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Background: This study aims to externally validate the performance of the

Oncotype DX (ODX) breast cancer (BC) recurrence score nomogram in

predicting adjuvant chemotherapy (ACT) for BC after surgery and subsequently

develop a machine learning-based model to predict postoperative overall survival

(OS) and guide ACT, demonstrating superior comprehensive performance.

Methods: This analysis leveraged data from the SEER database spanning 2010-

2020, alongside a BC cohort from the Beijing Hospital (BJH). Machine learning

methods were applied for predictor selection by wrapper methods and the

development of the predictive model. The optimal model was determined using

the concordance index (C-index), time-dependent calibration curves, time

dependent receiver operating characteristic (ROC) curves, and decision curve

analysis (DCA). The benefit analysis of ACT was primarily conducted using

Kaplan-Meier survival analysis.

Results: The ODX nomogram performed poorly in predicting ACT benefit in both

the SEER cohort and the BJH cohort. Subsequently, we employed ten machine

learning methods to develop ten prognostic models. The Accelerated oblique

random survival forest model (AORSFM), exhibiting the highest prediction

performance, was selected. The C-index for AORSFM is 0.799 (95% CI 0.779-

0.823) in the SEER cohort and 0.793 (95% CI 0.687-0.934) in the BJH cohort.

Furthermore, time-dependent calibration curves, time-dependent ROC analysis,
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and DCA indicate that the AORSFM demonstrates good calibration, predictive

accuracy, and clinical net benefit. A publicly accessible web tool was developed

for the AORSFM. Notably, the new staging system based on AORSFM can provide

guidance for postoperative ACT in such patients.

Conclusions: The AORSF has the potential to identify postoperative OS and guide

ACT in patients with BC. This can assist clinicians in assessing the severity of the

disease, facilitating patient follow-up, and aiding in the formulation of adjuvant

treatment strategies.
KEYWORDS

breast cancer, machine learning, prognostic model, guidance for adjuvant
chemotherapy, web calculator
Introduction

Breast cancer (BC) is one of the most common malignant

tumors among women worldwide, ranking as the second most

prevalent cancer in females and the leading cause of cancer-related

mortality in women (1, 2). Postoperative adjuvant chemotherapy

(ACT) is a crucial component of comprehensive BC treatment,

significantly reducing the risk of recurrence and improving patient

survival (3, 4). However, its efficacy varies among individuals, with

some patients deriving only minimal survival benefits while

experiencing chemotherapy-related toxicity (5).

Orucevic et al. developed a nomogram—the Oncotype DX

(ODX) nomogram—as a cost-effective alternative to the expensive

ODX breast cancer recurrence score, which is based on a 21-gene

assay (6, 7). It can be used for treatment decision-making in

hormone receptor-positive, Human Epidermal Growth Factor

Receptor 2 (Her-2)-negative BC patients. However, the predictive

capability of the ODX nomogram for the efficacy of ACT lacks

sufficient external validation, leading to a lack of reliable predictive

tools to guide ACT. This issue urgently needs to be addressed.
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Previously, Fihn et al. and Markowetz et al. provided several

standards for researchers developing predictive models to make

clinical prediction models more “useful.” (8, 9) The key points

include: 1. Simplicity in obtaining input features: The input features

should be easy to acquire, ideally commonly found in routine

clinical diagnostics. 2. Clinically relevant outputs: The output

parameters should aid in clinical decision-making. 3. Ease of

application: The model should be simple and easy to use. Given

these criteria, it seems that all models based on biological prognostic

markers are not currently considered “useful” models.

Recently, with the growing popularity of machine learning

methods, machine learning-based predictive models have gained

significant traction in oncology research. For instance: A study

developed a recurrence prediction model for duodenal

adenocarcinoma using basic clinical features, which demonstrated

moderate predictive performance and outperformed AJCC staging

in predicting postoperative recurrence (10). Another study

employing bioinformatics analysis developed a long non-coding

RNA (lncRNA)-based machine learning model for colorectal cancer

prognosis, which also demonstrated outstanding predictive

performance (11). The key advantage of models based on basic

clinical features lies in their: Accessibility, Generalizability, and

Cost-effectiveness. In contrast, models relying on transcriptomic

markers like lncRNAs lack these practical advantages for clinical

implementation. However, there remains a notable gap in the field:

no existing predictive model utilizing basic clinical features has been

specifically developed for forecasting ACT efficacy in BC patients.

