 1834 extracted features

were evaluated using intraclass correlation coefficients (ICCs) (19).

The intraclass correlation coefficient (ICC) refers to the reliability

coefficient obtained by using the same scale to repeatedly measure the

same group of respondents at certain time intervals. In practice, the

level of reliability is often evaluated by calculating the intraclass

correlation coefficient. The formula is as follows: ICC= MSa−MSe
MSa+(n−1)MS,

Where MSa represents the mean square between groups (study

subjects), MSe represents the mean square within groups (error),

and n represents the number of repeated measurements. An ICC

value greater than 0.75 suggests good reproducibility of the feature

extraction process (19, 20) for subsequent analysis.
Image segmentation, radiomics feature
extraction and analysis

The volumes of interest (VOIs) encompassing the complete

tumor information. Semi-automatically contoured on thin-section

CT images (1.0mm/1.5mm slice thickness) using an in-house

software called MultiLabel (Shanghai Key Laboratory of Magnetic
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Resonance, China). In cases where the border of the lesion was

unclear, author #1 manually adjusted the precise edge of the VOIs.

To ensure accurate segmentation, author #2 reviewed all the

VOIs. Subsequently, the entire cohort of CT images with the

VOIs segmentation information was converted to the NII format

for further radiomics analysis. Radiomic features were extracted

from each VOI using the pyradiomics package (http://

www.radiomics.io/pyradiomics.html). We extracted the 105
Frontiers in Oncology 04
original features from each VOI, including first order, Gray Level

Co-occurrence Matrix (GLCM), Gray Level Size Zone Matrix

(GLSZM), Gray Level Run Length Matrix (GLRLM), Neighboring

Gray Tone Difference Matrix (NGTDM), and Gray Level

Dependence Matrix (GLDM). Different image filters were also

implemented subsequently, including exponential(n=91),

Gradient(n=91), local binary patterns(lbp).3D(n=273), log.sigma

(n=273), logarithm(n=91), square(n=91), squareroot (n=91),
FIGURE 1

Flowchart of the patient selection process.
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wavelet(n=728). The extracted radiomic features were normalized

to a standard unit and zero-centered using the following equation:

  xn
! normalized = xn

!
−�xn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21n+x
2
2n+…+x2mn

p  E1, where xn
! is the value of feature N,

and �xn is the average value of all features.

In the dimensionality reduction and feature selection process in

the training cohort, the specific steps are as follows: 1) The Synthetic

Minority Oversampling Technique (SMOTE) (21) was employed to

address the issue of imbalanced data distribution for the minority

class by interpolating existing minority class samples. 2) Pearson

correlation coefficients (PCC) (22) were calculated for the extracted

feature. The features with interclass correlation scores greater than

0.9 exhibited high correlation with the target variable and were

preserved, while removing one feature from a pair of features with

high correlation to avoid redundancy. 3) The least absolute

shrinkage and selection operator (LASSO) (23) was applied to

further select features by imposing a penalty on the number of

nonzero coefficients to select a subset of features that are most

informative for classification. 4) Several machine learning

algorithms were compared during the data training process to

identify an excellent classifier for the prediction model in patients

with brain metastases (BM+), including logistic regression(LR) (24),

support vector machine (SVM) (25), NaiveBayes(NB) (26),

multilayer perceptron (MLP) (27), extreme gradient boosting

(XGBoost) (28), and k-nearest neighbor algorithm (KNN) (29),

Random forest(RF) (30), Extra trees(ET) (31), Light Gradient

Boosting Decision Machine(LGB) (32), a gradient-boosting

machine (GBM) (33), Adaptive Boosting(ADA) (34). In this step,

5-fold cross-validation was employed to train the classifier to

evaluate the model′s stability. The performance of different

algorithms was evaluated, and the best-performing classifier was

selected for the prediction model.
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Clinical utilization

The nomogram model (35) was developed based on the selected

clinical parameters and Radiomics-score (Rad_score) (36). The

calibration curve and decision curve analysis (DCA) (37) were then

visualized to evaluate the clinical utility of the nomogram model.

Additionally, Cox regression analyses were performed.

Variables demonstrating statistical significance (p < 0.05) in the

univariate analysis were incorporated into the multivariate analysis.

