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Cancer ranks among the most formidable diseases. Currently, the treatment of

malignant tumors has entered the immunotherapy era. Immunotherapy has

achieved remarkable progress in treating malignant tumors, including head

neck squamous cell carcinoma. Nevertheless, a significant number of patients

exhibit a limited response to this treatment. Thus, the quest for novel molecular

biomarkers to assess the efficacy of immunotherapy is of utmost importance. In

recent years, the prediction and evaluation of immune efficacy have emerged as

focal points of research. Biomarkers developed based on tissue biopsies (such as

programmed death ligand-1 expression, tumor infiltrates lymphocyte subsets,

tumor mutation burden, cancer-associated fibroblasts, etc.), liquid biopsies

(circulating tumor DNA, circulating tumor cells, and extracellular vesicles, etc.),

when combined with nanotechnology, have shown the potential for highly

sensitive prediction. This is achieved through non-invasive real-time

monitoring of clonal evolution and immune escape. Moreover, radiomics and

artificial intelligence (such as deep-learning models) can noninvasively predict

and evaluate treatment response and prognosis. In this study, we

comprehensively summarize the research progress of molecular markers for

predicting and evaluating the efficacy of immunotherapy in head neck squamous

cell carcinoma. We approach this from the perspectives of tissue biopsy, liquid

biopsy, radiomics, and artificial intelligence.
KEYWORDS

head neck squamous cell carcinoma, immunotherapy, molecular marker, tissue biopsy,
liquid biopsy, radiomics, artificial intelligence
1 Introduction

Head neck squamous cell carcinoma (HNSCC) is a prevalent malignant tumor. Surgery

and radiotherapy serve as the primary treatment modalities for HNSCC patients.

Regrettably, the vast majority of patients present at the middle or late stages of the

disease. Even after undergoing a series of comprehensive treatments including surgery,
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radiotherapy, and chemotherapy, the recurrence and mortality rates

remain distressingly high. Immunotherapy has emerged as a

rapidly-developing treatment approach in recent years. Tumors

evade the immune system by expressing immune checkpoint

ligands, such as Programmed death receptor-1 (PD-1),

Programmed death ligand-1 (PD-L1), cytotoxic T-lymphocyte-

associated protein 4, and others (1). Based on clinical trials like

Keynote s -012 , KEYNOTE-040 , KEYNOTE-048 , and

CheckMate141, immune checkpoint inhibitors (ICIs) have been

shown to extend the overall survival of patients with recurrent/

metastatic HNSCC (2–5). Nivolumab and pembrolizumab were

approved by the U.S. Food and Drug Administration (FDA) in 2016

for use as first-line treatments for recurrent/metastatic HNSCC.

Inspired by these promising results, numerous centers have

initiated explorations into neoadjuvant immunotherapy for locally

advanced HNSCC and have achieved satisfactory outcomes (6–8).

Neoadjuvant ICIs combined with chemotherapy represent a

commonly-employed treatment regimen (9). Nevertheless, clinical

observations reveal that not all patients respond favorably. Some

patients show poor responses, and current screening methods are

still insufficient. There is thus an urgent need for reliable predictive

biomarkers to facilitate personalized clinical management and the

development of new treatment strategies. Regarding the screening

of biomarkers for immunotherapy, tissue biopsy and liquid biopsy

are the two principal methods for sample collection in clinical

practice (10). Tissue biopsy mainly involves analyzing factors such

as the expression of PD-L1 in tumor tissues, tumor lymphocyte

infiltration, tumor mutational burden (TMB), tumor infiltrates

lymphocyte subsets (TILs) and cancer-associated fibroblasts

(CAFs) within tumor tissues. However, tissue biopsy is plagued

by issues of spatial and temporal heterogeneity. Liquid biopsy, on

the other hand, is carried out by collecting peripheral blood to

detect circulating tumor DNA (ctDNA), circulating tumor cells

(CTC), and extracellular vesicles (EVs). It is a highly efficient

and non-invasive method for dynamically assessing the

efficacy of immunotherapy. The development of nanomaterials,

nanostructures, and nanotechnology has significantly enhanced the

detection efficiency of liquid biopsy, which is currently a hot topic

in clinical research. Advances in imaging and the ascent of artificial

intelligence are also being harnessed to screen for predictive

biomarkers of immunotherapy. In this review, we will summarize

the current biomarkers for predicting and evaluating the efficacy of

immunotherapy in HNSCC from the perspectives of tissue biopsy,

liquid biopsy, imaging examination, and artificial intelligence, with

the aim of better guiding clinical practice (Figure 1, Table 1).
2 Molecular markers commonly used
in tissue biopsy

Cytological puncture or tissue biopsy is a frequently employed

method for diagnosing malignant tumors. Moreover, numerous

biomarkers relevant to immunotherapy are also evaluated through

tissue biopsy procedures.
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2.1 PD-L1

