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Background: Peritumoral characteristics demonstrate significant predictive

value for neoadjuvant chemotherapy (NAC) response in breast cancer (BC)

through tumor-stromal interactions. Radiomics analysis of peritumoral regions

has shown robust capability in predicting treatment outcomes; however, the

optimal peritumoral thickness for maximizing predictive accuracy

remains undefined.

Objective: To establish a clinically implementable framework for early

identification of NAC non-responders through standardized prediction

modeling. This study aims to determine the optimal peritumoral thickness for

NAC response prediction by training and systematically comparing artificial

intelligence (AI)-driven radiomics models across multiple peritumoral zones

using Automated Breast Volume Scanning (ABVS).

Methods: A total of 402 BC patients who received NAC were retrospectively

analyzed. Pre-treatment ABVS images were processed to extract radiomic

features from five regions of interest (ROIs): the intratumoral region (R0) and

four consecutive peritumoral zones (R2-R8) extending outward at 2-mm

intervals. The study cohort was divided into training and testing cohorts. ROI-

specific TabNet models were developed using the training cohort data.

Comparative analysis was performed in the testing cohort through

comprehensive performance evaluation, including discrimination, calibration,

clinical utility assessment, and classification metrics, to identify the optimal

peritumoral zone. The radiomics features of the best-performing model were

ranked by importance, with subsequent ablation studies validating the predictive

contribution of high-ranking features.

Results: Among the study population, 138 patients (34.3%) were classified as NAC

non-responders. Model evaluation demonstrated progressively improved

predictive performance from R0 to R6, with area under the ROC curves

increasing from 0.681 to 0.845. The R6 model demonstrated optimal

performance with accuracy of 0.810 and precision of 0.765. The combined
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model integrating R0 and R6 features enhanced predictive capability, achieving

accuracy of 0.909, precision of 0.841, and recall of 0.902. Feature importance

analysis identified textural heterogeneity and volumetric characteristics as the

most influential variables, with the top features derived predominantly from the

6-mm peritumoral region.

Conclusion: The 6-mm peritumoral zone demonstrated optimal predictive value

for NAC response, with the AI-driven combined intratumoral-peritumoral model

achieving superior performance. This standardized ABVS-based radiomics

approach enables early identification of potential NAC non-responders,

facilitating timely therapeutic modifications.
KEYWORDS

breast cancer, neoadjuvant chemotherapy, radiomics, automated breast volume
scanning, peritumoral features, artificial intelligence
Introduction

Peritumoral characteristics have emerged as crucial predictors

of neoadjuvant chemotherapy (NAC) response in breast cancer

(BC) (1, 2). The biological basis for this predictive capacity lies in

the complex interactions within the tumor microenvironment,

where stromal cells, immune infiltrates, and extracellular matrix

components collectively influence therapeutic outcomes (3).

Multiple studies have demonstrated significant correlations

between peritumoral features and treatment responsiveness,

suggesting that these surrounding regions contain valuable

prognostic information beyond conventional intratumoral

assessment (4–6).

The characterization of complex peritumoral features requires

sophisticated computational analysis. Radiomics, as an advanced

analytical approach, enables systematic extraction of imaging

features through automated computational algorithms (7). It enables

quantification of multiple high-dimensional features imperceptible to

visual inspection, including complex mathematical descriptors of

texture patterns, spatial relationships, and structural heterogeneity,

thereby extending imaging phenotype characterization beyond

conventional radiological assessment (8, 9). Growing evidence

suggests that the optimal extent of peritumoral region represents a

critical parameter in radiomics analysis. Initial investigations have

examined various peritumoral zones (1mm to 10mm) for BC

molecular subtyping and lymph node metastasis assessment (10–

13). These studies have validated the contribution of optimized

peritumoral extent to improved predictive modeling. Nevertheless,

systematic evaluation of optimal peritumoral thickness for NAC

response prediction remains inadequately explored.

Current peritumoral radiomics research for NAC response

assessment has primarily focused on image analysis using

magnetic resonance imaging (MRI) and positron emission

tomography (14–17). Considering the practical limitations that
02
impede routine implementation of these modalities for NAC

response monitoring, including substantial operational costs,

extended scanning protocols, and restricted accessibility. These

constraints necessitate exploration of alternative imaging

approaches for longitudinal treatment assessment. While

ultrasound examination has been established as a practical

approach for response evaluation, conventional handheld

ultrasound demonstrates limited utility in peritumoral radiomic

analysis due to operator variability and inherent two-dimensional

imaging constraints (18). In this context, Automated Breast Volume

Scanning (ABVS) addresses these limitations through standardized

image acquisition protocols (19). The volumetric capabilities of

ABVS enable comprehensive visualization of tumoral and

peritumoral regions, while automated acquisition eliminates

operator dependence (20, 21). These advantages position ABVS as

a promising platform for standardized radiomics-based analysis in

routine clinical practice.

