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posterior mediastinal
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Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health,
Beijing, China, 2Department of Thoracic Surgery, Beijing Children’s Hospital, Capital Medical
University, National Center for Children’s Health, Beijing, China
Background: Progression-free survival (PFS) prediction plays a pivotal role in

developing personalized treatment strategies and ensuring favorable long-term

outcomes in pediatric posterior mediastinal malignant tumors. This study

developed and validated the first preoperative contrast-enhanced computed

tomography (CT)-based radiomics nomogram to forecast PFS in posterior

mediastinal malignancies patients. The aim was to provide a clinically

applicable prognostic tool to stratify high-risk populations.

Methods: Medical data from 306 patients with posterior mediastinal

malignancies were analyzed retrospectively and randomly divided into training

(n = 215) and test sets (n = 91). The clinical model was built using conventional

clinical data and CT signs. Selection of the radiomic features was performed

using maximum relevance minimum redundancy and the least absolute

shrinkage and selection operator. To overcome class imbalance, the synthetic

minority over-sampling technique was used in the training set. Radiomics

signature was derived using logistic regression algorithm, and we developed a

nomogram by integrating the clinical model and the radiomics signature. The

predictive efficiency of the nomogram was assessed using the area under the

curve (AUC), brier score (BS), decision curve analysis, and calibration.

Results: The Ki-67 index and metastasis were identified as independent

predictors, with the test set achieving an AUC of 0.82 (0.647–0.964) and a BS

of 0.21 (0.181–0.239). Nineteen radiomics features most relevant to PFS were

retained, with the logistic regression algorithm achieving an AUC of 0.77 (0.589–

0.896) and a BS of 0.26 (0.215–0.292) in the test set. The radiomics nomogram

demonstrated best predictive capability in the test set, achieving an AUC of 0.87

(0.733–0.968) and a BS of 0.22 (0.177–0.255), compared with remaining

prediction models. Both calibration curves and decision curve analysis

demonstrated good fit and clinical benefit.
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Conclusions: Our contrast-enhanced CT-based radiomics nomogram may be a

dependable, precise, and noninvasive prognostic tool to predict PFS in pediatric

posterior mediastinal malignancies preoperatively.
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1 Introduction

Posterior mediastinal malignant tumors (PMMTs) constitute

roughly 1/3 of all pediatric mediastinal masses (1, 2). PMMTs

include various subtypes (3), with approximately 90% being

neurogenic, and neuroblastoma (NB) is the most prevalent

tumor (4, 5). At the time of first diagnosis, approximately 40%

of children with PMMTs, due to their high heterogeneity, have

locally advanced disease, or bone, bone marrow, or other

metastases, which lead to a generally poor prognosis (6–8).

Notably, children with intermediate- and high-risk NB have an

unsatisfactory 5-year survival rate (9, 10). Accurate prediction of

progression-free survival (PFS) for PMMTs could impact the

choice to pursue intensive management. Currently, studies on

NB suggest that the international NB staging system, namely

involving age and pathological grading, can effectively predict 2-

year PFS (11, 12). However, owing to the high heterogeneity of

PMMTs, there is still a lack of unified standards and reliable

prognostic biomarkers. Therefore, there is an urgent clinical need

for an effective prognostic tool that integrates multiple factors

influencing PFS.

Radiomics, an emerging field in medical imaging, presents a

promising alternative to traditional visual inspection by radiologists

(13–15). By analyzing extensive quantitative data from various

types of medical imaging, radiomics accurately characterizes the

heterogeneity and biological behavior of tumors (16, 17). Lately,

radiomics has been widely applied to help with tumor diagnosis,

distinguishing between different tumors, staging, tracking disease

progression, and assessing treatment outcomes (18, 19). Radiomics

has been used to forecast the overall survival of pediatric diffuse

midline gliomas (20), and the PFS of NB patients (21) and the

event-free survival of patients with hepatoblastoma (22).