Ever since ICIs came into use for the treatment of HNSCC, PD-1

and PD - L1) have attracted substantial attention. In clinical practice,

the expression level of PD-L1 is typically detected via

immunohistochemistry of tumor biopsy tissue. This detection

serves the purpose of screening patients who are likely to benefit

from ICIs (3, 11, 12). PD-1 is expressed by T cells following their

activation and binds to one of its ligands, namely PD-L1 or

Programmed Death Ligand–2(PD-L2). The interaction between

PD-L1 and its receptor PD-1 leads to a reduction in the activation

and proliferation of T cells. Consequently, this enables tumors to

evade the immune response. PD-L1 is expressed on a diverse range of

cells, encompassing tumor cells as well as immune cells such as

activated lymphocytes, macrophages, dendritic cells, and mast cells

(13–15). The Tumor ratio score (TPS) and the combined positive

score (CPS) are two important immune indexes utilized for

evaluating the efficacy of ICIs. TPS is defined as the expression of

PD-L1, calculated as the number of positive tumor cells divided by

the total number of viable tumor cells, and then multiplied by 100%.

In contrast, CPS is defined as the proportion of tumor cells (either

partially or fully stained), lymphocytes, and macrophages that exhibit

positive PD-L1 expression, relative to all tumor cells, multiplied by

100% (16). Although, theoretically, this value could exceed 100, the

maximum CPS is conventionally defined as 100.In clinical trials, both

of these scoring systems have employed various cutoff values.

Currently, the consensus recommendation is to define PD-L1

positivity as TPS ≥ 1% or CPS ≥ 1 through immunohistochemical

staining (17). The CPS holds a particularly superior value as a

biomarker, especially when considering lower cutoff values (CPS ≥

1) (18). When it comes to the role of PD-L1 testing in HNSCC,

several crucial issues need to be taken into account (19). The first

significant aspect pertains to the reproducibility of the staining

protocol utilized for the immunohistochemical assessment of PD-

L1 expression. The expression levels and staining distributions can

vary substantially depending on the different protocols in use. This

variability limits the ability to compare data obtained from different

research centers. On the other hand, different observers may arrive at

different interpretations of the results. Several studies have been

conducted to evaluate the consistency of different staining protocols

in assessing PD-L1 expression in HNSCC. These studies have also

examined the inter-observer variability in evaluating the outcomes

(20–23). Overall, there was moderate to significant agreement

between the different PD-L1 assays, as well as inconsistencies

between observers, especially when the assessment was performed

by a trained pathologist.
2.2 TILs

The tumor immune microenvironment of HNSCC has been

extensively investigated in multiple studies, which has led to the

identification of immune checkpoints that play a role in suppressing

the immune response. In this regard, TILs are regarded as a crucial
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effector of the anti-tumor immune response of the host. In the case

of HNSCC, numerous studies have demonstrated that patients with

elevated levels of CD3+ and CD8+ T cells tend to have a better

survival outcome (24–28). In certain studies focusing on

oropharyngeal cancer, the FoxP3+ regulatory T cells (Tregs)

subgroup has been associated with a more favorable prognosis

(29–32). Combining the assessment of TILs with the evaluation of

PD-L1 expression represents an intriguing and promising

approach. In fact, within HNSCC, there exists a positive

correlation between the expression of PD-L1 and the presence of

TILs (33, 34). Four distinct types of tumor microenvironments have

been classified based on the presence or absence of TILs and PD-L1

expression. This classification aims to identify a more suitable

framework for formulating immunotherapy strategies tailored to

different tumor microenvironments (35). According to this

classification system, they are categorized as follows: Type I

features positive PD-L1 expression and a high density of TILs

(PD-L1+ TIL+); Type II shows negative PD-L1 expression and a

low density of TILs (PD-L1−TILs−); Type III is characterized by
Frontiers in Oncology
 03
positive PD-L1 expression but negative TILs (PD-L1+ TILs−); and

Type IV has negative PD-L1 expression yet positive TILs (PD-L1−,

TILs+). Balermpas et al. (33) discovered that among 161 HNSCC

cases, the group with a high ratio of CD8+ cells to PD-L1 expression

had a significantly better prognosis compared to the group with a

high CD8+ cell count but low PD-L1 expression. Additionally, they

found that patients with tumors exhibiting a high CD8+/PD-L1

ratio were more prevalent in human papillomavirus (HPV)-positive

tumors when compared to HPV-negative tumors.

Furthermore, HPV-positive HNSCCs are marked by a high

expression of cytotoxic T lymphocyte antigen 4 (CTLA-4), as well as

an increased presence of Tregs and PD-1+ lymphocytes (36–38).