Despite the radiomics potential of ABVS technology,

investigations into its application for NAC response prediction

remain limited. A preliminary study by Jiang et al. (22)

documented the predictive value of ABVS-based radiomics features

in NAC response assessment. However, this investigation focused

solely on intratumoral features, neglecting peritumoral analysis.

Additionally, the study utilized conventional statistical methods

rather than artificial intelligence (AI) approaches. The integration

of AI-based analytical models with radiomic signatures has been

demonstrated to enhance the capture of complex biological patterns

and treatment outcomes, enabling objective quantification of tumor-

stromal interactions that influence NAC response (23, 24).

Therefore, this study aims to identify the optimal peritumoral

zone dimensions through systematic comparison of AI-driven

ABVS radiomic models with varying zone parameters for NAC

response prediction in BC. The established optimal parameters will

be implemented in early response stratification protocols, thereby
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enabling evidence-based treatment modifications and minimizing

patient exposure to ineffective chemotherapy regimens.
Materials and methods

This study protocol was reviewed and approved by the Ethics

Committee of The Affiliated People’s Hospital of Ningbo University

(Protocol Number: 2025-007) and adhered to the principles

established in the Declaration of Helsinki. Given the retrospective

observational design and data analysis approach, the institutional

review board determined that individual patient consent

requirements could be waived. Data security protocols were

establ ished to ensure patient confidential i ty through

comprehensive deidentification procedures. Electronic health

records were extracted and anonymized prior to analysis, with all

personal identifiers removed in accordance with institutional

privacy protection standards.
Patient information

Between July 2016 and September 2024, 500 patients who

received NAC for BC were retrospectively evaluated at our

institution. Treatment followed standardized protocols primarily

consisting of anthracycline and taxane-based NAC regimens, with

additional targeted therapy and endocrine therapy administered

according to molecular subtypes.

The inclusion criteria comprised: (1) histologically confirmed

unifocal invasive BC without distant metastasis; (2) Eastern

Cooperative Oncology Group (ECOG) performance status 0-1

(25); (3) adequate baseline organ function (hepatic, renal,

hematologic, and cardiac) meeting standard chemotherapy

eligibility criteria; (4) completion of standard NAC regimen; (5)

pre-treatment ABVS imaging of sufficient quality for radiomics

analysis; and (6) complete clinical and pathological documentation.

Patients who met the inclusion criteria were subsequently excluded

if they presented with: (1) significant dose modification of NAC

regimen due to treatment-related toxicity; (2) tumors with excessive

volume or superficial location that precluded complete delineation

of the peritumoral regions; or (3) loss to follow-up before treatment

completion. After applying these criteria, 402 patients were eligible

for final analysis. Clinical variables including age, tumor

characteristics, molecular subtypes, and treatment details were

obtained from medical records.
Treatment response assessment

The treatment protocol consisted of 6–8 cycles of NAC, followed

by definitive surgery performed 2–3 weeks after chemotherapy

completion. Surgical approaches were determined according to

standard clinical guidelines. Tumor response was evaluated through

sequential ultrasound and MRI examinations. The response

classification system incorporated both pathological and
Frontiers in Oncology 03
radiological criteria. Patients were categorized as responders when

pathological complete response was achieved, defined by the absence

of invasive disease in breast tissue and lymph nodes. Response

classification also included patients who exhibited minimal residual

tumor cellularity or demonstrated tumor size reduction exceeding

30% based on RECIST criteria (26). Patients were classified as non-

responders when disease remained stable, showed progression, or

displayed tumor shrinkage below 30% from baseline measurements.
ABVS image acquisition

Pre-treatment ABVS examinations were performed using an

automated breast ultrasound system (ACUSON S2000, Siemens

Medical Solutions, Mountain View, CA, USA) equipped with a

mechanically-driven linear array transducer (14L5BV, 5–14 MHz).