Furthermore, CT-based deep learning models have been very

effective in identifying advanced-stage pulmonary tuberculosis in

children (23) and differentiating pediatric non-Wilms tumors (24).

From the authors’ perspective, the implementation of radiomics

in predicting PFS in patients with PMMTs remains limited and is

not yet widely applied. Thus, our objective was to construct a

radiomics nomogram using contrast-enhanced CT to predict PFS in

pediatric patients with PMMTs preoperatively.
02
2 Materials and methods

2.1 Patients

Approval for this retrospective study was granted by our

institutional ethical committee, and informed consent was not

required. This study involved data for pediatric PMMT patients

who were treated between February 2013 and December 2022. The

inclusion criteria were as follows: 1) malignancies in the posterior

mediastinum confirmed pathologically after surgery, 2) routine

contrast-enhanced CT within 15 days prior to treatment, and 3)

PMMTs in patients who were ≤ 18 years of age at diagnosis. Patients

with PMMTs were excluded if their clinical or imaging data were

incomplete. Ultimately, data for 306 patients with PMMTs were

incorporated into this retrospective analysis. In a 7:3 proportion, all

PMMTs were assigned to training (n = 215) and test sets (n = 91)

randomly, in accordance with the Transparent Reporting of a

multivariable prediction model for Individual Prognosis Or

Diagnosis (TRIPOD) statement (25). The follow-up plan for

postoperative pediatric patients was as follows: follow-up visits

are scheduled at 1, 3, 6, 12, and 24 months post-surgery,

primarily involving imaging examinations to monitor for tumor

progression. The follow-up period ended on December 31, 2024.

The procedure for radiomics in this study is depicted in Figure 1.
2.2 Collection of contrast-enhanced CT
images

Preoperative standard CT images of PMMTs comprised

precontrast, arterial, and venous phase images, which were

collected using GE Discovery CT750 HD and GE Healthcare 64/

16 slice spiral CT units (General Electric Company, Cincinnati, OH,

USA). Imaging included the chest, with a 5-mm slice thickness and

no interslice gap. The procedure involved instructing the patient to

lie supine, followed by plain CT to determine the location of the

lesion, and then contrast-enhanced CT. Contrast imaging included

both arterial and venous phases. The contrast medium was

iodixanol at 300 mgI/ml, administered in doses ranging from 1.1

to 1.6 ml/kg. Arterial phase images were acquired 15–18 seconds
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after the contrast injection, and venous phase images were obtained

45–55 seconds after injection.
2.3 Review of conventional CT Signs

Three radiologists, with 7, 10, and 12 years’ experience,

independently evaluated all-phase CT images of the PMMTs,

respectively. The radiologists had no access to the patients’

clinical data or pathological details. In instances of disagreement

regarding conventional CT findings, the final decisions were made

through discussion and consensus among the radiologists. The CT

features were categorized as follows (Figure 2): 1) maximal

diameter, 2) location, 3) heterogeneity, 4) margin (well-defined or
Frontiers in Oncology 03
ill-defined), 5) infiltration across the midline, 6) vascular wrapping,

7) pleural effusion, 8) calcification, 9) necrosis, 10) enhancement

(uniform or nonuniform), and 11) metastasis. Features 2–11 were

categorized retrospectively as either negative or positive.

Researchers retrospectively collected clinical data, namely gender,

age, Ki-67 index, pathological type, and information on

complete resection.
2.4 Image segmentation and radiomic
feature extraction

Using the open-source ITK-SNAP software (version 4.2.0) (26),

radiologist A manually segmented the neoplastic three-dimensional
FIGURE 2

Review of conventional clinical data and CT signs. (A) Tumor with calcification (arrow); (B) Tumor with pleural effusion, infiltration across the midline
and vascular wrapping (arrows); (C) Tumor with well-defined margins and heterogeneity (arrow); (D) Tumor with heterogeneity and nonuniform
enhancement (arrow); (E) Tumor with necrosis (arrow); and (F) Tumor with maximal diameter = 4.3 cm (line).
FIGURE 1

The radiomics approach used in this study.
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region of interest (3D-ROI). The area included the entire tumor

parenchyma and excluded surrounding inflammation, necrosis,

pleural effusion, atelectatic lung tissue, blood vessels, and bone.

