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Breast cancer has been the most frequent diagnosed cancer and the leading

cause of cancer-related deaths among women worldwide, mainly due to

delayed detection. Early diagnosis significantly improves prognosis and long-

term survival rates. Various techniques, including imaging, sensors, and

molecular biotechnology, have been developed to facilitate early detection.

This review provides a comprehensive analysis of these diagnostic techniques,

emphasizing precision, patient comfort, and cost-effectiveness. Additionally, it

explores the emerging role of wearable technologies, such as smart bras and

real-time monitoring devices, in revolutionizing breast cancer detection. The

review concludes by discussing the limitations of current diagnostic methods

and proposing future directions for enhancing early detection and improving

patient outcomes.
KEYWORDS
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1 Introduction

Breast cancer is the most diagnosed malignancy and one of the leading causes of

cancer-related deaths among women worldwide (1). Breast cancer occurs when normal

breast cells undergo genetic mutations, leading to uncontrolled growth, known as

neoplasia. If not detected early, cancerous cells can invade surrounding tissues and

spread to distant organs, complicating treatment and increasing the risk of fatality. To

improve the prognosis and survival rates of breast cancer, early detection is essential. Early

detection of breast cancer greatly improves long-term results by increasing the likelihood of

successful treatment and breast-conserving surgery. Due to localized disease management

and less aggressive treatment requirements, studies have demonstrated that patients
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diagnosed at earlier stages have higher survival rates than those

diagnosed at advanced stages (1, 2). By reducing the need for

extensive therapies like chemotherapy and radiation, early

detection also lessens the financial and emotional burden on

patients (2).This emphasizes how crucial it is to keep working to

improve breast cancer screening tools and encourage routine

examinations for early detection. Breast cancer is a significant

global health concern, with rising incidence and mortality rates.

From 2008 to 2017, new cases increased by 6%, reaching 11.7% in

2020, when approximately 685,000 women died, and 2.3 million

new cases were reported. Early detection greatly enhances survival

rates, with nearly 90% survival for early-stage diagnoses (2, 3).

Given global population growth, experts estimate that by 2050, the

number of new breast cancer cases will rise to approximately 3.2

million annually (4). Notably, breast cancer is increasingly affecting

younger populations, raising concerns about its detection and

management. Several risk factors, such as age, family history,

lifestyle, unregulated use of medications like oral contraceptive

pills (OCPs), and more, contribute to this trend. Recent studies

indicate that prolonged use of hormone replacement therapy (HRT)

for over 5–7 years increases breast cancer risk (3, 4). Similarly,

Wang et al. presented that elderly woman, with higher BMI, have

increased cancer risk compared to those with lower BMI (5).

Additionally, alcohol can also increase the risk of estrogen-

positive breast cancers (6).

Breast cancer poses a significant challenge due to the lack of

early symptoms, often resulting in late-stage diagnoses. Factors like

limited awareness, inadequate healthcare access, and infrequent

screenings contribute to this issue. Early and accurate diagnosis is

vital for survival. While traditional screening methods, such as

mammography and clinical breast examinations, remain standard,

they have limitations, including high false-positive rates and lower

sensitivity for women with dense breast tissue. Breast cancer rates

are notably higher in premenopausal women. While it is rare in

those under 40, it has recently raised concerns. Due to the density of

their breast tissue, premenopausal women are usually not included

in screening programs or recommended to have mammograms

(5–8).

Figure 1 presents a year-by-year analysis of research

publications on breast cancer available in PubMed. Breast cancer

in men is rare, accounting for less than 1% of all breast cancers

worldwide and approximately 1% of all malignancies in men (9, 10).

The most affected region in male breast cancer (MBC) is the nipple/
Abbreviations: BMI, Body mass index; HRT, Hormone replacement therapy;

OCP, Oral contraceptive pills; MBC, Male breast cancer; VABB, Vacuum-assisted

breast biopsy; CNB, Core needle biopsy; FNAC, Fine needle aspiration cytology;

BC, Brea s t cance r ; QCM, Quar tz crys ta l microba l ance ; PEC ,

Photoelectrochemical; FET, Field effect transistor; EIS, Electrochemical

impedance spectroscopy; LSV, Linear sweep voltammetry; CV, Cyclic

voltammetry; DPV, Differential pulse voltammetry; SWV, Square wave

voltammetry; HERC, Human epidermal growth factor receptor; ER, Estrogen

receptor; PR, Progesterone receptor; MAPK, Mitogen-activated protein kinase;

VEGF, Vascular endothelial growth factor; CBE, Clinical breast examination;

UWB, Ultra-wide band.
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areola area (11–15). Due to its rarity, early diagnosis remains a

challenge, and there are limited therapeutic strategies and

awareness programs specifically targeted at MBC. Consequently,

treatment options for male breast cancer remain suboptimal (16).