Nevertheless, although there is accumulating evidence indicating that

the HPV status exerts a significant influence on the immune

microenvironment of HNSCC, which might potentially alter the

outcomes of biomarker evaluations used to predict the response to

ICIs, there is currently no conclusive evidence establishing a

relationship between the HPV status and immunotherapy, especially

with regard to PD-1/PD-L1 inhibitors (24).
FIGURE 1

Molecular markers for the immunotherapy efficacy. Biomarkers developed based on tissue biopsies, such as programmed death ligand-1 (PD-L1)
expression, tumor cell subpopulations, tumor mutation load, and fibroblasts, are important. In addition, liquid biopsies, including circulating tumor
DNA (ctDNA), circulating tumor cells (CTCs), and extracellular vesicles (EVs), also play significant roles. Moreover, radiomics, which involves
computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography/computed tomography (PET/CT), and artificial
intelligence, such as deep-learning models, can non-invasively predict and evaluate treatment response and prognosis. HNSCC head neck
squamous cell carcinoma.
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2.3 Abnormal expression of genes

TMB has emerged as a significant predictive biomarker for

immunotherapy across several tumor types (39–41). TMB is defined

as the total number of non-synonymous mutations present in each

coding region of the tumor genome. It can be estimated through the

use of next-generation sequencing-based techniques, such as gene-

targeting panels. In the KEYNOTE study focusing on HNSCC (42),

TMB was found to be capable of predicting the therapeutic response to

pembrolizumab. Moreover, higher levels of TMB were associated with

a longer progression-free survival. Analogous results were obtained in

another study, where ICIs were shown to improve the overall survival

of patients with higher TMB levels (43). Despite these promising

findings, the absence of a standardized method for TMB assessment

and reporting has, thus far, impeded its widespread clinical application

in the context of HNSCC (44).

Another participation mechanism that increased TMB is

associated with increased ICIs response is microsatellite instability

(MSI) caused by DNA repair defects. However, given the very low

frequency of MSI in HNSCC (1% to 3%), MSI testing is not

routinely recommended (17).
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Genomic analyses that are based on the assessment of immune-

related gene expression or characteristics have been explored in a

diverse range of solid tumors undergoing immunotherapy. These

analyses generally demonstrate good predictive value for treatment

response (44). Interferon-gamma (IFN-g) is the sole member of

Class II interferons and serves as a core molecule in the upstream

pathway of PD-L1, stimulating its expression (45). IFN-ghas been
shown to be significantly associated with the use of PD-L1

suppressive therapy and immune TME. IFN-g plays a key driver

role in predicting clinical response to treatment with PD-1/PD-L1

inhibitors (46). Current studies on HNSCC immunotherapy have

revealed that differences in IFN-g related genes are the predominant

changes (47). In the KEYNOTE 012 study, researchers investigated

the expression characteristics of IFN-g-inflammatory immune

genes in HNSCC patients treated with pembrolizumab. The

results indicated that the expression values in responders were

significantly higher than those in non-responders (48). The IFN-g-
related CXC chemokine family is involved in various tumorigenic

processes, including tumor angiogenesis, immune cell infiltration,

and leukocyte migration. It holds potential value in predicting and

evaluating the efficacy of immunotherapy (2). Pan-cancer studies
TABLE 1 Comparison of key molecular markers for immunotherapy efficacy.

Types Molecular markers Mechanism Advantages Disadvantages

Tissue biopsies Gold standard;Providing richer
pathological features

Temporal and
spatial heterogeneity

PD-L1
Suppressed T cell; Escaped
immune killing

Gold standard
The prediction efficiency is not
enough, and supplemented
biomarkers are needed

TILs
Tumor cytolysis and
maintained
immune surveillance

Predictive model of TILs and PD-L1
Need verification in
untreated HNSCC

CAFs
Immunosuppression and
stimulating Tregs and
cytotoxic T cells

Immunosuppressive
HNCAF-1 specific in HNSCC

Need verification in larger
number of untreated HNSCC

Liquid biopsies Non-invasive and reflecting the overall
state of the human body

Low sensitivity and specificity,
limited clinical application

ctDNA
Multi-faceted analysis of
tumor genes

Rich information

The numbers are small, require
a large number of blood
samples, and the mutations
identified may also reflect non-
malignant cells, leading to
false-positive results

CTC
Represent the heterogeneity
of parental cells

CTCs, as a means of liquid biopsy for
detecting PD-L1 expression represents a
highly viable technical approach

Short life, small quantity, low
concentration, dynamic
heterogeneity and so on

EVs
Represent the heterogeneity
of parental cells

EVs contains a variety of molecular makers
and is stable and easy to preserve

Limited clinical application

Radiomics
Extracted
parameter features

The immunotherapy efficacy
was predicted by
imagine features

Non-invasive Limited clinical application

Artificial intelligence Data analysis
Multi-omics datasets
in oncology

Non-invasive,
interdisciplinary

Limited clinical application
Bold means diagnosis methods.
PD-L1 Programmed death ligand 1; TILs Tumor infiltrates lymphocyte subsets; CAFs cancer-associated fibroblasts; ctDNA circulating tumor DNA; CTC circulating tumor cell; EVs Extracellular
vesicles; HNSCC head neck squamous carcinoma.
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have demonstrated that CXCL9, as a predictor of ICIs, outperforms

CD8 effector and T cell inflammatory signatures (47).
2.4 CAFs

CAFs are among the most crucial cell types within the tumor

microenvironment of numerous cancers. Due to continuous

activation, they are unable to undergo apoptosis (48). In recent

times, studies have uncovered a relationship between CAFs and

ICIs (49–51). When it comes to HNSCC, one particular study

identified 14 gene expression clusters. This was achieved based on

baseline samples and samples from patients treated with nivolumab.