The standardized imaging protocol required patients to maintain a

supine position with elevated arms and regular breathing patterns

throughout the examination process. The automated mechanical

arm executed systematic scanning protocols at 0.5 mm intervals to

ensure complete breast volume coverage, with the transducer

maintaining consistent contact pressure through automated

compression. The system acquired sequential B-mode ultrasound

images and reconstructed these 2D images into a comprehensive 3D

volume dataset. Following data acquisition, image datasets were

transferred to a dedicated post-processing workstation for

automated multi-planar reconstruction, which included spatial

registration of sequential frames, speckle reduction filtering, and

contrast enhancement to optimize tissue differentiation (27). The

protocol generated standardized axial, sagittal, and coronal views at

0.5 mm slice thickness. The reconstructed volumetric datasets were

exported at native resolution (0.21 × 0.07 × 1.0 mm) with 8-bit

grayscale depth for subsequent radiomics analysis.
Image segmentation

Image analysis was performed independently by two

experienced sonographers who were blinded to NAC outcomes.

Tumor segmentation was conducted using 3D Slicer software

(version 5.7.0) through a standardized protocol, as illustrated in

Figure 1. Initial tumor boundaries were delineated based on

grayscale differences between lesional and surrounding tissues in

coronal and axial planes, with manual refinement applied to ensure

accurate border definition. The analysis encompassed five distinct

regions of interest (ROIs): the intratumoral zone (R0) and four

peritumoral zones extending outward at 2-mm intervals (R2, R4,

R6, and R8, representing regions at 2-mm, 4-mm, 6-mm, and 8-mm

from tumor boundary, respectively). Prior to feature extraction,

preprocessing steps included isotropic resampling (1 × 1 × 1 mm)

using trilinear interpolation and gray-level normalization to 64

discrete levels. These standardization procedures minimize inter-

patient acquisition variability and ensure consistent feature

computation across all specimens, critical for reliable comparative

radiomics analysis.
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Radiomic feature extraction

Feature extraction for radiomics analysis was performed using

PyRadiomics version 3.0. The computational pipeline systematically

extracted quantitative features from each defined ROI using six

mathematical filters: Exponential (emphasizing high-intensity

regions), Gradient (edge detection), Logarithm (dynamic range

optimization), Square (intensity transformation), and Wavelet

(multi-resolution decomposition). This process generated a

comprehensive set of 1,409 features per ROI, encompassing shape-
Frontiers in Oncology 04
based descriptors, first-order statistical metrics, and textural

characteristics across all filtered and original images.
Feature preprocessing and selection

The extracted radiomic features underwent systematic

preprocessing to ensure data consistency. A standardization

procedure was applied wherein numerical features were subjected

to Z-score normalization, followed by binary encoding for
FIGURE 1

Multi-zone ROI segmentation process for radiomics analysis. Representative ABVS images showing the segmentation of intratumoral and
peritumoral regions. (A–E) Segmentation of R0 to R8 zones displayed in axial view (left), coronal view (middle), and three-dimensional
reconstruction (right). The intratumoral region (R0) is delineated in red, while peritumoral zones (R2-R8) are visualized in different colors, extending
outward at 2-mm intervals from the tumor boundary.
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categorical parameters. Treatment outcomes were classified

dichotomously, where NAC response and non-response were

designated as 0 and 1, respectively. Feature refinement was

executed through a hierarchical filtration protocol. The initial

phase assessed feature stability between observers via

Concordance Correlation Coefficient (CCC), wherein features

exceeding a threshold of 0.85 were retained. These stable features

were subsequently evaluated through Wilcoxon rank-sum (WRS)

tests with false discovery rate adjustment (P < 0.1) to identify

response-associated parameters. The final feature set was

determined through minimum redundancy maximum relevance

(mRMR) analysis, which yielded 30 optimal features that

demonstrated significant correlation with treatment outcomes

while maintaining minimal multicollinearity.
Data splitting and model training

The study cohort was divided into training and testing sets (7:3

ratio) through stratified randomization to maintain balanced

distribution of NAC response outcomes. To construct predictive

models for NAC response, a TabNet deep learning framework was

implemented to process the radiomic features extracted from each

defined ROI, given its demonstrated capability in handling high-

dimensional tabular data with inherent feature interpretation.