Male breast cancer (MBC) has distinct biological differences

compared to female breast cancer. MBC is almost always

hormone receptor-positive (HR+) and often associated with

BRCA2 germline mutations, which increase the risk of aggressive

breast cancer in men (17). Additionally, germline pathogenic

variants (PVs) in the BRCA1/2 genes have been linked to an

elevated risk of BC in both men and women. Multigene panel

testing is increasingly used to assess breast cancer risk, allowing for

the detection of pathogenic variants beyond BRCA1/2 (18).

Figure 2 shows the advances in breast cancer diagnosis:

Figure 2A represents the basic process of the liquid biopsy

procedure; 2B shows the sensors and embedded devices

developed for the early detection of breast cancer, year by year

and finally, 2C shows the flow process of breast cancer detection

using AI. Mammography and clinical breast examination are the

two most frequently used methods for breast screening (7, 8). To

obtain a tissue sample for further histopathological diagnosis, a

needle biopsy is essential. There are three methods of needle biopsy:

vacuum-assisted breast biopsy (VABB), core needle biopsy (CNB),

and fine-needle aspiration cytology (FNAC) (19). Although

mammography is considered as the gold standard for diagnosing

breast cancer, it has several limitations, including high false positive

rates, limited effectiveness in cases of dense breasts, and the use of

ionizing radiation (20). To address this issue, the integration of

artificial intelligence (AI) with mammography is crucial for

screening purposes. With thorough study and testing, these AI

systems could potentially take over the role of radiologists in

reading mammograms. However, adequate preparation and high-

quality data are necessary for AI systems to function effectively. AI

can be incorporated into regular screening procedures with the

right investigation and validation (21). The proposed study explores

screening methods that can help detect this deadly disease with

minimal harm. Research on screening techniques should aim to

reduce the number of undetected advanced cancers, as well as

unnecessary biopsies and follow-up procedures. When discussing

ultrasound, it has a sensitivity of 80%, but it is not suitable for

imaging bony structures (9, 22). Thermography can be used to

detect breast cancer in its early stages, potentially reducing the need

for unnecessary biopsies in breast cancer screening (10, 11).

However, a drawback of thermography is its inability to identify

the specific cause of an increase in breast temperature. This is

because mastitis, an inflammation of the breast tissue, can also lead

to an increase in breast temperature. The risk of developing breast

cancer increases by 2% for each x-ray exposure (12). Many

publications are available for diagnosing BC, but few specify

which approach is best for a certain subset of BC patients (13).

This review provides an in-depth analysis of the current and

emerging breast cancer diagnostic techniques, with a focus on their

advantages, limitations, and potential for improving early detection.

We discuss various imaging modalities, including reflective optical

imaging, microwave imaging, and ultrasound, as well as sensor-
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based detection techniques such as thermography, piezoresistive,

near-infrared, and bioimpedance spectroscopy-based sensors.

Additionally, we explore biosensor technologies, including optical

biosensors (colorimetric, fluorescence, surface plasmon resonance

imaging [SPRi], surface-enhanced Raman spectroscopy [SERS], and

electrochemiluminescence [ECL] biosensors), electrochemical

biosensors (field-effect transistor [FET], electrochemical

impedance spectroscopy [EIS], and voltametric techniques), and

other biosensors such as quartz crystal microbalance (QCM) and

photoelectrochemical (PEC) biosensors. The review concludes by

discussing the limitations of existing diagnostic techniques and

potential future directions for improving breast cancer detection,

with an emphasis on precision, accessibility, and patient-

centric care.
2 Materials and methods

2.1 Goal of the review

The primary goal of this study is to enhance the understanding

of breast cancer diagnosis by evaluating various early detection

techniques, including biomarkers, biosensors, artificial intelligence

(AI), sensors, and imaging technologies. This review explores the

role of tumor markers, their detection methods, the advancements

in biosensor technology, and the application of AI in improving

diagnostic accuracy.