Concordance index (C-index) was used to assess the prognostic

capability of the nomogram model in three different cohorts.
PFS analysis

After regular and complete imaging follow-up, the progression-

free survival (PFS) of patients were achieved, which is defined as the

time to from the date to the first occurrence of disease progression,

death or the last visit. According to the cutoff of the rad_score,

participants were categorized into a high-risk group and a low-risk

group with the X-tile method (38). Based on the predetermined cutoff

value of the rad_score, patients were stratified into high-risk

(Rad_score above the cutoff) and low-risk (Rad_score below the

cutoff) groups. Kaplan-Meier survival analysis was conducted in all

three cohorts to assess PFS differences between the groups.
Statistical analysis

Statistical analysis was carried out using several software, such

as SPSS 25.0, R software (version 4.1.0; https://www.r-project.org),
FIGURE 2

Representative clinical cases and related thoracic CT/brain MRI images. One patient had a pre-treatment thoracic CT image (A1) and brain MRI
image (A2-A4) which indicated brain metastasis at baseline examination. Another patient (B1) was free from brain metastasis at baseline evaluation
but developed brain metastasis after chemotherapy (B2, B3, arrow).
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R software (version 3.3.4; https://www.r-project.org, the “carnet”

and “ggplot” packages) and Python software (version 3.7.0; http://

www.python.org; scikitplot, sklearn, matplotlib.pyplot, lightgbm,

xgboost, sklearn.neighbors, sklearn.svm, numpy, and shap

packages). The characteristics being compared were analyzed

using different statistical tests depending on the type of variables.

The student t-test was used for continuous parameters, while Chi-

square or Fisher’s exact tests, and Mann-Whitney U test were used

for categorical variables. The ultimate parameters were determined

by univariate and multivariate logistic regression (39, 40). And the

corresponding results were described as an odds ratio (OR) with a

95% confidence interval (CI) (41). The performance of the

radiomics features to predict the presence of BM in stage III-IV

lung cancer was assessed using the receiver operating characteristic

curve (ROC) (42) and the area under the curve (AUC). ROC curve

is a graphical tool used to evaluate the performance of a binary

classification model. It illustrates the relationship between the True

Positive Rate (TPR) and the False Positive Rate (FPR) by plotting

these rates at various threshold settings. The corresponding various

metrics, including accuracy, sensitivity, specificity and F1 score

were used to evaluate the performance of the models (28). A P-value

less than 0.05 was considered statistically significant to determine

the presence of a significant difference. Survival differences were

analyzed using the Kaplan–Meier method, and the log-rank test was

applied to evaluate statistical significance.
Results

Baseline characteristics of patients

In our hospital, we finally included 83 patients, of which 26

patients had BM (brain metastasis). These patients were randomly

divided into the training cohort (58 patients; 21BM+, 37 BM-) and

the validation cohort (25 patients, 5BM+,20BM-). Additionally, we

also enrolled 34 patients for the external test cohort. Among these

patients, 16 had BM, while 18 did not. The clinic-radiological

features were listed in Table 1.
Establishment of the clinical model

The comparative analysis of clinico-radiological features

between BM + and BM- group is summarized in Table 1. While

baseline demographic variables (age, gender, smoking history) and

tumor characteristics (diameter, pleural effusion, pleural

indentation, location) showed no significant differences between

the BM- and BM+ groups (P>0.05). However, significant differences

were observed in the variables of lymphadenopathy (P=0.003) and

carcinomatous lymphangitis (P=0.010). To further identify

predictors of BM, a multivariable logistic regression was

performed, and a clinical model was established (Table 2). The

final clinical model identified two independent predictors of brain

metastasis: lymphadenopathy (odds ratio (OR): 5.133, 95%

confidence interval (CI) 1.218-21.630, P=0.026) and
Frontiers in Oncology 06
carcinomatous lymphangitis (OR:9.545, 95% CI 1.021-89.223,

P=0.048). The clinical model can effectively predict the presence

of brain metastasis based on the identified clinico-radiological

predictors, with an area under the curve (AUC) of 0.746,

specificity of 33.3%, sensitivity of 97.3%, and accuracy of 74.1% in

the training cohort, with an AUC of 0.680, specificity of 40.0%,

sensitivity of 75.0%, and accuracy of 68.0% in the validation cohort.