Arterial and venous phase images were used to aid in accurate

segmentation when the boundary was not clearly visible on

precontrast images.

To measure intraobserver agreement, radiologist A manually

segmented 40 randomly selected cases after a period of 2 weeks.

Radiologist B independently outlined the 3D-ROIs for an

equivalent number of patients to assess interobserver agreement.

The clinical and histopathological details were not disclosed to

either radiologist. By calculating intra-/interobserver correlation

coefficients, the consistency of each radiomics feature was

assessed regarding intra-/interobserver agreement.

Preprocessing steps were implemented to minimize feature

variability and address inconsistent intensity because of varying

scanning sequences and parameters. To strengthen the signal-to-

noise ratio in texture analysis, gray-level quantization was used to

decrease the gray levels. To achieve uniform voxel spacing, cubic

interpolation was applied, adjusting the 3D-ROIs to an isotropic

resolution (voxel size = 1 × 1 × 1 mm³).

3D Slicer (version 5.8.0) (27), an open-source free software, offers

comprehensive and flexible tools for multimodal image processing and

radiomics feature extraction, positioning it as an essential platform for

medical image analysis research. Radiomic features, namely shape,

first-order, and texture features (such as neighboring gray tone

difference matrix, gray level run length matrix, gray level co-

occurrence matrix, gray level dependence matrix, gray level size zone

matrix) were extracted from 3D-ROIs for all-phase CT images. A

wavelet transform was subsequently applied to emphasize both high-
Frontiers in Oncology 04
and low-frequency information for further analysis. Feature

calculations were performed in accordance with the guidelines set

forth by the Image Biomarker Standardisation Initiative (28).
2.5 Construction and evaluation of
different models

The standardization of all radiomic features from the all-phase

images was performed using the z-score method. To address

imbalanced data characteristics among the groups (29), the

synthetic minority over-sampling technique (SMOTE) was used

to process all radiomic features in the training set for subsequent

analysis. Then, three procedures were used to identify the most

predictive features to predict the survival of children with PMMTs.

First, using the maximum relevance minimum redundancy

approach, the 20 most relevant radiomic features were retained,

while irrelevant and redundant features were removed. Next, using

the least absolute shrinkage and selection operator (LASSO), the

most predictive features were identified. Integrating the chosen

radiomics features with their LASSO coefficients linearly, a Rad-

score was built for each case. Finally, R software (www.r-

project.org) was utilized to construct the radiomics signature (RS)

using logistic regression algorithm, as illustrated in Figure 3.

The conventional clinical data and CT signs were examined by

the Chi-square test and Wilcoxon’s test. In the univariate analysis,

factors with p-values < 0.05 were identified and chosen for use in

the multivariate analysis to construct the clinical model. Ultimately,

to create a dependable radiomics nomogram, multivariate analysis

was used to integrate the RS and clinical model.
FIGURE 3

Procedures for radiomics feature screening. (A) Procedure for selecting the fine-tuning parameter (l); (B) Graphed coefficients against ln (l); and (C)
The 19 chosen radiomics features.
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The ability of all models to predict PFS in patients with PMMTs

was assessed in the training and test sets using the area under curve

(AUC), brier score (BS), and calibration curves. Decision curve

analysis was used in the training and test sets to assess the

nomogram’s applicability in clinical practice.
2.6 Statistical analysis

A t-test was used for continuous variables, while the chi-square or

Fisher’s exact test was used for categorical variables. Subsequently, the

conventional clinical data and CT signs were evaluated by univariate

and multivariate analyses. Intra-/interobserver correlation coefficients

≥ 0.80 indicated strong agreement. The accuracy of all models was

evaluated using the BS. Differences in the calibration curves were

compared using the Hosmer–Lemeshow test. Statistical analyses were

performed using R statistical software (version 4.4.2), with statistical

significance defined as p < 0.05.
3 Results

3.1 Conventional clinical data and CT signs

The medical baseline data for all PMMT patients, including

conventional clinical data and CT signs, are shown in Table 1.