Therefore, this study aims to externally validate the ODX

nomogram using BC patient data from the SEER database and

Beijing Hospital (BJH) ‘s BC cohort. Additionally, the study seek to

develop and validate a machine learning model to predict

postoperative overall survival (OS) in BC patients and guide ACT.

The main novelty of this study lies in two key contributions:

First, the study conducted the first external validation of the ODX

nomogram, specifically evaluating its performance in predicting

ACT benefit (rather than recurrence risk). Second, recognizing the
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limited predictive capability of the ODX nomogram for

chemotherapy response, the study developed and validated a

novel prediction model specifically designed for this purpose.

This new model incorporates the same clinical features used in

the ODX nomogram (tumor size, age, grade, progesterone receptor

(PR) status, and histopathology) but is optimized for chemotherapy

efficacy prediction.
Materials and methods

This study strictly adhered to the Prediction model Risk Of Bias

Assessment Tool (PROBAST) standards and a checklist for useful

clinical prediction tools reported by Florian Markowetz, and followed

the Transparent Reporting of a Multivariable Prediction Model for

Individual Prognosis or Diagnosis (TRIPOD) Checklist for reporting (9,

12, 13). The complete study process of this study is shown in Figure 1.
Study population

This retrospective cohort study included patients diagnosed

with BC from the SEER database between 2010 and 2020 and

Beijing Hospital between 2008-2020. Prior to the subsequent
Frontiers in Oncology 03
follow-up survey, each patient provided informed consent.

Surgical procedures were conducted by expert surgeons.

Adherence to ethical standards was ensured by conducting the

study in compliance with the Declaration of Helsinki (revised in

2013), and ethical approval was obtained from the Hospital Ethics

Committee of the BJH (2022BJYYEC-360-01). Patients diagnosed

with BC in the SEER database (SEER cohort) were assigned to the

training cohort, while patients diagnosed with BC at BJH (BJH

cohort) were assigned to the external validation cohort.
Inclusion and exclusion criteria

The inclusion criteria were as follows: (1) Female; (2) Tumor

size between 6-50mm; (3) No lymph node metastasis; (4)

Pathological type is one of the four common types (Invasive

Ductal Carcinoma (IDC), Invasive Lobular Carcinoma (ILC), IDC

+ILC, and IDC+Other type); (5) Estrogen Receptor positive (ER+);

Human Epidermal Growth Factor Receptor 2 negative.

The exclusion criteria were as follows: (1) Patients with multiple

primary cancers; (2) Patients with unknown follow-up times or

those lost to follow-up. (3) Inflammatory breast cancer; (4) Distant

metastasis; (5) Underwent preoperative radiotherapy or

intraoperative chemoradiotherapy.
FIGURE 1

Flow diagram of the study.
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A total of 561,807 patients with BC were identified. Among

them, 497,003 patients who did not meet the inclusion criteria and

were excluded. Consequently, 64,804 patients were included in

the analysis.
Survival analysis and subgroup analysis

Patients from the SEER and BJH cohorts were classified into

three risk groups—high, intermediate, and low—based on the ODX

nomogram or novel machine learning-based model. The study then

conducted survival analysis for each of the three risk groups within

both cohorts. The Kaplan-Meier (KM) survival curves and log-rank

test were utilized to assess differences in survival rate for each risk

group and each chemotherapy group. Subgroup analysis was

conducted to assess the chemotherapy benefit among high-risk,

intermediate-risk, and low-risk groups of patients in the SEER and

BJH cohorts. Given the multiple comparisons, the study applied the

Bonferroni correction method to adjust the p-values in the

subgroup analyses, thereby reducing the incidence of Type I errors.
Development and validation of novel
machine learning model

The Four variables in the ODX predictive nomogram of the

training cohort, including Tumor size, age, grade, PR status, and

histopathology were included in ten machine learning models to

develop novel predictive models.