In the external test cohort, the AUC of the clinical model was 0.661

(95% CI 0.487-0.836), with an accuracy of 58.8%.
Feature selection and radiomics signature
construction

The intra-observer ICCs and inter-observer ICCs calculated based

on extracted 1834 features ranged from 0.768 to 1.000 and 0.751-0.999,

respectively. These ICC values indicate a high level of agreement and

consistency among the observers in evaluating the features.

To reduce the dimensionality of the feature space and mitigate

the risk of bias and potential overfitting, we employed several

methods, including SMOTE and PCC for initial feature selection,

followed by LASSO and 5-fold cross-validation (Supplementary

Figure 1). Firstly, SMOTE and PCC help identify the features with

non-zero coefficients. Then, LASSO, combined with 5-fold cross-

validation further refined the selection by zeroing out non-

informative features, ensuring the most predictive ones remained

while avoiding overfitting. The top features ranked by LASSO for

each CT image contributed to compile radiomics signatures, termed

Rad_score. Similarly, a radiomics signature was built using a K-

Nearest Neighbors (KNN) classifier from pre-treatment thoracic CT

images. The KNN algorithm selected the most predictive features,

again using a penalty determined by 5-fold cross-validation. Notably,

the KNN algorithm utilized a nearest neighbor value of 7, from pre-

tratment thoracic CT images. These features, along with their

corresponding regression coefficients, were combined to calculate

the Rad_score and build the radiomics signature model.

Remarkably, only 2 out of the initial 1834 radiomics features

were selected for the final model.

The selected features were chosen for the final model, which

weighted by their coefficients are visualized in Supplementary

Figure 2. The performance of each classifier for both training and

validation cohorts is detailed in (Supplementary Table S1).
Radiomics signature model performance

In the training cohort, the predictive power of the model was

analyzed with an AUC of 0.938 (95% CI (0.882-0.993)), specificity

of 94.6%, a sensitivity of 66.7%, and accuracy of 84.5%. The model

also exhibited reasonable performance in the validation cohort, with

an AUC of 0.905(95% CI (0.801-1.000)), specificity of 85.0%,

sensitivity of 80.0%, and accuracy of 84.0%. Note that the

diagnostic performance in the external test cohort was lower than

that of the validation cohort, exhibiting an AUC of 0.880(95% CI

(0.767-0.993)), the same goes for accuracy (79.4%) (Table 3).
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Combination of clinico-radiological
features and radiomics score

Candidate clinico-radiological factors were integrated with

Rad_score into an assessment tool to predict the two groups. We

used univariate and multivariate logistic regression (LR) analyses to

select predictive variables and assess for interaction. To determine the

independently significant factors of predicted model, variables at
Frontiers in Oncology 07
univariate analysis with statistically significant were candidates for

stepwise multivariate regression analysis. The nomogram model was

formulated based on the regression coefficient of multivariate logistic

regression analysis. In the nomogrammodel, we identified radiological

variables lymphadenopathy and carcinomatous lymphangitis and

Rad_score as independent predictors for predictive of pre-treatment

BM based on logistic regression (P <0.05) (Figure 3). The AUC of the

nomogram model was 0.961 (95% CI (0.920-1.000)) in the training
TABLE 1 Patient characteristics and clinico-radiological features in training and validation sets.

Characteristics Training cohort (n=58) P- value Validation cohort (n=25) P- value

BM+(n=21) BM-(n=37) BM+(n=5) BM-(n=20)

age (≥56yr) 9 (43%) 20 (54%) 0.412 2 (40%) 10 (40%) 0.689

gender (male/female)
9/12

(43%/57%)
20/17

(54%/50%)
0.412 2 (40%) 7 (28%) 0.835

smoking history (yes)
3

(14%)
11

(30%)
0.187 3 (60%) 11 (44%) 0.840

diameter (>
3cm)

12 (57%) 15 (41%) 0.223 1 (20%) 2 (24%) 0.504

pleural effusion (+) 9 (43%) 8 (22%) 0.088 1 (20%) 6 (24%) 1.000

pleural indentation (+) 13 (62%) 19 (51%) 0.437 4 (80%) 11 (44%) 0.615

carcinomatous
lymphangitis (+)