In this context, four subtypes of CAFs were categorized, namely

HNCAF-0 to HNCAF-4 (52). Following immunotherapy, it was

observed that the proportions of HNCAF-0 and HNCF-3 increased,

whereas the levels of HNCAF-1 and HNCAF-2 decreased.

Furthermore, CAFs possess the ability to secrete exosomes into

cancer cells. These exosomes contain various components,

including multi-drug resistance associated proteins, microRNAs

(miRNA), and long non-coding RNAs (lncRNA) (53).
3 Temporal and spatial heterogeneity
in tissue biopsy

3.1 Temporal heterogeneity

Nevertheless, tissue biopsy is confronted with the issue of

temporal and spatial heterogeneity. In one study that delved into

the alterations of CPS in primary tumors and in incurable local

recurrent diseases subsequent to definitive curative treatments such as

surgery, radiation therapy, or chemoradiotherapy, when the same

cutoff value of CPS ≥ 1 was applied, significant discrepancies were

detected in 36% of the cases (54). When higher cutoff values of ≥ 20

and ≥ 50 were utilized to evaluate the changes in CPS, studies

consistently reported inconsistencies at rates of 32 - 33% (for the

cutoff value of ≥ 20) and 20% (for the cutoff value of ≥ 50) following

the intervention (55).This indicates that the immune status of patients

changes dynamically during the course of treatment. However,

repeated biopsies will inevitably cause damage to the patient. These

findings strongly suggest that the immune status of patients

undergoes dynamic changes throughout the treatment process.
3.2 Spatial heterogeneity

In HNSCC, it is quite common to encounter cases with early

regional cervical lymph node involvement or even cases where the

primary site of cervical lymph node involvement remains unknown.

As a result, tissue from tumor-involved lymph nodes is frequently

employed for histological evaluation. Given this situation, it is of

great significance to understand the potential disparities in PD-L1

expression between primary tumors and synchronous lymph node

metastases. This knowledge can potentially guide the selection of
Frontiers in Oncology 05
tissue samples for assessing PD-L1 expression. In fact, when

Ambrosini et al. carried out a comparison between primary

tumors and synchronous lymph node metastases, they discovered

that when using cutoff values of CPS ≥ 1 and ≥ 20, the consistency

rates were 93.3% and 80%, respectively (56). A comparable study

evaluated the CPS in 38 cases of primary p16+ oropharyngeal

squamous cell carcinoma and their matched synchronous lymph

node metastases. The study found that all the investigated lesions

had a CPS ≥ 1. However, when classifying the lesions as either low

or high positive for PD-L1 based on a CPS cutoff value of ≥ 20, in

24% of the cases, the PD-L1 expression in the primary tumor did

not match that in the lymph node metastases (57). It is worth noting

that there is currently no clear evidence indicating whether PD-L1 is

expressed at a higher level in primary tumors or in lymph node

metastases. When comparing the primary tumor with distant

metastases, the consistency of the CPS with the primary tumor

was higher when the cutoff value was ≥ 1 (88.9%) compared to when

the cutoff value was ≥ 20 (77.8%).

Moreover, due to the inherent randomness of the biopsy

process, the sampled tissue cannot fully represent the entire

tumor sample. This further exacerbates the issue of spatial

heterogeneity, making it more challenging to accurately assess

PD-L1 expression and draw reliable conclusions regarding the

immune status of the tumor. This emphasizes the need for more

comprehensive and representative methods for evaluating PD-L1

expression in HNSCC patients.
4 Molecular markers commonly used
in liquid biopsy

Liquid biopsies involve the collection of biological fluids such as

cerebrospinal fluid, saliva, pleural fluid, blood, ascites, and urine

from cancer patients to diagnose cancer. Thanks to its flexible and

non-invasive nature, liquid biopsy enables the dynamic monitoring

of cancer recurrence, treatment efficacy, or the development of drug

resistance. Tumors are characterized by strong heterogeneity. The

genetic information of tumors can vary significantly between

different individuals, within tumors located in different parts of

the same individual, among different subclonal tissues in the same

tumor location, and even among different cells within the same

subclone. Traditional tissue biopsy, which involves taking a sample

of diseased tissue for testing, has certain limitations. In contrast,

liquid biopsies are theoretically more comprehensive and have a

lower bias due to heterogeneity. Combining tissue biopsy with

liquid biopsy has the potential to further increase the positive

detection rate, thereby benefiting more patients.

Currently, liquid biopsy based on blood is the most crucial

research area. It mainly focuses on detecting ctDNA, CTCs, and

EVs in the blood. During the course of immunotherapy, liquid

biopsy technology is employed to analyze and assess the

microscopic changes that occur within the patient’s body after

receiving treatment. This is highly beneficial for evaluating

whether the tumor has progressed or not. By detecting the

presence and changes of these molecular markers in the blood,
frontiersin.org

https://doi.org/10.3389/fonc.2025.1586130
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhu and Ning 10.3389/fonc.2025.1586130
clinicians can obtain valuable information about the tumor’s

response to immunotherapy in a more timely and less invasive

manner, which can guide subsequent treatment decisions and

improve patient outcomes (58).
4.1 ctDNA

ctDNA primarily serves to detect the DNA fragments that are

generated following the apoptosis, necrosis, and rupture of tumor

cells. The identification of these DNA fragments within the

bloodstream is highly advantageous for the early detection of

tumors. Moreover, it enables a multi-faceted analysis of tumor

genes, which in turn provides valuable guidance for subsequent

treatment strategies (59). Specifically, after a patient undergoes

three or more courses of anti-PD-1 antibody treatment, a

decrease in the ctDNA level indicates that the immunotherapy is

effective, and such patients tend to have a longer survival period.