Hyperparameter optimization for the TabNet architecture was

conducted through Bayesian search methodology with 5-fold

cross-validation. The optimization protocol evaluated critical

parameters including decision dimension (8-64), attention

dimension (8-64), number of decision steps (3-10), feature

selection regularization (1.0-2.0), learning rate (1e-4 to 1e-2), and

random seed (1-100). Model convergence was monitored using

validation loss as the primary metric, with early stopping

implemented at 10 epochs without improvement. Following

optimization, the final models for each ROI were trained using 5-

fold cross-validation with the identified optimal hyperparameters,

and the model configuration achieving the lowest validation loss

was selected for subsequent analyses.
Model performance comparison

The ROI-specific AI models underwent systematic comparative

evaluation to determine the peritumoral zone with optimal

predictive value for NAC response. Model performance was

evaluated in the independent test ing cohort through

comprehensive analysis of discrimination, calibration, and clinical

utility. Performance metrics were calculated from confusion

matrices according to standard classification protocols.

Comparative analysis identified the model incorporating the

optimal peritumoral thickness as the most robust predictor of

NAC response, indicating potential applications in therapeutic

decision-making protocols.
Frontiers in Oncology 05
Model interpretation

The predictive mechanism of the optimal AI model was analyzed

through feature importance assessment to elucidate the underlying

variables contributing to NAC response prediction. A systematic

interpretation protocol was implemented to quantify the relative

contribution of individual radiomic features to model predictions. The

ten most influential variables were identified and visualized through

feature importance analysis. An ablation study was subsequently

conducted by iteratively removing the top five contributory features,

followed by comparative performance evaluation to validate the

significance of these identified predictive features.
Statistical analysis

Statistical assessment protocols were implemented according to

data distribution and analytical requirements. Between-group

comparisons were conducted through chi-square tests for

categorical variables and WRS tests for continuous variables.

Model discrimination was evaluated by receiver operating

characteristic (ROC) curve analysis with area under the curve

(AUC) calculation. Statistical comparisons of AUC values

between different models were performed using DeLong tests,

with p<0.05 considered statistically significant. Model calibration

was examined through calibration curves and Brier score (BS)

assessment. Decision curve analysis (DCA) was performed to

evaluate clinical utility through net benefit calculation across

probability thresholds. Performance metrics were derived from

confusion matrices, including accuracy, precision, recall, F1-score

and Kappa values. All statistical analyses were performed using

Python version 3.12.0 with established statistical libraries.
Results

Patient characteristics and treatment
outcomes

The final study population included 402 BC patients who met the

selection criteria. The neoadjuvant chemotherapy protocols consisted

of AC-T (doxorubicin, cyclophosphamide, followed by paclitaxel) in

254 patients (63.2%) and FEC-D (fluorouracil, epirubicin,

cyclophosphamide, followed by docetaxel) in 117 patients (29.1%).

All patients received standard doses with amedian of 6 cycles (range: 6-

8). Trastuzumab was administered concurrently to HER2-positive

patients (n=58, 14.4%). Based on established response criteria, 264

patients (65.7%) were classified as responders and 138 (34.3%) as non-

responders, with no significant differences in demographic or clinical

characteristics between response groups (P > 0.05). The cohort was

divided into training (n=281, 69.9%) and testing (n=121, 30.1%) sets,

comprising 97 (34.5%) and 41 (33.9%) non-responders, respectively.

The patient selection process and cohort distribution are presented in
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Figure 2. No significant differences were observed in demographic and

clinical characteristics between training and testing cohorts (P > 0.05),

as summarized in Table 1.
Radiomics feature extraction and selection

The quantitative image analysis yielded 7,045 radiomic features

per patient (1,409 features × 5 ROIs) from the pre-NAC ABVS

images. Following standardization, feature reproducibility

assessment identified stable features (CCC ≥ 0.85) for subsequent

analysis, retaining 77.4%, 84.1%, 82.8%, 76.5%, and 78.8% of

features from R0 to R8, respectively. Statistical comparison

between responder and non-responder groups identified

discriminative features (163, 182, 154, 172, and 147 features from

R0 to R8, respectively). Through mRMR algorithm optimization, 30

features were selected from each ROI, encompassing first-order

statistics, shape-based descriptors, and various texture parameters.

The detailed distribution of these selected features across different

categories and ROIs is presented in Supplementary Table S1.