7 (33%) 1 (3%) 0.002 2 (40%) 5 (20%) 0.597

lymphadenopathy (+) 18 (86%) 16 (43%) 0.002 2 (40%) 12 (48%) 0.623

location

RUL 6 (28%) 4 (11%) 1 (20%) 4 (16%)

RML 2 (10%) 3 (8%) 0 (0) 2 (8%)

RLL 2 (10%) 9 (24%) 0.349 2 (40%) 4 (16%) 0.034

LUL 8 (38%) 13 (35%) 2 (40%) 6 (24%)

LLL 3 (14%) 8 (22%) 0 (0) 4 (16%)
Data are numbers of patients and parentheses indicate the percentage; BM, brain metastasis; RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe; LUL, left upper lobe; LLL, left
lower lobe; yr, year; +, positive.
TABLE 2 Univariate and multivariate analyses of clinical model.

Characteristics Univariate analysis Multivariate analysis

P-valueOR (95%CI) P1-value OR (95%CI)

age (years) 0.638 (0.217-1.876) 0.414

gender 1.569 (0.533-4.616) 0.414

diameter 1.958 (0.661-5.789) 0.226

location 0.764 (0.511-1.142) 0.189

smoking history 0.394 (0.096-1.615) 0.196

pleural effusion 2.719 (0.847-8.725) 0.093

lymphadenopathy 7.875 (1.972-31.444) 0.003 5.133 (1.218-21.630) 0.026

carcinomatous lymphangitis 18.000 (2.026-159.926) 0.010 9.545 (1.021-89.223) 0.048

pleural indentation 1.539 (0.517-4.585) 0.438
P1-value was derived from the univariate logistic regression analyses between each of the variables; OR, odds ratio; CI, confidence interval.
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cohort, 0.940(95% CI (0.846-1.000)) in the validation cohort, and The

AUC of 0. 896(95% CI (0.792-1.000)) in the external test cohort

(accuracy 79.4%) (Table 3). Figures 4A–C display the ROC curve for

the clinical, radiomics and nomogrammodels across different datasets.

The prediction performance of these models in the training, validation

and external test cohort is displayed in Supplementary Figure 3.

Moreover, the Hosmer-Lemeshow test indicated the goodness

of fit of logistic regression models (P>0.05). The calibration curve

was generated to illustrate the reliability and accuracy of the model’s

predictions across various predicted probabilities. Well-calibrated

models, as shown in Supplementary Figure 4, exhibited a close

alignment between predicted and observed probabilities, indicating

robust generalization and predictive capabilities. When we

compared these models, we found that the nomogram model was

superior to clinical model in three cohorts (P=0.001 for training,

P=0.009 for validation, P=0.012 for external test cohorts), while the

predicted performance of nomogram model was comparable to

radiomics model in three cohorts (Figures 5A–C). The radiomics

model surpassed the clinical model in the training (P=0.007) and

external cohorts (P=0.033), as shown in Figures 5A, C. Regarding

clinical utility in validation and external test cohort, DCA curve

showed that the nomogram model is comparable to the radiomics

model, and both outperformed the clinical model (Figures 6A, B).

The multivariate Cox regression analysis showed that

lymphadenopathy (HR = 5.41, 95% CI: 1.38-21.16, P = 0.015)

and rad_score (HR = 25.67, 95% CI: 5.41–121.94, P< 0.001) were

independent predictive factors for PFS (Table 4). Concordance

index (C-indiex) for all the nomogram models in each cohort:

training cohort (C-Index(95%CI):0.887 (0.826-0.956); testing

cohort(C-Index(95%CI):0.798 (0.676-0.938). The C-index

achieved 0.927 in the external cohort with 95%CI (0.857-0.996)).
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PFS analysis

The PFS analysis comprised 106 patients distributed across

three cohorts: training cohort (n=54), validation cohort (n=22), and

external test cohort (n=30). The rad_score threshold (0.20) was

computed by X-tile for dividing patients into high- and low-risk

groups (Figure 7A). Patients in the low-risk group showed a

significantly better PFS compared to those in the high-risk group

in the training cohort and validation cohort (P all < 0.010,

respectively) (Figures 7B, C), whereas the results were not

consistent in the external test cohort (P=0.130) (Figure 7D),

which maybe contributed to that the follow-up duration of

enrolled patients varied significantly.
Discussion

Our research has developed a radiomics model to predict brain

metastasis (BM) in stage III/IV ALK-positive lung adenocarcinoma

patients after detecting the primary tumor. The model has

demonstrated promising results. Furthermore, we have identified

that the CT-based radiomics signature, transformed into

quantitative Rad_score, can serve as an independent predictor in

the nomogram model. When incorporated into the nomogram, the

Rad_score significantly improves the model’s performance

compared to a clinical model based solely on clinical variables, as

evidence in the training, validation, and external test cohorts.