The study chose widely recognized machine learning models

capable of handling both continuous and categorical variables.

These included: Akritas Estimator (AKE), Gradient Boosting

(GB), Generalized Additive Models via Gradient Boosting

(GAMB), Generalized Linear Models via Gradient Boosting

(GLMB), Survival Tree (ST), Conditional Inference Tree (CIT),

Random Survival Forest (RSF), Conditional Random Forest (CRF),

Accelerated Oblique Random Survival Forest (AORSF), Penalized

Regression method (PRM). These models were all sourced from the

“mlr3proba” R package (14).

The AKE is a non-parametric estimation method used in

regression analysis to handle censored or truncated dependent

variables. It estimates the relationship between the dependent and

independent variables through ranking and regression techniques

(15). GB is an ensemble learning algorithm that iteratively adds

weak learners (typically decision trees) to fit the residuals of the

previous step, progressively optimizing the loss function to enhance

the overall predictive performance of the model (16). The GAMB

and GLMB are ensemble learning methods that enhance the

predictive performance and adaptability of a model by iteratively

adding and adjusting a series of base learners from Generalized

Additive Models or Generalized Linear Model (17). ST is a decision

tree model used in survival analysis that recursively splits data to

group individuals based on their survival times and the risk of

events occurrence, thereby providing insights into survival
Frontiers in Oncology 04
probabilities (18). Besides, ST can also be used to identify a cut-

off value. The CIT is a method for constructing decision trees that

uses statistical tests to select splitting variables and points, thereby

reducing bias and overfitting in the model during the splitting

process in a non-parametric and conditional inference-based

manner (19). RSF is an ensemble learning method used in

survival analysis that constructs multiple survival trees and uses

the results from these trees to estimate the survival functions and

hazard ratios for individuals, thereby offering powerful analysis of

survival time data (20). The CRF is an ensemble learning algorithm

that builds multiple decision trees and uses conditional inference

tests to select variables and splitting points. This approach enhances

the robustness and accuracy of the model while reducing bias in

variable selection (21). The AORSF is a survival analysis model that

combines the ensemble learning techniques of random forests with

the approach of oblique decision trees. This integration enhances

the accuracy and efficiency in handling complex survival data (22).

PRM is a regression analysis technique that controls model

complexity by adding penalty terms (such as L1 or L2

regularization) to the loss function. This approach helps to

prevent overfitting and enhances the model’s generalization

ability (23).

The ten machine learning learners were used to develop models.

These models were trained using the training cohort, culminating in

10 prediction models. These models were subsequently validated

within the external validation cohort.

The C-index was utilized to assess the models performance. As a

statistical measure for evaluating the predictive capability of

survival analysis models, the C-index is widely used in medical

study. It gauges the congruence between model predictions and

actual outcomes, with its value ranging from 0 to 1. A higher C-

index indicates superior predictive accuracy of the model. The

model with the highest average C-index of two cohorts was

chosen for further investigation. Time-dependent calibration

curves were used to reflect the degree of calibration over the

entire time range. Further, the calibration curves were generated

to evaluate the correspondence between predicted and actual

survival rates of dead at 1, 3, 5, and 10 years. The area under the

time-dependent receiver operating characteristic (ROC) curves

(AUC) served to compare the predictive accuracy and

discriminative power of the model and its components. Decision

curve analysis (DCA) was conducted to determine the clinical utility

of the model, assessing the clinical benefits for patients at 1, 3, 5, and

10 years. Risk scores were calculated in the training and validation

cohorts using the selected machine learning model.

To examine how different features influence model

performance over time, a time-dependent feature importance

analysis method was employed. The significance of each predictor

was evaluated by computing the model’s Brier score loss after

permuting feature values, with this process repeated through a

10-fold cross-validation resampling strategy for statistical reliability.