Multiple mathematical filters, including wavelet, logarithm,

exponential, and gradient transformations, were applied during

feature extraction to enhance the characterization of tissue

heterogeneity in both intratumoral and peritumoral regions.
Model training and optimization

Independent TabNet models were developed for each ROI

using the training cohort data to predict NAC response. Through

Bayesian optimization with 5-fold cross-validation, region-specific
Frontiers in Oncology 06
hyperparameter configurations were established for the five distinct

models (R0-R8). The optimal hyperparameter settings for each

model are presented in Supplementary Table S2. Model training

was executed using these optimized configurations, with the best-

performing model iteration selected based on minimal validation

loss criteria. The model training process is illustrated in

Supplementary Figure S1, depicting the convergence of loss

functions across epochs, while Supplementary Figure S2

demonstrates the corresponding accuracy trajectories for both

training and validation sets.
Model performance comparison

The predictive performance of ROI-specific models was

systematically evaluated in the testing cohort. Discrimination

analysis through ROC curves demonstrated a progressive

improvement in predictive accuracy from intratumoral to

peritumoral regions, with AUC values increasing from 0.681 (R0)

to 0.845 (R6), followed by a decline in R8 (0.789) (Figure 3A).

DeLong tests revealed that the R6 model demonstrated statistically

significant improvement compared to R0 and R2 models, with

pairwise comparisons of AUC values presented in Table 2. Though

differences between R6 and R4 or R8 did not reach statistical

significance, R6 consistently maintained the highest numerical

AUC value across all models.

The calibration assessment demonstrated varying reliability

patterns across models, with BS values consistently below 0.1.

Notably, R2 exhibited suboptimal calibration performance, while

R6 showed characteristic deviation in the low-probability range

(0.3-0.4), where the observed non-responder rate (0.6-0.7) exceeded
FIGURE 2

Study flowchart illustrating patient selection and cohort distribution.
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model predictions, indicating potential underestimation of

non-responder probability (Figure 3B). DCA indicated sustained

clinical utility across varying threshold probabilities for all

models (Figure 3C).

Detailed performance metrics derived from confusion matrices

(Table 3) demonstrated superior classification in peritumoral models

R2-R6. Through comprehensive evaluation of model performance, R6

emerged as the optimal predictor, achieving the highest precision

(0.765) and accuracy (0.810). While this model demonstrated

relatively lower recall (0.634) due to increased false negatives, its

superior precision in identifying non-responders offers substantial

clinical value. This characteristic is particularly beneficial for

treatment planning, as accurate identification of NAC non-

responders enables timely therapeutic strategy modification,

potentially preventing unnecessary treatment exposure.
Combined model performance

Following the identification of R6 as the optimal peritumoral

zone for NAC response prediction, we developed a combined model

integrating radiomic features from both R0 and R6 to leverage the

complementary information provided by these distinct tumor-

associated regions. The combined R0+R6 model demonstrated

enhanced predictive capability compared to individual regional
Frontiers in Oncology 07
models. By leveraging the high recall of the R0 model in

conjunction with the enhanced precision of the R6 model, the

integrated approach achieved a notable reduction in false negative

predictions, with only 4 cases misclassified compared to 15 in the R6

model. Quantitative evaluation revealed superior performance

across all metrics, with accuracy of 0.909, precision of 0.841,

recall of 0.902, and F1 score of 0.871. The model achieved a

robust Kappa of 0.801, indicating substantial agreement

beyond chance.
Key feature identification

Feature importance analysis was performed through the intrinsic

attribution mechanism of TabNet to identify crucial predictive

variables in the combined model (Figure 4). Among the top ten

contributory features, gradient-based first-order statistics and

morphological parameters demonstrated predominant influence in

NAC response prediction. R6_gradient_firstorder_Kurtosis and

R6_original_shape_VoxelVolume were identified as the most

significant predictors, highlighting the importance of peritumoral

textural heterogeneity and volumetric characteristics. The impact

of these features was validated through systematic ablation

analysis (Table 4). Sequential elimination of the top five variables

revealed progressive performance deterioration, with removal of
TABLE 1 Patient and tumor characteristics.

Characteristics

Training cohort (n=281) Testing cohort (n=121)

Response
(n=184)

Non-
response (n=97)

P
value

Response
(n=80)

Non-
response (n=41)

P
value

Age, years 50 (48, 53) 52 (47, 56) 0.384 51 (48,54) 54 (46,59) 0.274

Menopausal status,
n(%)

Premenopausal 103 (56.0%) 57 (58.8%)
0.654

47 (58.8%) 26 (63.4%)
0.620

Postmenopausal 81 (44.0%) 40 (41.2%) 33 (41.3%) 15 (36.6%)