Notably, patients in whom ctDNA is undetectable after

immunotherapy derive the greatest benefit and exhibit the longest

survival duration. Additionally, research has revealed that changes

in ctDNA can predict a patient’s response to immunotherapy

several months earlier compared to radiological examinations.

However, it should be noted that ctDNA constitutes only 0.1-10%

of the total circulating free cell DNA (cfDNA) (60). Consequently,

analyzing ctDNA typically necessitates a relatively larger blood

sample volume. Furthermore, the mutations identified through

ctDNA analysis may also originate from non-malignant cells,

potentially leading to false-positive results (61). This highlights

the need for further refinement of ctDNA detection techniques to

improve their accuracy and reliability, while also emphasizing the

importance of integrating ctDNA analysis with other diagnostic

methods to enhance the overall assessment of tumor status and

treatment response in the context of immunotherapy for HNSCC

and other cancers.
4.2 CTCs

PD-L1 is a cell surface protein. The conventional approach for

assessing PD-L1 involves immunohistochemical staining of focal

tissue sections to ascertain whether there is abnormal PD-L1

expression on the surface of cancer cells. This traditional method

has paved the way for the development of numerous diverse

solutions for detecting PD-L1 through liquid biopsy. Firstly, the

detection method that most closely resembles the traditional tissue

section analysis is the immunohistochemical staining of CTCs.

Currently, several studies have been carried out regarding the

expression of PD-L1 in CTCs. The results clearly demonstrate a

robust correlation between the PD-L1 expression in CTCs and that

in tissue sections (62). Notably, in certain instances, the biological

expression level of PD-L1 in CTCs is even higher than that in tissue

sections. In HNSCC, CTCs can serve a dual role. They can function

as a prognostic indicator, offering valuable insights into the patient’s
Frontiers in Oncology 06
disease prognosis. Additionally, they can act as a foundation for

analyzing the molecular expression of biomarkers associated with

immunotherapy response, such as PD-L1 and others (63). Hence,

employing CTCs as a means of liquid biopsy for detecting PD-L1

expression represents a highly viable technical approach (64).

Nevertheless, CTCs are characterized by a short lifespan, low

abundance and concentration, and dynamic heterogeneity. Their

isolation often relies on epithelial markers, and advanced

technologies like microfluidic devices and enrichment strategies

are required to enhance the sensitivity of detection (61, 65, 66).
4.3 EVs

EVs have emerged as a novel biomarker in liquid biopsy. EVs

isolated from biological fluids consist of a diverse array of vesicles

and nanoparticles, varying in cell origin, size, and concentration

(67). Compared to ctDNA and CTC, EVs possess distinct

advantages as follows (68, 69): 1. They are more abundant in

biological fluids than CTC and carry more information than

ctDNA. 2. EVs can be sourced from a wide range of biofluids,

including blood, cerebrospinal fluid (CSF), urine, etc., while CTC

and ctDNA are typically obtained from blood samples only. 3. EVs

can traverse multiple cell membrane barriers, particularly the

blood-brain barrier, which is of utmost significance for diseases in

the central nervous system. 4. Due to their lipid bilayer structure,

EVs are relatively stable and can be stored at - 80°C for an extended

period while maintaining their morphology and content. Research

has indicated that EVs play a role in mediating various biological

pathways and mechanisms in cancer progression, such as cell

growth, proliferation, and migration, by transferring EVs-

encapsulated molecules between different cells. Thus, cancer-

related molecules present in EVs are potential biomarkers for the

diagnosis and prognosis of cancer patients (70). Shown in Figure 2,

EVs contain a plethora of biomolecules, including DNA, messenger

RNA (mRNA), microRNA (miRNA), long non-coding RNA

(lncRNA), proteins, metabolites, and lipids, reflecting the

heterogeneity of their parental cells, which makes them an

important source of biomarkers (71). Specifically, their changes

before and after treatment also show great potential in monitoring

therapeutic response (72), thereby facilitating patient stratification

and personalized cancer treatment. In particular, as a crucial

medium for intercellular communication within the tumor

microenvironment, EVs could be a key factor in monitoring the

response to immunotherapy (73).

Depending on the cell that forms the EVs, they may contain

active protein components, among which PD-L1 is also present.