Our analysis provides a comprehensive assessment of past and

emerging diagnostic approaches, emphasizing recent developments

and breakthroughs in biosensors, AI, imaging, and sensor-based

technologies. We present a balanced evaluation of each technique,

discussing its advantages and limitations. Special attention is given

to sensor-based methods, which offer affordable, accessible, and

non-invasive breast cancer screening solutions. Additionally, figures

and graphical illustrations are incorporated throughout the review
Frontiers in Oncology 03
to visually represent key findings and the relationships between

different diagnostic methodologies.
2.2 Data sources

A systematic search strategy was employed to identify relevant

research articles published between 2000 and 2024, with a primary

focus on studies from 2015 to 2024. The databases searched included:

PubMed; Springer; IEEE Xplore; ScienceDirect; Gray Literature,

including Google Scholar. To ensure a comprehensive literature

review, keyword searches were performed using the following search

terms: “Early breast cancer detection”, “Early breast cancer detection

through biomarkers”. “Early detection of breast cancer using sensors”,

“Breast cancer screening techniques”, “Artificial intelligence techniques

for early breast cancer detection”. The wildcard symbol (*) was used to

retrieve variations of keywords, and Boolean operators (“AND” “OR,”

“NOT”) were applied to refine the search.
2.3 Inclusion and exclusion criteria

Only peer-reviewed articles published in English were included.

Articles with similar findings and methodologies were excluded

to avoid redundancy.

Non-English publications and studies without full-text access

were omitted.

From an initial pool of 30,991 research articles retrieved from

PubMed, filtering for free full-text availability and relevance to

biosensor-based detection resulted in 98 selected papers. Similarly,

filtering for sensor-based detection identified 94 studies, and the

same method was applied for AI and imaging-based

detection approaches.

Applying the same search strategy on Google Scholar, we

identified a total of 238 eligible papers, all of which were available
FIGURE 1

The annual trend of research publications related to breast cancer, as evidenced in PubMed, demonstrates a significant increase in scholarly interest
over the years. (1990-2024).
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in PDF or free-text format and aligned with the scope of this review.

The distribution of the shortlisted papers on early breast cancer

detection from PubMed, IEEE, MDPI, ScienceDirect, and other

databases in Figure 3.

2.3.1 Biomarkers
2.3.1.1 Tumor marker

A group of active compounds, called tumor markers, are formed

when the body tissue or tumor interacts with them. These molecules

can indicate the presence and progression of a tumor. Various factors

like tumor size, mass, expression level, breakdown, excretion rates,

blood supply, and resistance to medication can affect the

concentration of tumor markers at different stages. Examples of

commonly used indicators for breast tumors include human
Frontiers in Oncology 04
epidermal growth factor receptor 2 (HER2), progesterone, and

estrogen receptor. Additionally, ongoing research is exploring the

role and potential of newly developed biomarkers in the detection

and management of breast cancer (14, 15). Table 1 explains the

Overview of tumor markers used in breast cancer detection.

When determining if an organism or pathogenic process is

normal or if therapeutic intervention is necessary, a biomarker

provides an objective measurement (16). Stated differently,

biomarkers are chemical indications of disease status that help

distinguish between a normal tumor and a cancerous one (17, 18).

Therefore, biomarkers provide insights into the onset and

progression of cancer in the body. Body fluids such as blood,

urine, and saliva can be used as analytes in sensor development

because they contain biomarkers (23–25).
FIGURE 2

A summary of the diagnostic process for breast cancer that includes: (A) a liquid biopsy method that shows the extraction of biomarkers; (B) a
timeline of sensor developments used in detecting technologies; and (C) a flow diagram that shows the AI-based breast cancer
detection framework.
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2.3.1.1.1 Estrogen receptor

A protein molecule called the estrogen receptor (ER) binds to

estrogen in cells only (26).Cytoplasm,nucleus, or cellmembrane can all

have estrogen receptors. The conventional nuclear receptor is found in

the nucleus, and following translation, its protein is momentarily

translated into the cytoplasm, where it is detectable (27). As estrogen

diffuses into the nucleus, it attaches to its nuclear receptor, activating a

mechanism that controls gene regulation and the transcription of genes

downstream. Estrogen receptor detection serves as a diagnostic tool for

metastatic breast cancer, helps in prognostication, and assesses if a

patient is appropriate for endocrine therapy. It does this by binding to

the estrogen receptor in the patient. Consequently, if a patient has been

shown to have estrogen receptors, this indicates that the patientmay be

a good candidate for endocrine therapy. For individuals who test

positive for ER, endocrine treatment is an effective way to stop tumor

progression (28). Patients who test negative for ER cannot benefit from

the same treatment.Unmistakable data suggests that endocrine therapy

is not beneficial for patients whose tumors do not express ER (29).