Initial tumor size, cm 4.6 (3.7, 5.4) 4.8 (3.9, 5.7) 0.482 4.5 (3.5,5.3) 4.8 (3.7,5.8) 0.251

Clinical stage, n(%)
Stage II 58 (31.5%) 24 (24.7%)

0.235
27 (33.8%) 12 (29.3%)

0.618
Stage III 126 (68.5%) 73 (75.3%) 53 (66.2%) 29 (70.7%)

Molecular subtype,
n(%)

HR+/HER2− 62 (33.7%) 40 (41.2%)

0.351

27 (33.8%) 13 (31.7%)

0.193HER2+ 96 (52.2%) 42 (43.3%) 45 (56.2%) 19 (46.3%)

TNBC 26 (14.1%) 15 (15.5%) 8 (10.0%) 9 (22.0%)

Histological type, n(%)

IDC 140 (76.1%) 81 (83.5%)

0.239

67 (83.8%) 38 (92.7%)

0.327ILC 33 (17.9%) 10 (10.3%) 11 (13.7%) 2 (4.9%)

Other 11 (6.0%) 6 (6.2%) 2 (2.5%) 1 (2.4%)

Chemotherapy
regimen, n(%)

AC-T 110 (59.8%) 62 (63.9%)

0.335

57 (71.2%) 25 (61.0%)

0.133FEC-D 55 (29.9%) 30 (30.9%) 17 (21.3%) 15 (36.6%)

Others 19 (10.3%) 5 (5.2%) 6 (7.5%) 1 (2.4%)

Surgery type, n(%)
Mastectomy 129 (70.1%) 75 (77.3%)

0.198
63 (78.8%) 30 (73.2%)

0.491
Breast-conserving 55 (29.9%) 22 (22.7%) 17 (21.3%) 11 (26.8%)
front
Quantitative data are presented as median (interquartile range). Categorical data are presented as number (percentage). HR, hormone receptor, HER2, human epidermal growth factor receptor-
2, TNBC, triple-negative breast cancer, IDC, Invasive ductal carcinoma, ILC, Invasive lobular carcinoma
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R6_gradient_firstorder_Kurtosis and R6_original_shape_

VoxelVolume leading to substantial precision reduction. These

findings indicate the fundamental role of peritumoral textural and

morphological features in characterizing tumor-stromal interactions

associated with treatment response.
Frontiers in Oncology 08
Discussion

Accurate prediction of NAC response remains crucial for BC

management, as early identification of potential non-responders

enables timely therapeutic modifications and prevents unnecessary

treatment exposure. While peritumoral radiomics analysis offers a

non-invasive approach for treatment response assessment,

systematic evaluation of optimal peritumoral dimensions for

predictive accuracy remains unexplored in current literature. This

methodological limitation undermines the potential of peritumoral

radiomics in characterizing tumor-stromal interactions that

influence treatment outcomes. In this study, multiple AI-driven

radiomics models were developed and validated using ABVS images

across varying peritumoral thicknesses. The findings demonstrated

superior predictive performance through integration of

intratumoral features with those from the 6-mm peritumoral

region, achieving an accuracy of 0.909 and precision of 0.841 in

the testing cohort. This standardized ultrasound-based approach

enables broad clinical implementation, facilitating more

personalized therapeutic decision-making.

The superior predictive capability of peritumoral regions in

NAC response assessment can be attributed to the complex tumor

microenvironment, which comprises immune cells, stromal cells,

and extracellular matrix components that collectively influence
TABLE 2 Pairwise comparisons of AUC values between ROI-specific
models using DeLong test.

Model 1 vs Model 2 AUC difference P-value

R0 vs R2 0.032 0.750

R0 vs R4 0.122 0.204

R0 vs R6 0.216 0.013

R0 vs R8 0.108 0.263

R2 vs R4 0.089 0.343

R2 vs R6 0.183 0.032

R2 vs R8 0.076 0.425

R4 vs R6 0.094 0.231

R4 vs R8 0.013 0.880

R6 vs R8 0.107 0.177
FIGURE 3

Comprehensive performance evaluation of ROI-specific models. (A) ROC curves comparing discriminative capabilities across models. (B) Calibration
plots assessing probability estimation accuracy. (C) DCA demonstrating clinical utility across different threshold probabilities.
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therapeutic outcomes (28, 29). Our systematic analysis revealed that