Therefore, detecting PD-L1 in EVs represents a viable approach. It

has been confirmed that PD-L1 in EVs also contributes to

immunosuppression, and its level is associated with the efficacy of

ICIs (74). Christian Rolfo, a professor of medicine at the Icahn

School of Medicine at Mount Sinai, and his team utilized PD-L1 in

EVs extracted from blood to better predict and dynamically

evaluate the response of non-small cell lung cancer(NSCLC)
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patients to cancer immunotherapy (75). EVs RNA expression in

plasma has a statistically significant correlation with the efficacy of

ICIs in melanoma and NSCLC (76). Studies have reported that in

advanced NSCLC patients who did not respond to anti-PD-1 or

anti-PD-L1 treatment, the levels of miRNA-200c-3p, miRNA-21-

5p, and miRNA-28-5p in plasma EVs prior to treatment were

elevated (20). Additionally, the combination of three biomarkers,

miRNA-199a-3p, miRNA-21-5p, and miRNA-28-5p, was more

effective in predicting immunotherapy response than PD-L1

expression detected by immunohistochemical assessment.

MiRNAs such as miRNA - 320d, miRNA - 320c, and miRNA -

320b were able to predict partial responses of advanced NSCLC to

ICIs (77).

However, currently, research in this area mainly focuses on

malignant tumors such as lung cancer. The prediction and

evaluation of EVs in the immunotherapy of HNSCC, especially

neoadjuvant immunotherapy, remain under-explored. More studies

are required to further elucidate its clinical value.
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4.4 Methods based on nanotechnology

EVs possess several advantages over ctDNA and CTCs. As a

result, this chapter will concentrate on the application of

nanotechnology in the detection of EVs. The detection and

molecular analysis of EVs present significant challenges, primarily

due to their minuscule size and the difficulty in purifying them from

multi-component serum or plasma samples.

Conventional methods for EVs separation, such as

ultracentrifugation, ultrafiltration, or the use of kits, are known to

be time-consuming, complex, and exhibit low separation efficiency.

Similarly, conventional EVs analysis techniques, including

polymerase chain reaction(PCR), Western blotting(WB), and

enzyme-linked immunosorbent assay (ELISA), are not only time-

consuming and labor-intensive but also have only moderate

sensitivity. Moreover, these traditional methods often necessitate

a separate EVs purification step, which further limits their

practicality for clinical applications (78).
FIGURE 2

Structure and detection methods of EVs. EVs contain a plethora of biomolecules, including nucleic acid, proteins, metabolites, and lipids. There are
conventional methods for EVs isolation, such as ultracentrifugation, ultrafiltration, or the use of kits. Similarly, conventional EVs analysis techniques
includes polymerase chain reaction (PCR), Western blotting (WB), and enzyme-linked immunosorbent assay (ELISA). Nanomaterials, nanostructure
have demonstrated remarkable advantages in the high-purity separation and high-sensitivity, high-specificity detection of EVs. Subsequently, the
isolated EVs can be analyzed by using nanotechnology, including fluorescence, surface plasmon resonance (SPR), surface-enhanced Raman
spectroscopy (SERS), etc.
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In recent times, nanomaterials, nanostructures, and

nanotechnology have demonstrated remarkable advantages in the

high-purity separation and high-sensitivity, high-specificity detection

of EVs. Nanostructures and nanomaterials possess a large surface-to-

volume ratio, which significantly increases the number of binding

sites. This enhancement in binding sites directly leads to an

improvement in the capture efficiency of EVs (79). Additionally,

the nanoscale dimensions of these nanostructures enable the

fabrication of substrates with densely packed nanostructures. Such

substrates offer a unique opportunity to amplify the local signals

emitted by the captured EVs (80). Nanomaterials and nanostructures

employed for the separation and enrichment of EVs can generally be

categorized into three distinct types: separation based on physical

properties such as size, density, deformability, and charge; capture

and isolation utilizing nanobeads; and enrichment facilitated by

nanostructured substrates (80). Subsequently, the isolated EVs can

be detected using various techniques, including fluorescence, surface

plasmon resonance(SPR), surface-enhanced Raman spectroscopy

(SERS), electrochemistry, and aptamers (78). Moreover, molecular

biomarkers (such as proteins, DNA, and RNA) encapsulated within

the EVs can be analyzed through immunostaining and sequencing

methods (81). Simultaneously, nanometer characterization and

analysis techniques, such as atomic force microscopy and nano-

infrared spectroscopy, have the capability to detect single extracellular

vesicles. This ability is highly beneficial for exploring the

heterogeneity of extracellular vesicles and understanding its

implications for tumor detection (82). The development of a

plethora of novel technologies has substantially enhanced the

detection efficiency of EVs and their associated cargoes.

However, despite these advancements, the widespread

implementation of nanotechnology-based EVs detection in cancer

management has not yet become a routine practice in clinical settings.

The limited understanding of the correlation and efficiency of

different nanotechnologies in EVs detection has posed a significant

obstacle to the standardization and industrialization of these

detection methods. Consequently, there is a pressing need for more

in-depth clinical translational research in the future to bridge this gap

and realize the full potential of nanotechnology in EVs detection for

cancer diagnosis and treatment.
5 Radiology

Implementing immunotherapy within the therapeutic

paradigm of HNSCC requires a comprehensive definition of

therapeutic effectiveness. Historically, response assessment has

been based on changes in tumor burden, both clinically and

radiologically, according to the response evaluation criteria in

solid tumors version 1.1 (RECIST v1.1) (83, 84). The immune-

related response evaluation criteria in solid Tumors (iRECIST) is

particularly suitable for this purpose because it has the same lesion

selection and response evaluation criteria as RECIST v1.1 but

requires confirmatory radiological follow-up at 4 to 8 weeks (85).