This approach enabled identification of which features’ importance

for model predictions varies over time, providing insights crucial for

time-sensitive clinical decision-making.
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Development of a web risk calculator and
a staging system

The ST was employed to determine the cut-off value for the risk

score, thereby classifying patients into high-risk, medium-risk, and

low-risk group. Furthermore, a web-based application was

developed to make these predictive models accessible online,

utilizing the R package “shiny” for its development (24).
Statistical analysis

Kolmogorov-smirnov test was used to assess whether the data

followed a normal distribution. For normally-distributed

continuous variables, the data were described as mean ± standard

deviation and compared using the t-test. If continuous variables did

not conform to a normal distribution, the MannWhitney U test was

used, and results were presented as median (interquartile range).

Categorical data were presented as numbers and frequencies, and

either the Chi-square test or Fisher’s exact test was used for

comparisons. All statistical tests were two-sided, with P-values

and Bonferroni-adjusted P-value <0.05 indicating statistical

significance. All figure illustrations and statistical analyses were

conducted using R version 4.4.1.
Results

Patient characteristics

The baseline characteristics of the SEER cohort (training cohort,

n = 64,459) and BJH cohort (external validation cohort, n = 345) are

presented in Table 1. In the SEER cohort, the median age is 67 and

the median follow-up time is 17 months. In the BJH cohort, the

median age is 65 and the median follow-up time is 18 months.
Validation of the ODX breast cancer
recurrence score nomogram

Based on the nomogram formula provided in the literature (7),

the study calculated the nomogram scores and predicted

probabilities for all patients in both cohorts. According to the

standards outlined in the study, patients were classified into high,

intermediate, and low-risk groups, and survival analysis was

conducted to assess the chemotherapy benefit across different risk

groups (Figure 2).

The results indicated that in the SEER cohort, patients in all

three risk groups who received adjuvant chemotherapy had

significantly better OS compared to those who did not, with

statistical significance (p-value<0.001) (Figures 2A–C). However,

in the BJH cohort, there was no statistically significant difference in

OS between patients who received adjuvant chemotherapy and
Frontiers in Oncology 05
those who did not, across all three risk groups (p-value>0.05)

(Figures 2C–E).

These findings suggest that the ODX nomogram may not

accurately assess the benefit of chemotherapy.
Model development, validation, and
evaluation

For the development of model using the training cohort, five

variables were processed through ten machine learning learners and

subsequently validated across the external validation cohort. This
TABLE 1 Baseline characteristics of SEER and BJH cohorts.

Feature
SEER
cohort
(n=64,459)

BJH
cohort
(n=345) P value

Age (years) 64.0 [52.0;74.0] 59.0 [49.0;67.0] <0.001

Tumor size (mm) 15.0 [10.0;22.0] 20.0 [15.0;25.0] <0.001

T stage <0.001

T1b 16928 (26.3%) 41 (11.9%)

T1c 29386 (45.6%) 176 (51.0%)

T2 18145 (28.1%) 128 (37.1%)

Pathological
type <0.001

IDC 49122 (76.2%) 265 (76.8%)

IDC+ILC 2295 (3.56%) 4 (1.16%)

IDC+Other 4591 (7.12%) 61 (17.7%)

ILC 8451 (13.1%) 15 (4.35%)

Grade <0.001

Grade 1 20505 (31.8%) 69 (20.0%)

Grade 2 33576 (52.1%) 221 (64.1%)

Grade 3 10378 (16.1%) 55 (15.9%)

PR 0.845

Negative 6981 (10.8%) 39 (11.3%)

Positive 57478 (89.2%) 306 (88.7%)

Adjuvant
chemotherapy 0.129

No 22425 (34.8%) 134 (38.8%)

Yes 42034 (65.2%) 211 (61.2%)

Survival status <0.001

Alive 56987 (88.4%) 333 (96.5%)

Dead 7472 (11.6%) 12 (3.48%)

Follow-up
time (months) 54.0 [26.0;87.0] 80.0 [56.8;102] <0.001
fro
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process resulted in a total of ten machine learning models

specifically designed for predicting OS.