Upon estrogen binding (E2) or phosphorylation (P) by cellular

kinases following growth factor (GF) receptor stimulation, ERa is

activated and translocates into the nucleus. Once there, ERa can bind

DNA directly or indirectly through estrogen-responsive elements

(EREs) or by binding to other transcription factors such as AP1 or

SP1, which bind DNA through serum-responsive elements (SREs).

This genomic action of ERa regulates the transcription of target genes.

Additionally, ERa can be anchored to themembrane and interact with

G proteins (Ga) or GF receptors, leading to non-genomic activity such

as the production of second messengers (cyclic adenosine

monophosphate, cAMP) and stimulation of signaling pathways

involving PI3K/AKT or Ras/MAPK. This non-genomic activity

eventually leads to the activation of transcription factors (TFs)

involved in the regulation of cell proliferation and survival (30).

2.3.1.1.2 Progesterone receptor

The progesterone receptor (PR) is a hormone receptor, like the

ER. ER activates PR, and PR activation is a signal of ER activity (31).

The interaction between PR and chromatin changes the binding
Frontiers in Oncology 05
position of ER and chromatin and then leads to a change in cellular

gene regulation from proliferation to cell cycle arrest, apoptosis, and

differentiation (27). PR-positive patients account for approximately 65–

70% of breast cancer patients, and PR-positive patients are rarely

concurrently ER-negative (31). Therefore, in strongly PR-positive

and ER-negative patients, re-detection of ER is necessary to exclude

thepossibilityof a false-negative result (28, 32). Themainpurpose ofPR

detection is to assess the prognosis of ER-positive patients (31).

2.3.1.1.3 Human epidermal growth factor receptor 2

The human epidermal growth factor receptor 2 (HER2) gene is

one of the most studied breast cancer proto-oncogenes (15). HER2

promotes tumor growth by activating MAPK and PI3K/AKT

signaling pathways, which in turn increase cell proliferation,

invasion, and metastasis (27) In the absence of systemic therapy,

HER2 gene amplification or protein expression is associated with a

poor prognosis.HER2 levels were found to be negatively correlated

with ER and PR levels (15). HER2-positive patients account for

approximately 15–20% of breast cancer patients. In clinical practice,

HER2-targeted therapy is used in HER2-positive patients and

HER2 is used as a prognostic indicator. As with ER therapy,

HER2- targeted therapy works only in HER2-positive patients but

not in HER2-negative patients (27).

2.3.1.1.4 The biomarker of triple negative cancer

TNBC, a subtype of breast cancer that lacks ER, PR, and HER2

expression, accounts for 15-20% of patients. Triple-negative breast

cancer (TNBC) has a worse prognosis and a lower survival rate.

Currently, the most important treatment is cytotoxic

chemotherapy. Further classification of TNBC is needed for more

targeted therapy. A survey of biomarkers associated with TNBC has

identified several biomarkers that can stratify patients for molecular

therapy. VEGF, a key signaling factor, is highly expressed in 30-60%

of TNBC patients and targeted anti-VEGF therapy improves

treatment outcomes (33, 34). Binding Androgen in cell depends

upon a hormone called as Androgen receptor(AR), this binds the

transcription factor as well as control gene Expression. AR simulate
FIGURE 3

The distribution of the shortlisted papers on early breast cancer detection from PubMed, IEEE, MDPI, ScienceDirect, and other databases.
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T
ABLE 1 Overview of tumor markers used in breast cancer detection.

Tumor marker How it works Pictorial representation Reference

Estrogen Receptors Estrogen receptor (ER) binding
in cells is essential for
diagnosing metastatic breast
cancer, prognosing, and
assessing endocrine therapy
suitability. A positive ER result
indicates effective treatment,
while a negative result does not.

(38)

Progesterone Receptors PR, a hormone receptor, signals
ER activity, affecting cellular
gene regulation. PR-positive
breast cancer patients account
for 65-70%, necessitating re-
detection to assess prognosis.

(39)

The Biomarker of Triple
Negative Cancer (TNBC)

NBC, a subtype of breast cancer,
has poor prognosis and lower
survival rates, with biomarker
surveys identifying VEGF as a
marker for targeted therapy.

(40)

Human epidermal growth
factor Receptor 2

HER2 gene promotes tumor
growth, affecting prognosis.
HER2-targeted therapy is used
in HER2-positive patients, with
HER2 levels negatively
correlated with ER and
PR levels.

(41)

Emerging Tumor Marker Researchers are exploring new
tumor indicators, including
proteins, nucleic acids, cancer
cells, and other types of cells, in
addition to the three common
clinical breast cancer markers.