In our analysis of 117 patients, clinical characteristics such as age,

gender, and smoking history were not significantly associated with

brain metastasis (BM), consistent with finding from a previous study

(35). However, unlike the findings of Amol Mujoomdar et al. (43), we
TABLE 3 The diagnostic performance of different types of models for predicting BM in stage III/IV lung adenocarcinoma.

Models Datasets ACC AUC 95%CI SEN SPE PPV NPV

Clinical model

Training cohort 0.74.1 0.746 0.625-0.868
33.3%
(7/21)

97.3%
(36/37)

87.5%
(7/8)

72.0%
(36/50)

Validation
cohort

0.680 0.680 0.472-0.888
40.0%
(2/5)

75.0%
(15/20)

28.6%
(2/7)

83.3%
(15/18)

External
test cohort

0.588 0.661 0.487-0.836
81.3%
(13/16)

38.9%
(7/18)

54.2%
(13/14)

70.0%
(7/10)

Radiomics
model

Training cohort 0.845 0.938 0.882-0.993
66.7%
(14/21)

94.6%
(35/37)

87.5%
(14/15)

83.3%
(35/42)

Validation
cohort

0.840 0.905 0.801-1.000
80.0%
(4/5)

85.0%
(17/20)

57.1%
(4/7)

94.4%
(17/18)

External
test cohort

0.794 0.880 0.767-0.993
68.7%
(11/16)

88.9%
(16/18)

84.6%
(11/13)

76.2%
(16/21)

Nomogram
model

Training cohort 0.897 0.961 0.920-1.000
76.2%
(16/21)

97.3%
(36/37)

94.1%
(16/17)

87.8%
(36/41)

Validation
cohort

0.880 0.940 0.846-1.000
80.0%
(4/5)

90.0%
(18/20)

66.7%
(4/6)

94.7%
(18/19)

External
test cohort

0.794 0.896 0.792-1.000
81.3%
(13/16)

77.8%
(14/18)

76.5%
(13/17)

82.4%
(14/17)
SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; ACC, accuracy; CI, confidence interval.
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observed that no significant difference in the diameter of the tumor

between the BM and the non-BM group. This difference may be

attributed to the inclusion of multiple subtypes of non-small cell lung

cancer (NSCLC) in Amol Mujoomdar’s study, whereas our focus was

specifically on lung adenocarcinoma (40). Furthermore,

methodological differences between two study may have contribute

to the results (40), suggesting the need for further investigation (44).

Additionally, our study revealed no significant correlation

between BM and pericardial effusion, pleural indentation, slightly

contracting the findings of Lv et al. (43). However, we did observe a

notable association between lymphadenopathy and an increased BM

risk. Patients with BM often exhibited common carcinomatous

lymphangitis and lymphadenopathy compared to those without
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BM. This observation may be explained by an increased occurrence

of metastasis in lymphadenopathy and carcinomatous lymphangitis,

leading to the shedding of tumor cells that could potentially migrate to

the brain with lymphatic vessels. However, the low sensitivity of

clinical models in different datasets requires attention because that

small sample sizes and imbalanced data can result in this phenomenon

due to insufficient data diversity, which also echoed in previous

literature (40). So, we endeavored to address this limitation through

DCA curve analysis to make the performance comparison more

reliable. DCA curve showed that the nomogram model is

comparable to the radiomics model, and both outperformed the

clinical model. The multivariate Cox regression analysis revealed

that lymphadenopathy and rad_score were independent predictive
FIGURE 4

The ROC curve with AUCs of training set (A), validation set (B) and external test set (C) were exhibited.
FIGURE 3

The nomogram is based on a nomogram model to predict the ALK-positive in stage III/IV lung adenocarcinoma patients. The probability of the stage
III/IV ALK-positive lung adenocarcinoma, label patient value at each axis, draw a straight line perpendicular to the point axis, and sum the points for
all variables in the left column.
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factors for PFS, significantly increasing the risk of disease progression.