Initial evaluation focused on the C-index, with rankings C-

indexes of all ten prediction models displayed in Figure 3A. The

AORSF model (AORSFM) showcased the highest average C-index

at 0.796 in training and validation cohorts, making it the most

effective model among all. The C-index for AORSFM was 0.799

(95% CI 0.779-0.823) in the training cohort and 0.793 (95% CI

0.687-0.934) in the validation cohort, marking the highest values

compared to other models.
Frontiers in Oncology 06
The time-dependent calibration curves, along with calibration

curves for the training cohort and validation cohort at 1, 3, 5, and 10

years, demonstrate that AORSFM achieved good calibration in the

training cohort and validation cohort. (Figures 3B, C and

Figures 4A–H).

The AUC demonstrate the strong predictive accuracy of

AORSFM over 1, 3, 5, and 10 years in the training cohort and

validation cohort (Table 2).

The DCA for the AORSFM demonstrated a consistent net

benefit in the training cohort and validation cohort over a range
FIGURE 2

Validation of the Oncotype DX nomogram in assessing chemotherapy benefit. (A) The KM survival curve for the low-risk group based on the ODX
nomogram in the SEER cohort; (B) The KM survival curve for the intermediate-risk group based on the ODX nomogram in the SEER cohort; (C) The
KM survival curve for the high-risk group based on the ODX nomogram in the SEER cohort; (D) The KM survival curve for the low-risk group based
on the ODX nomogram in the BJH cohort; (E) The KM survival curve for the intermediate-risk group based on the ODX nomogram in the BJH
cohort; (F) The KM survival curve for the high-risk group based on the ODX nomogram in the BJH cohort; KM, Kaplan-Meier; ODX, Oncotype DX;
BJH, Beijing Hospital.
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of threshold probabilities. (Figure 5) In two cohorts, the AORSFM

outperformed the ‘treat none’ and ‘treat all’ strategies, indicating

that it had practical utility in decision-making.
Model interpretation and development of
new stage system

The time-dependent feature importance curves show the

varying importance of each predictor in AORSFM over time.

(Figure 6A) The results indicate that apart from the increasing

importance of “age” over time, the importance of other parameters

remained stable. To further enhance the usability of the model, the

study developed a web-based risk calculator. (https://

pgsxuliu.shinyapps.io/AORSFMforBC/) Additionally, the study

developed a staging system based on AORSFM, utilizing the ST

learner to categorize BC patients into three risk groups according to

AORSFM’s risk scores. KM survival curves demonstrate statistically

significant differences in OS among the high-risk, medium-risk, and

low-risk groups across the two cohorts. (Figures 6B-C).
Frontiers in Oncology 07
The significance of the AORSFM stage
system in guiding postoperative
chemotherapy

The study plotted survival curves based on the high,

intermediate, and low-risk groups defined by the AORSFM stage

system in both cohorts to evaluate the survival differences between

the postoperative chemotherapy group and the non-chemotherapy

group. The results indicated that in the total cohort, the training

cohort, and the validation cohort, there was a trend of difference in

OS between patients in the low-risk group who received

chemotherapy and those who did not, but this difference was not

statistically significant (p-value>0.05 in total, training and

validation cohorts) (Figures 7A-C). In the intermediate-risk

group, the total cohort and training cohort exhibited survival

differences between the chemotherapy and non-chemotherapy

groups, which differed from the validation cohort (p-value<0.001

in total and training cohorts; p-value>0.05 in validation cohort)

(Figures 7D-F). However, in the high-risk groups, there was a

significant difference in OS between patients who received
FIGURE 3

Concordance index of ten machine learning models and evaluating the calibration of AORSFM by time-dependent calibration curves. (A) The C-
index for the ten machine learning models was calculated for the training cohort and validation cohort. Ranking of the models was based on the
average C-index of two cohorts; (B) Time-dependent calibration curve in training cohort; (C) Time-dependent calibration curve in validation cohort.
AKE, Akritas estimator; GB, Gradient Boosting, GAMB, Boosted Generalized Additive Model; GLMB, Boosted Generalized Linear Model; ST, Survival
Tree; CIT, Conditional Inference Tree; RSF, Random Survival Forest; CRF, Conditional Random Forest; AORSF, Accelerated Oblique Random Survival
Forest; PR, Penalized Regression Method; C-index, concordance index; AORSFM, Accelerated Oblique Random Survival Forest Model.
frontiersin.org

https://pgsxuliu.shinyapps.io/AORSFMforBC/
https://pgsxuliu.shinyapps.io/AORSFMforBC/
https://doi.org/10.3389/fonc.2025.1586262
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2025.1586262
chemotherapy and those who did not, with statistical significance