Necrotic lesions constituted > 10% of all neoplasms. In the training

set, 32 of 215 (14.9%) patients experienced progression, with a

median follow-up time of 7.23 months (interquartile range: 4.45–

18.08). In the test set, 13 of 91 (14.3%) patients experienced

progression, with a median follow-up time of 8.57 months

(interquartile range: 7.17–16.33).

The conventional clinical data and CT signs were incorporated

into the next step of the study (Table 2). Univariate analysis

indicated that the risk factors for poor survival were Ki-67 index,

maximal diameter, infiltration across the midline, vascular

wrapping, calcification, necrosis, and metastasis (all, p < 0.05). On

the basis of the multivariate analysis, Ki-67 index and metastasis

(both, p < 0.05) were used to develop the clinical model, which

achieved an AUC of 0.82 (0.647–0.964) and a BS of 0.21 (0.181–

0.239) in the test set.
3.2 Establishment and performance of
prognostic models

Using the maximum relevance minimum redundancy and

LASSO algorithms, 19 radiomics features were preserved, as

shown in Figure 3. The RS was built using logistic regression,

with an AUC of 0.77 (0.589–0.896) and a BS of 0.26 (Table 3). Then,

the radiomics nomogram was constructed by integrating the RS

with the clinical model (Figure 4). The predictive performance of
Frontiers in Oncology 05
the radiomics nomogram is showed in Table 3. The radiomics

nomogram demonstrated outstanding PFS prediction performance,

with an AUC of 0.87 (0.733–0.968) and a BS of 0.22 (0.177–0.255)

(Figures 5A, B) in the test set. Figures 5C, D shows that the

calibration curves and decision curve analysis results indicated

good fit and clinical benefit.
4 Discussion

In this study, we developed a radiomics nomogram using

contrast-enhanced CT to provide a dependable, precise, and

noninvasive prognostic tool to predict PFS in patients with

PMMTs. To our knowledge, this study is one of the first to use

contrast-enhanced CT-based radiomics to assess the PFS of

pediatric patients with PMMTs. By integrating both clinical data

and RS, we constructed a radiomics nomogram that achieved

promising results, with an AUC of 0.87 (0.733–0.968) in the test

set. These findings demonstrate that our contrast-enhanced CT-

based radiomics nomogram is an effective prognostic tool to

preoperatively predict PFS in pediatric patients with PMMTs. As

a result, the nomogram may help clinicians personalize treatment

strategies and improve the long-term prognosis of pediatric patients

with PMMTs.

Currently, the PFS prediction of patients with malignant tumors

in clinical practice is primarily grounded in traditional clinical

metrics and conventional CT findings. In our study, we

retrospectively analyzed data from 306 pediatric patients with

PMMTs. The clinical model, which included the Ki-67 index and

metastasis as significant predictors identified through univariate

and multivariate analyses (all, p < 0.05), achieved an AUC of 0.82

(0.647–0.964) in the test set. Ki-67 is an important cell proliferation

marker that reflects tumor proliferative activity and is commonly

used to assess the growth rate and malignancy of tumors (30). The

presence of metastasis is a key factor in tumor prognosis (31),

directly affecting a patient’s survival. The clinical model showed

strong performance in predicting PFS and effectively distinguishing

between patients with varying survival durations. However, the

clinical model included only Ki-67 and metastasis, potentially

overlooking other relevant tumor features and molecular

characteristics. Therefore, incorporating additional types of data

is essential to further optimize the model and improve the accuracy

of PFS prediction for malignant tumors.