(42)
F
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proliferation as well dedifferentiation and induce cell death and

apoptosis. The expression of AR is related to the biological

behaviors of triple-negative breast cancer and plays a role in

endocrine therapy and prognostic prediction (35, 36).

2.3.1.1.5 Emerging tumor marker

Researchers are now focusing on newly discovered tumor indicators

in addition to the three typical clinical breast cancer tumor markers

discussed earlier. These new indicators can be classified as proteins,

nucleic acids, cancer cells, and other types of cells (37). One type of

active material that can show the presence and progression of a tumor is

a tumor marker. Finding tumor markers can be a useful tool in the

diagnosis and management of breast cancer. Some of the drawbacks of

the traditional tumor marker detection approaches are high equipment

costs, labor-intensive procedures, and low sensitivity.

2.3.2 Biosensors
Depending on the detecting signal and detection technique,

biosensors can be categorized as electrochemical, optical, or other

types (43–47). Numerous biosensors for identifying breast tumor

indicators have been created in recent years by researchers. This

study reviews the advances made in the development of

electrochemical biosensors, optical biosensors, and other forms of

biosensors for breast tumor indicators. Figures 4–6 provides a brief

overview of the types of electrochemical, optical and other

biosensors utilized in breast cancer detection.

2.3.2.1 Electrochemical biosensor

Electrochemical biosensors rely on the detection of

electrochemical processes occurring on electrode surfaces to
Frontiers in Oncology 07
determine target concentration. Thorough explanation of the types

of electrochemical biosensors used to detect breast cancer (Table 2).

2.3.2.2 Optical biosensor

Refractive index, resonance, wavelength, intensity, and other

optical changes on sensing layers are used by optical biosensors to

identify targets.

Various optical sensors, such as colorimetric, fluorescence,

SPRi, SERS, and ECL biosensors, have shown varying linear

ranges and detection limits for distinct biomarkers. With a linear

range of 0.03–6 ng mL−1, fluorescence biosensors have identified

CEA at 7.9 pg mL−1 in water and 10.7 pg mL−1 in human serum

samples. Using fluorescence, the detection limit of miRNA-21 is

0.03 fM, with a linear range of 0.1–125 fM (68, 69), The linear

ranges of colorimetric biosensors are 10−12–10−18 M and 1 fM–

100 pM, respectively, and they have detected BRCA1 at 10−18 M

and 0.34 fM (70, 71), SPRi biosensors have identified HER2-positive

EXO at 8280 exosomes µL−1, with a range of 8280–33,100

exosomes µL−1, and CEA at 0.12 ng mL−1, with a linear range of

0.40–20 ng mL−1. miR-K12-5-5p was discovered by SERS

biosensors at 884 (72–76).

Because of their remarkable sensitivity to biomolecular

interactions, PCF SPR (Photonic Crystal Fiber Surface Plasmon

Resonance) biosensors have become promising instruments for the

early detection of breast cancer. Ultra-low concentration detection

is made possible by these biosensors, which pick up on minute

changes in refractive index when breast cancer biomarkers adhere

to metal surfaces. According to recent research, resonance shifts,

and detection efficiency can be enhanced by optimized PCF designs

that incorporate modifications to geometry and metal layering (77).
FIGURE 4

A brief overview of the types of electrochemical biosensor utilized in breast cancer detection.
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FIGURE 5

A brief overview of the types of optical biosensors used in breast cancer detection.
FIGURE 6

A brief overview of the types of other biosensors used in breast cancer detection.
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In order to address the issue of environmental sensitivity, additional

developments in nanomaterials and optical configurations improve

signal stability and accuracy. PCF SPR biosensors are anticipated to

transform real-time, non-invasive breast cancer detection as

research advances (78).
Frontiers in Oncology 09
2.3.2.3 Other types of biosensors

Finally, it should be noted that QCM and PEC can identify any

kind of tumor marker. The primary purpose of the QCM

biosensor’s signal amplification is to increase the mass change of

the chip surface. The PEC biosensor uses signal amplification to
TABLE 2 Thorough explanation of the types of electrochemical biosensor used to detect breast cancer.