The impact of rad_score was stronger, suggesting it may be a more

critical prognostic indicator. In both the training and validation

cohorts, the low-risk group had significantly better progression-free

survival (PFS) than the high-risk group (P all <0.010, respectively).

This consistency supports the robustness of the risk stratification in

predicting PFS in these cohorts. While the survival difference between

the low- and high-risk groups was not statistically significant in the

external test cohort, it might be because the follow up of the enrolled

patients of external cohort varied significantly.

Given the limitations of the clinical model, there is a need for more

accurate prediction model. Radiomics, an emerging field based on the

hypothesis that radiological images reflect tumor biological

characteristics and holds promise in this regard (14). Based on our

current knowledge, there have been no previous explorations on the

predictive role of CT-based radiomics analysis for brain metastases in
Frontiers in Oncology 10
patients with ALK-positive lung adenocarcinoma. However, several

obstacles need to be overcome. One of the significant challenges is the

high dependency of these engineered features on imaging acquisition

algorithms. To address this issue, we conducted image normalization.

The resulting radiomics signature demonstrated favorable prediction

performance in an external test cohort, with an area under the curve

(AUC) of 0.880, 95%CI,0.767-0.993. Among the selected radiomic

features, 3D radiomics feature (Ibp_3D_glszm_GrayLevelVariance)

was the top ranked feature for predicting brain metastasis of tumors.

As tumors invasiveness increases, its shape becomes irregular and

surface areas expands, marking 3D feature particularly informative

and therefore had better diagnostic performance (45). In comparision,

Xu et al. (46) attempted to develop a radiomic signature for predicting

pre-treatment brain metastasis (BM) in stage III/IV ALK-positive

NSCLC patients. They found that only one radiomic feature

(W_GLCM_LH_Correlation) was an independent predictor, with
FIGURE 6

DCA curves of the clinical model, radiomics and nomogram model were exhibited in validation cohort (A) and external test cohort (B).
FIGURE 5

(A-C) shows DeLong test for the AUC of the three models in the training, validation, and external test cohorts, respectively. Radiomics showed
superior predictive performance than clinical models in training and external tests, respectively; When combined with clinical and radiological
features, the AUC of nomogram model was superior to clinical model in the three cohort, while comparable to radiomics model in three cohorts.
AUC, the area under the curve; ROC, receiver operating characteristic curve.
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FIGURE 7

The rad_score threshold (0.20) was computed by X-tile for dividing patients into high- and low-risk groups (A). The Kaplan-Meier cumulative event
curve for survival status shows that the patients in the low-risk group showed a significantly better PFS compared to those in the high-risk group in
the training cohort (B) and validation cohort (C), whereas the survival difference between the low- and high-risk groups was not statistically
significant in the external test cohort (D). But the longer medial survival was seen in the low-risk group than those in the high-risk group in
three cohorts.
TABLE 4 Univariable and multivariable Cox regression analysis for risk factors associated with PFS in lung adenocarcinoma with ALK-positive.

Characteristics
Univariate Analysis Multivariate Analysis

Hazard.Ratio 95% CI P-value Hazard.Ratio 95%CI P-value

age 0.78 0.34-1.87 0.581

gender 1.49 0.63-3.55 0.364

location 0.96 0.69-1.32 0.787

pleural effusion 2.55 1.05-6.21 0.039 1.45 0.48-1.4 0.510

lymphadenopathy 5.71 1.67-19.53 0.005 5.41 1.38-21.16 0.015

diameter 1.14 0.93-1.4 0.199

carcinomatous lymphangitis 5.44 2.09-14.14 0.001 0.57 0.12-2.6 0.465

pleural indentation 1.32 0.54-3.18 0.543

smoking history 0.85 0.25-2.93 0.800

Radscore 23.66 6.33-88.39 <0.001 25.67 5.41-12.94 <0.001
F
rontiers in Oncology
 11
CI, confidence interval.
The bold of P-value indicates statistically significant difference.
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an AUC of 0.687 in the training cohort and 0.642 in the validation

cohort. This feature also showed moderate performance in predicting

BM during follow-up, with AUCs of 0.682 for stage III and 0.653 for

stage IV. However, these AUC values were lower than those achieved

by the radiomics model in the external test cohort of our study

(AUC=0.803). It is worth noting that in previous research (35), there

were 30 patients with pre-treatment BM out of a total of 77 patients.