Previous studies have highlighted the capability of radiomics to

assess the biological behavior and prognosis of various

malignancies. For example, Sui et al. created a radiomics model

with an AUC of 0.89 using positron emission tomography/CT to

predict prognosis in patients with hepatocellular carcinoma (32). To

develop a prognostic model for locally advanced gastric cancer

patients, Li et al. designed a CT-based radiomics model with an

AUC of 0.73 (33). These studies emphasize the substantial potential

of radiomics to predict survival across malignancies. In this
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research, we constructed an RS from contrast-enhanced CT images,

enabling precise presurgical prediction of PFS and achieving an

AUC of 0.77 (0.589–0.896) in the test set. Although the feasibility of

radiomics has been demonstrated, this method has certain
Frontiers in Oncology 06
limitations compared with clinical models, particularly for

stability and reliability. Therefore, relying solely on radiomics

may not fully enhance predictive accuracy and overlooks the

significant contribution of clinical factors in PFS prediction.
TABLE 1 Conventional clinical data and CT signs in pediatric patients with PMMTs.

Training set (n=215) Test set (n=91) P

Progression No 183 78 1.000

Yes 32 13

Progression-Free Survival* (months) 7.23 (4.45,18.08) 8.57 (7.17,16.33 <0.001

Gender Male 88 54 0.003

Female 127 37

Age* (months) 39.00 (16.00,65.00) 41.00 (21.00,72.00) 0.429

Ki-67 index* 8.00 (3.00, 40.00) 5.00 (3.00,20.00) <0.001

Pathological type NB 86 28 0.114

non-NB 129 63

Complete resection + 175 84 0.108

– 40 7

Maximal Diameter* (cm) 6.40 (4.20,8.90) 6.10 (4.50,8.40) 0.704

Location L 116 50 0.874

R 99 41

Heterogeneity – 88 41 0.504

+ 127 50

Margin Well-defined 68 30 0.818

III-defined 147 61

Infiltration Across the Midline – 126 13 0.013

+ 89 67

Vascular Wrapping – 98 52 0.064

+ 117 39

Pleural Effusion – 128 64 0.074

+ 87 27

Calcification – 75 40 0.134

+ 140 52

Necrosis – 153 74 0.064

+ 62 17

Enhancement Uniform 88 41 0.504

Non-uniform 127 50

Metastasis – 165 74 0.376

+ 50 17
① Continuous variables* are presented as median (Q1, Q3) and compared using an independent t-test.
② Categorical variables were compared using Fisher's exact test or chi-square test.
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FIGURE 4

Radiomics nomogram. The nomogram combines metastasis, rad-score, and Ki-67 to calculate a total score, which is used to predict the patient’s
progression-free survival (PFS) at 6, 12, and 24 months.
TABLE 2 Results of the univariate and multivariate analyses of conventional clinical data and CT signs.

Variables Univariate Analysis P Multivariable Analysis P

OR 95%CI OR 95%CI

Gender 0.649 (0.305-1.378) 0.260

Age 1.008 (0.999-1.017) 0.077

Ki-67 index 1.037 (1.023-1.052) <0.001 1.037 (1.021-1.053) <0.001

Pathological type 0.718 (0.338-1.529) 0.391

Complete resection 2.318 (0.997-5.390) 0.051

Maximal Diameter 1.122 (1.005-1.253) 0.040 0.958 (0.800-1.147) 0.640

Location 1.040 (0.490-2.208) 0.919

Heterogeneity 1.941 (0.851-4.426) 0.115

Margin 2.220 (0.868-5.678) 0.096

Infiltration Across the Midline 3.229 (1.467-7.105) 0.004 0.454 (0.113-1.826) 0.266

Vascular Wrapping 2.420 (1.062-5.512) 0.035 0.972 (0.206-4.595) 0.971

Pleural Effusion 1.830 (0.859-3.895) 0.117

Calcification 3.345 (1.231-9.090) 0.018 0.374 (0.115-1.215) 0.102

Necrosis 2.553 (1.183-5.511) 0.017 1.159 (0.359-3.739) 0.805

Enhancement 1.941 (0.851-4.426) 0.115

Metastasis 6.067 (2.738-13.446) <0.001 0.200 (0.073-0.546) 0.002

Rad_score 1.986 (1.530-2.579) <0.001 1.189 (1.363-2.428) <0.001
F
rontiers in Oncology
 07
OR, odd ratio; CI, confidence interval.
TABLE 3 Predictive performance of various models to assess progression-free survival.