(p-value<0.05 in total, training and validation cohorts) (Figures 7G-

I). This suggests that the AORSFM stage system can effectively

assess the benefit of postoperative chemotherapy and provide

guidance for postoperative chemotherapy in patients.
Discussion

In this study, the study externally validate the ODX nomogram

in SEER and a single-center BC cohort. The results seem to be

unsatisfactory, as the risk groups defined by the ODX nomogram in

both cohorts do not effectively guide postoperative chemotherapy

decisions for patients.

Therefore, the study developed and validated a novel machine

learning-based model to accurately predict postoperative OS in

patients with BC and to provide guidance for postoperative

chemotherapy decisions. The prognostic model exhibited

accuracy in the large training cohort and external validation

cohort. In terms of predictive values, AORSFM generally exhibits

a high C-index and AUC, indicating the model’s accuracy and
Frontiers in Oncology 08
stability in predicting patients’ OS. Additionally, the time-

dependent calibration curves and DCA demonstrate the excellent

calibration and clinical net benefit of AORSFM. This study indicates

that AORSFM has the potential to identify OS in BC patients and

can provide guidance for postoperative chemotherapy decisions.

This can assist clinicians in assessing the severity of the disease,

facilitating patient follow-up, and aiding in the formulation of

adjuvant treatment strategies.

Recently, the development of predictive models has gained

significant attention among clinical scientists. Therefore, the

standardized development and validation of predictive models are

crucial, and this study adhered rigorously to these standards. Finhn

et al. noted that the proliferation of predictive models has been

accompanied by an increasing awareness of the need for standards

to ensure their accuracy. A significant milestone was the publication

of the TRIPOD guidelines nearly a decade ago (8, 13). Wolff et al.

developed a tool to assess the risk of bias and the applicability of

prediction model studies (12). This tool includes 20 signal questions

designed to enable researchers to self-assess their studies. Florian

Markowetz proposed a checklist for useful clinical prediction tools

aimed at making clinical prediction models impactful for patients
FIGURE 4

Evaluating the calibration of AORSFM by calibration curves. (A) Calibration curves in 1-year in training cohort, (B) Calibration curves in 3-year in
training cohort, (C) Calibration curves in 5-year in training cohort, (D) Calibration curves in 10-year in training cohort, (E) Calibration curves in 1-year
in validation cohort, (F) Calibration curves in 3-year in validation cohort, (G) Calibration curves in 5-year in validation cohort, (H) Calibration curves in
10-year in validation cohort.
TABLE 2 The AUC and confidence intervals (CI) of AORSFM for the training and validation cohorts at 1, 3, 5, and 10 years.

Cohort AUC at 1 year (95%CI) AUC at 3 years (95%CI) AUC at 5 years (95%CI) AUC at 10 years (95%CI)

Training cohort 0.795 (0.780-0.808) 0.821 (0.813-0.828) 0.824 (0.819-0.829) 0.843 (0.834-0.851)

Validation cohort 0.975 (0.958-0.992) 0.955 (0.904-1.000) 0.938 (0.852-0.991) 0.842 (0.534-1.000)
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(9). The aforementioned checklist and tools were used to

standardize this study.