Name Type Target Detection Limit diagrams Reference

Electrochemical
Biosensor

CV CA153
EGFR
miRNA-155

0.64 U mL−1–1 pg mL
−1 2×10^−2M

(48)
(49)
(50)

DPV BRCA1
CA15-3
BRCA1
let-7a
miRNA-21

0.0034 pM
3.34mUml^-1
3.01 × 10−16 M
(let-7a) 8.2fM
(miRNA-21)

(51)
(52)
(53)
(54)

SWV MUC1
miRNA-21
miRNA-155

0.33 pM
39.6 aM
18.9 aM

(55)
(56)

LSV HER2
HER2-ECD
CD44
CD44 positive
cells

0.16 ng mL 1
4.4 ng mL 1
2.17 pg. mL−1–8 cells
mL−1

(57)
(58)
(59)
(60)

EIS HER 2
MCF-7 cell MUCI
BRAC1

23 cells mL−1
2.7 nM

(61)
(62)
(63)

FET miRNA-155
CEA

0.03 fM (64)
(65)
(66)
(67)
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increase the photovoltaic and photocurrent changes brought on by

the target. While signal amplification techniques can be used to

increase the detection limits of QCM and PEC sensors for a single

target, these sensors struggle to detect many targets at once

(79–83).

2.3.2.3.1 Innovative approaches for biosensor

The detection approach and the detecting device are the biggest

obstacles for biosensors. Detection techniques typically find it

challenging to handle biomolecules in challenging situations. For

instance, the environment frequently affects the activity and shelf life

of biomolecules. The majority of biosensors are not sufficiently

integrated and compact, making it impossible for them to detect

several targets at once at the device level. To overcome these obstacles,

the coupling of microfluidic chips with biosensing and molecularly

imprinted polymers (MIPs) holds considerable promise.

2.3.2.3.2 Summary of tumor marker and biosensors

Tumor indicators play an important role in breast cancer

diagnosis and treatment, however no marker can effectively

predict breast cancer before clinical symptoms appear. HER2-

targeted biosensors allow for real-time detection of overexpressed

HER2 proteins, often linked to aggressive types of breast cancer.

This early detection enables quick initiation of HER2-specific

therapies, improving treatment response and greatly increasing

patient survival rates outcomes (84). Biosensor development has

obstacles in detecting several targets at the same time, as most

biosensors can only detect one target. Biosensors, such as

antibodies, DNA probes, and aptamers, can give excellent

sensitivity and specificity in laboratory settings. However,

sensitivity in human serum samples declines due to chemical

variables, which is especially critical for whole blood samples. To

improve sensitivity and specificity, biosensors must improve their
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detecting technique and technology. The detection method seeks to

improve both sensitivity and specificity, while the technology

enables simultaneous detection of many objects. The usefulness of

biosensors in practical applications for breast cancer detection has

been shown by recent clinical validation studies. By tracking

changes in refractive index as a result of antigen-antibody

interactions, electrochemical and optical biosensors, such as PCF-

SPR (Photonic Crystal Fiber Surface Plasmon Resonance)

biosensors, have demonstrated high sensitivity in identifying

breast cancer biomarkers. Repeated biopsies may not be necessary

thanks to these devices’ potential for quick and non-invasive

diagnosis (77). The stability and accuracy of biosensors have been

further improved by developments in material science and

nanotechnology, which have increased their clinical relevance.

Recent advancements in biosensor technology have improved the

detection of breast cancer due to their high sensitivity and real-time

biomarker analysis. Although they don’t have constant monitoring,

non-wearable biosensors offer remarkable accuracy in regulated

settings. On the other hand, implantable biosensors provide real-

time, in vivo tracking, which increases diagnostic accuracy.

However, they pose challenges in terms of invasiveness and

patient comfort. The requirement to balance accuracy and

usability must continue to drive biosensor research in the future.

Table 3 presents a detailed comparison of non-wearable and

implantable biosensors for breast cancer detection, evaluating

various clinical and operational parameters. Below, the table

outlines a comparative study of the accuracy and patient

outcomes concerning comfort for both biosensor types (77, 94).

New nanomaterials, second antibodies, and indirect signal

detection methods can help detect biomolecules. Sample

pretreatment and MIPs can help with background interference

and biomolecules’ trouble in hostile conditions. Combining

microfluidic chips with biosensing can boost overall performance
TABLE 3 A comparative analysis of non-wearable and implantable biosensors for breast cancer detection (85).