Brier score 95%CI AUC 95%CI

Clinical Model Training 0.27 (0.237-0.286) 0.85 (0.789-0.909)

Test 0.21 (0.181-0.239) 0.82 (0.647-0.964)

Radiomics Signature Training 0.24 (0.208-0.259) 0.87 (0.814-0.912)

Test 0.26 (0.215-0.292) 0.77 (0.589-0.896)

Radiomics Nomogram Training 0.24 (0.212-0.266) 0.91 (0.858-0.943)

Test 0.22 (0.177-0.255) 0.87 (0.733-0.968)
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To overcome the limitations of relying solely on radiomics, this

study further explored a nomogram that integrated both a clinical

model and radiomics. By combining radiomics with the clinical

model (Ki-67 and metastatic status), the nomogram provides a

comprehensive fusion of tumor imaging characteristics and

biological behavior, leveraging the complementary strengths of

both data types. Previous studies have shown the efficacy of

nomograms to predict survival outcomes by incorporating clinical

and radiomics features. Liu et al. developed a nomogram (C-

index = 0.78) that integrated radiomics and clinical data to predict

overall survival in patients with hepatocellular carcinoma after

hepatectomy, showing improved predictive performance (34). In

the present study, the nomogram achieved an AUC of 0.87 (0.733–

0.968) in the test set, which was a significantly higher AUC compared

with the radiomics approach, and a BS of 0.22, showing notable

improvement over radiomics. These results demonstrate that the

nomogram substantially enhances the accuracy and stability of PFS

prediction in malignancies. By addressing the limitations of single-

source data, the nomogram offers a comprehensive and reliable

prognostic assessment for clinical decision-making.
Frontiers in Oncology 08
Several limitations of this study must be acknowledged. First,

even with strict exclusion and inclusion criteria, selection bias

cannot be entirely ruled out because of the retrospective study

design. Second, segmentation of all PMMTs was used to outline the

ROI manually, potentially introducing variability. Future studies

should consider a semiautomatic segmentation method for more

precise ROI delineation. Third, although we included data for 306

patients, this was a relatively limited sample size, and this issue and

the lack of external validation restrict the broader applicability of

the model. Additionally, despite the application of the SMOTE

algorithm, data imbalance may still lead to biased model

performance in minority populations. To enhance the accuracy

and stability of the model, research will aim to expand the sample

size and involve multicenter validation in the future, ensuring the

model’s generalizability. Finally, the follow-up duration in this

study was limited to only 2 years, which may be insufficient to

fully assess the long-term survival outcomes of patients with

malignancies. Future studies will extend the follow-up period to

evaluate the predictive performance and stability of the model over

a longer time span.
FIGURE 5

The BSs (A) across three prediction models over 24 months. This figure shows the changes in BS values over a 24-month period for three prediction
models: the clinical model (red), the radiomics nomogram (green), and the RS (blue). The x-axis represents the observation time points (in months),
and the y-axis represents the BS values. The BS trends differ across the models. The AUCs (B) are shown across the three prediction models over 24
months. This figure shows the changes in AUC values over a 24-month period for three prediction models: the clinical model (red), radiomics
nomogram (green), and the RS (blue). The x-axis represents the prediction time points (in months), and the y-axis represents the AUC values. The
calibration curves (C), and decision curve analysis results (D) are also shown.
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5 Conclusions

In conclusion, our contrast-enhanced CT radiomics nomogram

may be a dependable, precise, and noninvasive predictive tool to

assess PFS in pediatric patients with PMMTs before surgery, with

potential benefits for clinical decision-making and personalized

treatment planning.
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