The ODX assay and its accompanying nomogram represented a

seminal advancement in personalized oncology by stratifying

recurrence risk and predicting adjuvant chemotherapy benefit

through genomic profiling (6, 7, 25). While the chemotherapy

response prediction function of the ODX nomogram was

conceptually innovative, the external validation reveals its limited

discriminative capacity in actual clinical decision-making. This

critical shortfall in identifying true chemotherapy responders

versus non-responders motivated our development of AORSFM.
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AORSFM addresses a critical unmet need in contemporary

chemotherapy decision-making by providing dynamic prognostic

stratification. Clinicians could leverage this adaptive tool to identify

patients likely to derive survival benefits from specific

chemotherapy regimens while sparing others from unnecessary

toxicity (26). Particularly for the hormone receptor-positive

patients currently receiving ambiguous chemotherapy

recommendations, this model’s granular risk quantification may

reduce both overtreatment and therapeutic inertia (27, 28). This

precision aligns with global initiatives to optimize chemotherapy

stewardship through AI-powered clinical decision support systems.
FIGURE 5

Evaluating the net benefit of AORSFM by DCA. (A) 1-year DCA for training cohort, (B) 3-year DCA for training cohort, (C) 5-year DCA for training
cohort, (D) 10-year DCA for training cohort, (A) 1-year DCA for validation cohort, (B) 3-year DCA for validation cohort, (C) 5-year DCA for validation
cohort, (D) 10-year DCA for validation cohort. DCA, Decision curve analysis.
FIGURE 6

Interpretation the AORSF by time-dependent feature importance curves and the performance of the AORSFM staging system in the training cohort
and validation cohort. (A) The time-dependent feature importance curves of AORSFM; (B) The KM survival curves for the AORSFM staging system in
the training cohort, (C) The KM survival curves for the AORSFM staging system in the validation cohort. AORSFM, Accelerated Oblique Random
Survival Forest Model; KM, Kaplan-Meier.
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FIGURE 7

The significance of the AORSFM stage system in guiding postoperative chemotherapy. (A) The KM survival curve for the low-risk group based on the
AORSFM stage system in the total cohort; (B) The KM survival curve for the low-risk group based on the AORSFM stage system in the training
cohort; (C) The KM survival curve for the low-risk group based on the AORSFM stage system in the validation cohort; (D) The KM survival curve for
the intermediate-risk group based on the AORSFM stage system in the total cohort; (E) The KM survival curve for the intermediate-risk group based
on the AORSFM stage system in the training cohort; (F) The KM survival curve for the intermediate-risk group based on the AORSFM stage system in
the validation cohort; (G) The KM survival curve for the high-risk group based on the AORSFM stage system in the total cohort; (H) The KM survival
curve for the high-risk group based on the AORSFM stage system in the training cohort; (I) The KM survival curve for the high-risk group based on
the AORSFM stage system in the validation cohort. KM, Kaplan-Meier; AORSFM, Accelerated Oblique Random Survival Forest Model.
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While this study yielded promising results, it is crucial to

recognize its limitations. Firstly, the external validation cohort

consists only of BC patients from a single center. Therefore,

AORSFM will require validation in additional centers in the

future to further establish its reliability. Secondly, due to the

limitations of the SEER database, information such as

chemotherapy regimens, chemotherapy cycles, specific surgical-

related indicators, and pre- and post-treatment laboratory tests

were not included in the study. In the future, when validating and

updating AORSFM in multicenter large-sample cohorts, the study

will include these indicators to eliminate this limitation and

enhance the model’s performance. Thirdly, molecular pathology

features were not integrated into the model, which could have

otherwise enhanced its predictive accuracy. Finally, the

retrospective nature of data collection from SEER and a hospital

resulted in instances of missing data. While this limitation might be

offset by strict inclusion and exclusion criteria and a large sample

size, prospective international multicenter studies are necessary to

further validate the performance of the AORSFM.
Conclusion

In summary, this study first externally validated the performance

of the ODX nomogram in predicting the need for ACT. Then, the

study developed the AORSFM for accurately predicting OS in BC

patients who underwent radical surgery. AORSFM demonstrated

stable and good predictive performance, calibration, and clinical net

benefit across three cohorts. With its outstanding accuracy and

reliability, AORSFM may serve as an effective tool for predicting OS

in BC patients and guiding ACT after surgery.
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