However, all of these assessment methods are complex and often
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difficult to apply in clinical practice. RECIST v1.1 is still widely used,

but its value is controversial (47, 85–87).

Radiomics is an auxiliary diagnostic technique for extracting

large amounts of perfectly reproducible information from medical

images. Radiomic analysis can effectively extract meaningful

information from medical images, perform three - dimensional

evaluations of tumors throughout the body, and conduct repeated

evaluations during cancer treatment (88). Radiomics provides a

valuable tool for the development of predictive biomarkers in the

context of immunotherapy (89–92).

Radiomics has also been successfully used to predict PD-L1

expression in lung, esophageal, and urothelial cancers (93–95).

Studies have constructed and validated radiomic signatures based

on contrast-enhanced computed tomography to predict PD-L1

expression in HNSCC. Nine features were selected from the

enhanced computed tomography of 157 patients with confirmed

HNSCC to construct a radiomic feature model. The model showed

good predictive efficacy and may help identify patients with HNSCC

who could benefit from anti-PD-L1 immunotherapy (96).

Immunotherapy has the potential to induce an early treatment

response in certain patients with HNSCC. Such responses,

however, cannot be diagnosed using conventional imaging

parameters. Magnetic resonance imaging (MRI) diffusion-weighted

imaging (DWI), on the other hand, may hold the key to detecting

these early changes. One study was carried out to explore the

correlation between early DWI parameters and the treatment

response following immunotherapy for HNSCC. The researchers

analyzed the imaging data of 24 patients with advanced squamous

cell carcinoma both before and after immunotherapy. They found

that round tumors with smaller diameters prior to treatment were

more likely to exhibit a positive response. Additionally, a lower tumor

skewness after treatment, along with a decreased overall skewness

post-treatment compared to the pre-treatment state, was associated

with a better treatment outcome (97). Another study established a

multi-sequence MR volume histogram indicator model to predict the

pathologic complete response (PCR) in patients with advanced

HNSCC who were undergoing neoadjuvant chemotherapy

immunotherapy (98). Furthermore, another research effort

demonstrated the predictive value of multi-parameter MRI in

evaluating the efficacy of neoadjuvant immunochemotherapy for

locally advanced HNSCC (99).

In fact, the advent of radiomics for predicting immunotherapy

responses has sparked a research frenzy in this field (100).

Nevertheless, the absence of standardized protocols and validation

procedures poses a significant challenge to its clinical application.

Although numerous radiomics studies have attempted to predict

responses across various tumor types, there remain inconsistencies in

data selection, model construction, and outcome definition. These

radiomics-based analyses still require validation in larger-scale

clinical studies before they can be implemented in routine clinical

practice.[18F] Fluorine deoxyglucose positron emission tomography/

computed tomography (18F-FDG-PET/CT) has demonstrated its

potential in the realm of immunotherapy. By utilizing metabolic

response criteria, it can assess treatment responses and even provide
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prognostic information for patients, primarily those with non-small

cell lung cancer and advanced melanoma (101). An 18F-FDG-PET/

CT-based metabolic response assessment revealed that the calculated

d-value of focal total glycolysis (TLG) could be employed to detect

pathological responses in HNSCC patients receiving neoadjuvant

ICIs (102). While the accuracy at the primary tumor site reached

94%, this technique is limited by the relatively large tumor volume

required to evaluate the influx of TLG and FDG from immune cells

during ICI treatment, which may lead to false-positive results (103).

In patients treated with ICIs, the resulting immune infiltration may

further complicate the interpretation of PET/CT images. Shah et al.

demonstrated that there was indeed no correlation between the

changes in FDG uptake and the pathological tumor response

following neoadjuvant PD-1 axis inhibition (104). To develop non-

invasive methods for accurately assessing and predicting the tumor

response to immunotherapy, a diverse range of affinity-based drugs

targeting immune cell markers and checkpoint molecules have been

developed and advanced to the clinical trial stage. Additionally,

researchers have recently shifted their focus to substrate and

activity - based imaging probes, which can offer real - time

functional assessments of therapeutic immune responses. Besides

the glucose metabolism of FDG, nucleic acid metabolism is also

involved in the immunotherapy microenvironment (105). The

changes in lipid metabolism of proliferating cells meet their

increasing demands for energy and cell - membrane synthesis.