Feature Non-Wearable Biosensors Implantable Biosensors References

Placement External (used in labs or diagnostic facilities) Under the skin or internally placed through
minimally invasive procedures

(86)

Monitoring Frequency Periodic testing (e.g., blood samples, imaging visits) Continuous real-time tracking of physiological or
biochemical markers

(87)

Sample Type Blood, serum, saliva, or tissue biopsies Interstitial fluids, internal biomarker levels (e.g.,
HER2, pH, oxygen)

(88)

Detection Method Electrochemical, optical (PCF_SPR), or immunoassays Embedded microelectrodes, nanomaterial-based
sensing elements, wireless signal transmitters

(89)

Invasiveness Non-invasive or minimally invasive Minimally invasive (requires implantation under
skin or tissue)

(90)

Diagnostic Accuracy High for certain biomarkers (e.g., HER2, CA 15-3);
moderate for others

High specificity in pilot studies; early-stage
detection potential

(86, 91)

Patient Comfort Generally comfortable; requires clinic visits Moderate; possible discomfort due to implantation
or foreign body sensation

(92)

Power Supply Externally powered (lab equipment) Battery-powered or wirelessly powered via telemetry (86)

Usage Context Hospitals, diagnostic centers Chronic condition monitoring, clinical
research environments

(91)

Development Stage Mature and widely adopted Experimental, under preclinical or clinical testing (93)
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and multi-target detection. These new technologies can be

marketed on a wide scale, altering the current detection paradigm

and potentially leading to a shift. Biosensor technology must

continue to advance in order to reach its full potential in the

detection of breast cancer. This development calls for attention to

be paid to both signal processing algorithms and biosensor

materials. In terms of materials, research is still needed to create

new materials with higher sensitivity so that biomarkers can be

found at lower concentrations and an earlier diagnosis can be made.

In order to reduce false positives, materials that are made to

specifically target particular biomarkers and minimize

interference from other substances are necessary for improved

specificity. To guarantee accurate and consistent readings,

biosensors must also show improved stability over time and in a

variety of scenarios. Biocompatibility is another important factor

for implantable sensors. It is crucial to develop complex signal

processing algorithms concurrently with material advancements.

These algorithms ought to be able to extract pertinent features from

complex sensor data in order to identify subtle changes suggestive

of cancer, effectively reduce noise in sensor signals, and adjust for

sensor drift to preserve long-term reliability. The potential for

further improving signal processing capabilities and raising the

overall accuracy of breast cancer detection is high when artificial

intelligence and machine learning techniques are combined.

2.3.3 Advanced computational and imaging
techniques for breast cancer detection
2.3.3.1 Artificial intelligence for breast cancer detection

Since the advent of computer technology, researchers have

developed automated analysis methods for medical imaging.

Initially, low-level pixel processing (edge and line detector filters,

region growing) and mathematical modeling (fitting lines, circles,

and ellipses) were applied sequentially in medical image analysis

from the 1970s to the 1990s in order to create compound rule-based

systems that addressed specific tasks. Expert systems that had a lot of

if-then-else statements, which were common in Artificial

Intelligence (It refers to the capability of a computer to replicate

human behavior, such as learning and taking action. AI developers

teach computers to identify patterns in extensive datasets. After

training, the program can independently analyze new data and make

predictions) at the same time, can be compared to this. These expert

systems, which resembled rule-based image processing systems, were

frequently fragile and have been referred to as GOFAI (good old-

fashioned artificial intelligence) (95). The clinical field is undergoing

radical change as a result of the digital age, especially in the fields of

radiology and pathology. In several fields, artificial intelligence

techniques are being developed to address medical problems such

diagnosis, prognosis, drug discovery, and testing (96–99). Artificial

intelligence techniques have been applied specifically to breast

cancer, where they have been used to diagnose (100) and

prognosis, classify and quantify immunohistochemistry-stained

images (101–103) and predict the pathological complete response

(PCR) to neoadjuvant chemotherapy (104, 105). These applications

have provided the opportunity for individualized care, increased

therapy response rates, decreased adverse effects, and decreased costs
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of unnecessary treatment. AI has been utilized in radiology since the

1990s, initially with CADE tools in mammographic screening

prompting readers to re-examine areas of concern in the image

(106). With its ability to automate processes, extract minute

information from photos, and provide predictive insights, artificial

intelligence (AI) offers a viable solution to the problems that now

exist (107–110).