predictive accuracy progressively improved from intratumoral to 6-

mm peritumoral regions before declining at 8-mm, suggesting an

optimal zone for capturing tumor-stromal interactions. This spatial

pattern aligns with biological evidence demonstrating that the

immediate peritumoral environment exhibits higher immune cell

density and more active tumor-stromal crosstalk compared to

distant regions (30). Particularly, tumor-infiltrating lymphocyte

levels within the peritumoral microenvironment have been

significantly correlated with pathological complete response to

NAC (31, 32). The 6-mm peritumoral zone likely represents a

critical threshold where the radiomics features optimally capture

these biological interactions while minimizing the inclusion of non-

specific tissue characteristics. This observation is supported by

previous studies showing that peritumoral features within defined
Frontiers in Oncology 09
margins provide more accurate characterization of tumor biology

and treatment response (14, 33). The observed decline in predictive

performance beyond 6-mmmay reflect the diminishing influence of

tumor-associated molecular and cellular alterations at greater

distances from the tumor boundary. This aligns with evidence

that the immediate peritumoral environment exhibits stronger

biological interactions compared to more distant regions (12,

34, 35).

In this study, the TabNet architecture was selected for ABVS

radiomics analysis based on demonstrated capabilities in processing

high-dimensional tabular data and providing interpretable features.

The architecture incorporates sequential attention mechanisms and

feature selection processes that are particularly effective for

handling imbalanced datasets commonly encountered in medical

prediction tasks. These mechanisms enable differential weighting of
FIGURE 4

Feature importance ranking of the combined model. Bar plot illustrating the relative contribution of the top 10 radiomic features in the combined R0
and R6 model.
TABLE 3 Detailed performance metrics of ROI-specific models in the testing cohort.

Model Accuracy Precision Recall F1 score Kappa TP TN FP FN

R0 0.661 0.500 0.780 0.610 0.335 32 48 32 9

R2 0.802 0.689 0.756 0.721 0.568 31 66 14 10

R4 0.802 0.730 0.659 0.692 0.547 27 70 10 14

R6 0.810 0.765 0.634 0.693 0.557 26 72 8 15

R8 0.711 0.552 0.780 0.646 0.414 32 54 26 9
TP, true positive; TN, true negative; FP, false positive; FN, false negative.
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features through attention layers, which inherently mitigate bias

toward majority classes often observed with conventional

algorithms. This characteristic allows robust performance to be

achieved without requiring artificial data manipulation techniques

such as oversampling (36). Through comprehensive model

comparison, the 6-mm peritumoral zone exhibited optimal

predictive performance, achieving the highest accuracy through

superior precision values. The enhanced precision in identifying

NAC non-responders offers substantial clinical value by enabling

confident early identification of patients requiring alternative

therapeutic strategies. Although the R6 model showed relatively

lower recall values, we observed that the R0 model demonstrated

higher recall capability, providing a complementary foundation for

model integration. This complementarity likely stems from the

distinct biological information captured in each region.

Intratumoral features may primarily reflect inherent tumor

properties such as cellular density and necrotic patterns that are

sensitive to various resistance mechanisms, potentially capturing

more cases but with lower specificity. Peritumoral features likely

represent tumor-stromal interactions and immune infiltration

patterns that, when detected, more reliably indicate established

resistance mechanisms, offering greater precision in predictions. By

leveraging these complementary characteristics, the combined

model demonstrated superior performance across all evaluation

metrics, substantially reducing false negatives from 15 to 4 cases and

establishing a robust framework for ABVS-based NAC

response prediction.

Feature importance analysis of the combined model revealed

distinct patterns in the contribution of various mathematical filters

to predictive radiomic features. Wavelet transformations emerged

as the most significant contributors, accounting for 4 of the top 10

features, with particular effectiveness in characterizing intratumoral

heterogeneity through multi-resolution decomposition. Gradient-

based filters, which specifically enhance edge detection,

demonstrated superior performance in quantifying peritumoral

textural properties, suggesting their value in characterizing the

tumor-stroma interface. Exponential filters, designed to

emphasize high-intensity regions, contributed proportionally to

both intratumoral and peritumoral feature extraction. This

differential pattern of filter contribution indicates that complex

tissue interfaces and heterogeneity patterns are optimally

captured through complementary mathematical transformations.
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Notably, original (unfiltered) features maintained significant

predictive value, particularly for structural and volumetric

assessment in the peritumoral environment, highlighting the

importance of preserving native image characteristics alongside

enhanced feature extraction.