Dividing patients without BM at baseline into different stages

subsequently reduced the sample size, which could have mitigated

the statistical power compared to the initial cohort. Additionally, their

research lacked external validation. It is reported that they tried to

build a radiomic signature to predict pre-treatment BM for ALK-

positive NSCLC patients and found that only 5 radiomic features were

independent predictors (AUC=0.828), but they only performed

internal test, therefore the independent model assessment could not

be committed to avoid overfitting. In addition, because some patients

did not undergo enhanced CT in their study, they used plain CT

images to extract the radiomic features, which may affect the

segmentation of the tumor.

When tumors are enriched in gene mutations, there are changes

in downstream signaling pathways that eventually lead to

comprehensive cellular responses and trigger processes such as

cell proliferation and inflammation (47–49). The ALK gene,

especially, is involved in cell proliferation signaling. The most

common way of mutating in the ALK gene in NSCLC is the

formation of the EML4-ALK fusion gene (50). Research by

Martinengo et al. (51) shows that the hypoxia response is

specifically enriched in a large series of human ALK-positive

lymphoma and NSCLC cases, and they provide evidence that

ALK specifically regulates the expression of HIF1a and HIF2a
under hypoxic conditions in both anaplastic large-cell lymphoma

and NSCLC, and that both HIF1a and HIF2a are essential for

NSCLC growth and metastasis. Wang et al. (52) previously

demonstrated that radiomics analysis was able to detect subtle

changes in the metastatic parenchyma regardless of whether

morphological metastasis was visible.

After comparison of several machine learning methods, as

mentioned in other literature as usual (53, 54), we choose the

KNN algorithm to be the best classifier to build the radiomics

model. KNN, a widely used classification algorithm (55), is non-

liner space portioning approach may explain its superior

performance compared to traditional SVM and RF classifiers. Our

study performed by comparing different ML models showed that

the KNN model with AUCs values of 0.938 and 0.905 in training

and validation cohorts, respectively. In contrast, LR and MLP

exhibited lower yet comparable performance, but have the risk of

overfitting. Compared with the KNN model, these classifiers,

including Light GBM, SWM, Ramdomforest, XGboost, Extra

trees, GradientBoosting and AdaBoost all displayed the lower

diagnostic performance in validation cohort. When selecting the

optimal predictor, it is essential to qualitatively consider all these

factors to achieve the best balance for the particular requirements

(52). The study confirmed that the radiomics and machine learning

analysis with KNN classifier can be method to predict early
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metastasis in stage III/IV lung cancer patients with specific driver

gene mutation (ALK-positive). Here, we need to describe the

selected features used to build the model derived from the local

binary patterns, a local-level feature extraction technique, which

allows identification of a small, but biologically important, tumor

niche area (a small number of pixels) within an otherwise

homogeneous, larger tumor region (56). Even though the local

binary patterns features have not been frequently used in radiomics

study, the value of local binary patterns features for the analysis of

small volume VOIs are also confirmed (57). In advanced-stage

patients with large volume of tumors, local binary patterns features

helped identify small but biologically important tumor niche within

the homogeneous, tumor region.

There are several limitations to this study that should be

acknowledged. Firstly, the small sample size and limited external

validation due to low incidence of lung adenocarcinoma with ALK-

positive and the high proportion of loss to follow-up need to expand

the sample size in further investigations to enhance the reliability and

generalizability of the study findings, which align with the precious

study (58). Secondly, the regional characteristics of our sample

population may introduce selection bias, limiting the generalizability

of our findings. The remaining two radiomics features for model

building in our study could raise the risk of overfitting, however, we

have regularized the feature selection process to minimize overfitting.