[18F]-fluorocholine, a promising agent, can reflect the upregulation

of cell-membrane synthesis (106, 107). Investigating whether the

uptake of [18F]- fluorocholine or other lipid-metabolism-assessing

imaging agents in lymphoid tissue can provide valuable information

regarding the immune response to ICIs treatment would be an

interesting research topic. The complexity of monitoring the tumor

response in patients treated with ICIs has spurred the development of

novel radiotracers. In particular, the PET/CT PD-L1 tracers currently

used in clinical practice exhibit a strong correlation with PD-L1 status

as measured by immunohistochemistry (108). Moreover, these

tracers can display the heterogeneity of PD-L1 expression among

different patients and within tumor lesions of the same patient on

PET/CT, even more accurately than immunohistochemically stained

biopsy samples (109). Our center participated in a study reporting a

68GA-labeled targeted covalent radiopharmaceutical fibroblast

activator protein inhibitor (68Ga-TCR - FAPI), which

demonstrated improved and sustained tumor targeting. It holds

significant clinical value in medullary thyroid carcinoma, and its

clinical translational value in evaluating the efficacy of tumor

immunotherapy awaits further assessment (110). Compared with

conventional radiology and FDG PET, radiotracers targeting immune

cells pose additional challenges for image analysis. Given that CD8+

T cells play a crucial role in treatment response and clinical outcomes,

the imaging agents being developed for non - invasive immune

monitoring are designed to characterize different aspects of the CD8+

subpopulation. Infiltrating CD8+ cytotoxic T cells are unevenly

distributed, with substantial differences within the same tumor

lesion and between different tumor sites (111). Additionally, the

dynamic nature of T- cell recruitment and activation makes it
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essential to optimize the imaging time after the commencement of

treatment. Studying relevant quantitative indicators is also necessary.

However, to our knowledge, only a few imaging probes are currently

in the clinical research phase and have not yet received approval from

the FDA for clinical use (112).
6 Artificial intelligence

Considering the complexity of the tumor microenvironment and

the immune system, it is improbable that a single biomarker can be

pinpointed to reliably describe prognosis and make predictions.

Instead, an artificial intelligence (AI)-based approach holds the

promise of defining new meta - biomarkers. This is achieved by

integrating existing multi-omics datasets in oncology, which include

genomics, pathology, radiomics, tumor microenvironment

heterogeneity, and data generated from more real-world scenarios.

To develop more accurate prediction tools, machine learning

algorithms have been utilized. These algorithms can exploit the

nonlinear relationships between multiple variables, thereby

achieving greater predictive power compared to a single

biomarker. Currently, machine learning methods have been

applied to analyze radiological signatures (91, 113), genetic

signatures of the tumor microenvironment (114, 115), and

hematoxylin and eosin images (116). Additionally, machine

learning has been used to tentatively predict the immune - related

adverse effects of immunotherapy (117, 118). However, previous

studies have been restricted by small sample sizes and lack of

validation, which has constrained their clinical application (119).

As a subset of artificial intelligence, machine learning (ML)

encompasses a set of techniques. These techniques learn from data

and iteratively enhance their performance to solve specific tasks,

making use of available data about phenomena or processes. When

the data consists of images, a standardMLmodel takes as input a set of

predefined features (such as tumor shape, tumor size) that are extracted

from the data, rather than the data in its original form. If an ample

amount of data is accessible, deep learning (DL) can be employed. DL,

a branch of ML, uses data in its raw format to discover and identify

patterns, and it has been applied to tumor research (120, 121). Chowell

et al. utilized a variety of clinical, genomic, and laboratory features to

successfully develop a predictive model for the treatment response of

ICIs across different cancers (122). Moreover, the random Forest ML

tool has been validated for predicting the likelihood of ICIs response in

patients with recurrent or metastatic head and neck squamous cell

carcinoma (123).

The study affirms the growing utilization of artificial intelligence in

uncovering predictive biomarkers of ICIs efficacy in diverse cancers. AI

methods offer new perspectives from complex data. Nevertheless, the

development of AI-based “software biomarkers” is impeded by

retrospective datasets, inconsistent AI approaches, and unclear

decision - making processes. Although these studies provide some

insights that can generate hypotheses, their direct clinical

implementation is limited. To create an explainable and accountable

AI tool, large - scale prospective validation studies are essential (124).
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7 Conclusion

The investigation of molecular markers for neoadjuvant

immunotherapy in HNSCC represents a crucial breakthrough for

individualized precision treatment. Current research has

preliminarily validated the potential significance of various markers.

These include the expression level of PD-L1, TMB, characteristics of

the immune microenvironment (such as CD8+ T cell infiltration),

gene expression profiles (like those of the IFN-g signaling pathway),
and specific gene variants in predicting the response to

immunotherapy and patient prognosis. The development of non -

invasive markers based on liquid biopsy, such as ctDNA, CTC,

and EVs, offers novel directions for optimizing neoadjuvant

immunotherapy strategies. Moreover, radiomics provides valuable

insights into the exploration of molecular markers. Nevertheless, the

existing markers are constrained by limitations in sensitivity and

specificity. There is also a high degree of heterogeneity among

different studies, along with a lack of comprehensive multi-omics

analysis and prospective validation. In the future, it is imperative to

construct multidimensional prediction models by integrating data

from the genome, transcriptome, proteome, and spatial omics.

Additionally, leveraging artificial intelligence technology to mine

dynamic biomarkers is essential. The ultimate objective is to

achieve the full-cycle management of “pre-treatment stratification,

treatment-monitoring, and post-treatment evaluation” through the

accurate identification of molecular markers. This will propel the

immunotherapy of HNSCC from the realm of empirical medicine to

a new era of evidence-based medicine.
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