Among the top ten features, peritumoral characteristics

demonstrated predominant influence, with R6_gradient_firstorder_

Kurtosis and R6_original_shape_VoxelVolume ranking as the most

significant predictors. The gradient-enhanced firstorder_Kurtosis

reflects the heterogeneity of tissue density distributions within the

peritumoral region, potentially capturing the complex immunological

and stromal interactions that influence treatment response (37). Recent

studies have demonstrated that kurtosis specifically correlates with

tumor-infiltrating lymphocyte density and distribution patterns in BC,

where higher kurtosis values indicate more heterogeneous immune

infiltration associated with improved therapeutic response (2, 38). The

volumetric characteristics derived from shape-based features indicate the

spatial extent of tumor-associated alterations in the surrounding tissue

architecture. Research has shown that these volumetric parameters

correlate with extracellular matrix remodeling and vascular

proliferation intensity in the peritumoral environment (39, 40), which

directly influences drug delivery efficiency and subsequent treatment

outcomes. Ablation analysis validated the critical role of peritumoral

features, as removal of gradient-based textural features and volumetric

characteristics substantially impacted model performance, reducing

precision from 0.841 to 0.638 and 0.721, respectively. These findings

demonstrate that peritumoral textural heterogeneity and morphological

features provide essential information for treatment response prediction,

likely reflecting underlying biological processes such as inflammatory

responses and stromal remodeling that influence NAC outcomes.

The developed combined model demonstrates clinical utility

through ABVS-based radiomics analysis of intratumoral and

peritumoral regions for NAC treatment personalization. Early

identification of potential non-responders enables consideration

of alternative therapeutic protocols, including chemotherapy

regimen modifications or immediate surgical intervention,

thereby preventing unnecessary treatment exposure and

optimizing clinical outcomes. However, several limitations

warrant consideration in our study. The single-center

retrospective design with limited sample size introduces potential

overfitting risk and necessitates validation through multi-

institutional prospective investigations. Our methodological
TABLE 4 Ablation analysis of top five features in the combined model.

Model Configuration Accuracy Precision Recall F1 score Kappa TP TN FP FN

Combined Model 0.909 0.841 0.902 0.871 0.801 37 73 7 4

Without R6_gradient_firstorder_Kurtosis 0.769 0.638 0.732 0.682 0.440 30 63 17 11

Without R6_original_shape_VoxelVolume 0.818 0.721 0.756 0.738 0.497 31 68 12 10

Without R0_exponential_glcm_SumAverage 0.851 0.780 0.780 0.780 0.668 32 71 9 9

Without R6_original_glrlm_GrayLevelVariance 0.860 0.816 0.756 0.785 0.681 31 73 7 10

Without R0_wavelet-HHH_glcm_SumEntropy 0.876 0.842 0.780 0.810 0.718 32 74 6 9
frontier
TP, true positive; TN, true negative; FP, false positive; FN, false negative.
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approach required patients with histologically confirmed unifocal

BC without distant metastasis and full delineation of peritumoral

regions, necessitating the exclusion of excessively large tumors and

those with superficial locations. The application of these strict

selection criteria might have resulted in a cohort with notably

homogeneous clinical characteristics, as evidenced by the absence

of significant differences between response groups. This

homogeneity introduces a potential selection bias that limits the

generalizability of our findings, particularly to patient populations

with larger tumor burdens or multifocal disease presentations.

Additionally, our analysis was confined to pre-treatment ABVS

examinations, whereas longitudinal imaging during NAC cycles

might provide valuable temporal predictive indicators for treatment

response (22). The absence of direct pathological correlation with

specific peritumoral regions introduces potential validation bias,

although systematic pathological sampling presents practical and

ethical limitations. Future investigations should address prospective

validation, external dataset testing, temporal imaging feature

integration, and model development for diverse tumor

presentations. Integration of molecular and pathological markers

with radiomics features may enhance biological interpretation of

peritumoral signatures and improve prediction accuracy.
Conclusion

In conclusion, this study established a systematic framework

utilizing TabNet deep learning architecture for determining optimal

peritumoral thickness in ABVS-based radiomics analysis for NAC

response prediction in BC. The 6-mm peritumoral zone

demonstrated superior predictive capability, with the AI-driven

combined intratumoral-peritumoral radiomics model achieving

optimal performance through enhanced accuracy and precision.

This standardized approach enables robust pre-treatment response

assessment through readily accessible ultrasound technology,

potentially facilitating early identification of NAC non-responders

and supporting personalized therapeutic decision-making in

clinical practice.
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