We also could find out the rare radiomics features for predicted model

in the previous study (59). The Alvarez-Jimenez has preliminarily

studied the cross-scale associations that may exist between digital

pathology and CT imaging which can be used to identify relevant

radiomic and histopathology features to accurately distinguish lung

adenocarcinomas from squamous cell carcinomas (60). We also

acknowledge the importance of exploring correlations between

radiomics features and histopathological data for providing deeper

insights into the underlying biological mechanisms of brain

metastases. Future research should address these limitations to

provide a more comprehensive understanding of the topic.
Conclusion

In conclusion, our preliminary study demonstrated that

radiomics signature derived from pretreatment CT can serve as a

non-invasive biomarker for predicting BM in patients with stage

III/IV ALK-positive lung adenocarcinoma, backed by an

independent external test dataset. Furthermore, an individualized

model that combines the rad-score and clinico-radiological data

may aid in the management of patients with advanced ALK-positive

lung adenocarcinoma.
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12. Péchoux CL, Sun A, Slotman BJ, De Ruysscher D, Belderbos J, Gore EM.
Prophylactic cranial irradiation for patients with lung cancer. Lancet Oncol. (2016) 17:
e277–93. doi: 10.1016/S1470-2045(16)30065-1

13. Patchell RA, Tibbs PA,Walsh JW, Dempsey RJ, Maruyama Y, Kryscio RJ, et al. A
randomized trial of surgery in the treatment of single metastases to the brain. N Engl J
Med. (1990) 322:494–500. doi: 10.1056/NEJM199002223220802

14. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures,
they are data. Radiology. (2016) 278:563–77. doi: 10.1148/radiol.2015151169

15. Wu J, Tha KK, Xing L, Li R. Radiomics and radiogenomics for precision
radiotherapy. J Radiat Res. (2018) 59:i25–31. doi: 10.1093/jrr/rrx102

16. Oh JE, Kim MJ, Lee J, Hur BY, Kim B, Kim DY, et al. Magnetic resonance-based
texture analysis differentiating KRAS mutation status in rectal cancer. Cancer Res Treat.
(2020) 52:51–9. doi: 10.4143/crt.2019.050

17. Zhong Y, Yuan M, Zhang T, Zhang YD, Li H, Yu TF. Radiomics approach to
prediction of occult mediastinal lymph node metastasis of lung adenocarcinoma. AJR
Am J Roentgenol. (2018) 211:109–13. doi: 10.2214/AJR.17.19074

18. Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK,
et al. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge
from a population-based to a more “personalized” approach to cancer staging. CA
Cancer J Clin. (2017) 67:93–9. doi: 10.3322/caac.21388

19. Koo TK, LiMY. A guideline of selecting and reporting intraclass correlation coefficients
for reliability research. J Chiropr Med. (2016) 15::155–63. doi: 10.1016/j.jcm.2016.02.012

20. Zhou T, Tu W, Dong P, Duan S, Zhou X, Ma Y, et al. CT-based radiomic
nomogram for the prediction of chronic obstructive pulmonary disease in patients with
lung cancer. Acad Radiol. (2023) 30:2894–903. doi: 10.1016/j.acra.2023.03.021

21. Song Y, Zhang J, Zhang YD, Hou Y, Yan X, Wang Y, et al. FeAture Explorer
(FAE): A tool for developing and comparing radiomics models. PLoS One. (2020) 15:
e0237587. doi: 10.1371/journal.pone.0237587

22. Yu R, Cai L, Gong Y, Sun X, Li K, Cao Q, et al. MRI-based machine learning
radiomics for preoperative assessment of human epidermal growth factor receptor 2
status in urothelial bladder carcinoma. J Magn Reson Imaging. (2024) 60:2694–704.
doi: 10.1002/jmri.29342

23. Sauerbrei W, Royston P, Binder H. Selection of important variables and
determination of functional form for continuous predictors in multivariable model
building. Stat Med. (2007) 26:5512–28. doi: 10.1002/sim.3148

24. Paul A, Mukherjee DP, Das P, Gangopadhyay A, Chintha AR, Kundu S.
Improved random forest for classification. IEEE Trans Image Process. (2018)
27:4012–24. doi: 10.1109/TIP.2018.2834830

25. Huang S, Cai N, Pacheco PP, Narrandes S, Wang Y, Xu W. Applications of
support vector machine (SVM) learning in cancer genomics. Cancer Genomics
Proteomics. (2018) 15:41–51. doi: 10.21873/cgp.20063

26. Sugahara S, Ueno M. Exact learning augmented naive bayes classifier. Entropy
(Basel). (2021) 23:1703. doi: 10.3390/e23121703
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