In the field of diagnosis, medical images are first collected, then

preprocessed, segmented, features extracted and eventually

categorized. Image processing involves capturing digital images in

a fixed format, usually a portable gray map. The next step is image

preprocessing, which removes noise and enhances contrast using

techniques like FPN, Bad pixels, temperature calibration,

Vignetting, and Noise smoothing. Image segmentation divides an

image into distinct sections, based on features, with the quality of

the output largely reliant on measurement accuracy. Feature

extraction converts input data into extracted features, such as

spatial, transform, edge, color, shape, and texture features. These

techniques are crucial in diagnosing disorders, particularly in

distinguishing between natural and abnormal tissue features in

breast masses or microcalcifications. The analysis of breast cancer

sensor data has been transformed by contemporary In order to

analyze and interpret the complex data produced by breast cancer

detection technologies, artificial intelligence (AI) and machine

learning are essential. These technologies have a number of

significant benefits. Processing high-dimensional data from

wearable sensors and imaging requires the ability to spot subtle

anomalies and complex patterns in large datasets, which AI

algorithms are better at than traditional analytical techniques. The

analysis process can be streamlined by using AI to automatically

extract the most relevant features from sensor data, such as subtle

biomarker fluctuations or temperature variations. More precise

diagnosis can be achieved by training machine learning models to

categorize sensor data (e.g., differentiating between normal and

abnormal tissue) and forecast the likelihood of cancer development.

AI makes it possible to conduct customized analysis for each

patient, taking into account their particular traits and risk factors

to produce accurate and individualized evaluations. AI makes it

easier to combine data from various sources, such as genetic

information, imaging scans, and wearable sensors, to provide a

comprehensive picture of the patient’s health. Table 4 explains all

the terminologies used in paper related to Ai and ML and how they

are related to breast cancer.

2.3.3.1.1 Machine learning algorithms for breast cancer
prediction

Artificial Intelligence consists of a wide range of methods, such

as machine learning, which is a subset of deep learning, of which

CNNs are only one (122). Machine learning is an automated

learning technique (123), with algorithms built to learn from

previous datasets; we feed a mountain of data into a machine

learning model, and it uses that data to anticipate what the future

holds (103–106). Discuss the hierarchical classification of machine

learning algorithms, which encompasses supervised, unsupervised,

semi-supervised, and deep learning techniques (Figure 7).
frontiersin.org

https://doi.org/10.3389/fonc.2025.1587517
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Khan et al. 10.3389/fonc.2025.1587517
Artificial Neural Network (ANN) (111) is a common data

mining algorithm that consists of an input, hidden, and output

layer. It is based on parallel processing (124), distributed memory

(125), collective solution, and network architecture (115, 126, 127).

Logistics regression (LR) (112) is a supervised learning algorithm

that includes more dependent variables and provides continuous

outcomes for specific data (115). K-Nearest Neighbor (KNN) (128)

is used for pattern recognition and is effective for breast cancer

prediction (115). Decision Tree (DT) (114) is a supervised learning
Frontiers in Oncology 12
algorithm that divides a dataset into smaller subsets for higher

precision prediction (115). Naive Bayes Algorithm (NB) is a model

used to make assumptions about a large training dataset and

calculates probabilities using the Bayesian method. It is an

analogy classifier that is used for comparing training datasets with

training tuple (115). Support Vector Machine (SVM) is a supervised

learning algorithm used for both classification and regression

problems (116), providing the highest accuracy rate for large

dataset predictions. Random Forest (RF) (117) is a building block
TABLE 4 AI and machine learning algorithms terminologies.

Algorithm Definition Relevance to Breast cancer Reference

ANN (Artificial Neural Network) a computer model that can recognize intricate patterns
and is modeled after biological neural networks.

utilized for biomarker prediction, MRI tumor
segmentation, and mammography classification.

(111)

LR (logistic Regression) A statistical model that uses logistic functions to predict
binary outcomes.

uses clinical information (such as tumor size and
patient age) to predict the risk of malignancy.

(112)

KNN (K-Nearest Neighbors) Labels are assigned by a non-parametric classifier using
the nearest neighbors’ majority vote.

uses similarity to labeled tumor samples to classify
histopathology images.

(113)

DT (Decision Tree) Using feature thresholds, a tree-like model divides data
into branches.

finds important diagnostic characteristics, such as the
shape of the tumor and calcification patterns.

(114)

NB (Naïve Bayes) A tree-like model separates data into branches based on
feature thresholds.

uses biomarker information and patient
demographics to forecast the recurrence of cancer.

(115)

SVM (Support Vector Machine) A classifier looks for hyperplanes to divide data
into classes.

high precision in classifying mammograms and
differentiating between benign and malignant tumors.

(116)

RF (Random Forest) a group approach that combines several decision trees. Feature selection for tumor subtype classification and
risk prediction.

(117)

K-Means Data is divided into *k* groups by an unsupervised
clustering algorithm.

separating tumor areas with unclear borders in
MRI scans.

(118)

C-Means (Fuzzy C-Means) Data points can be assigned to several weighted clusters
through clustering.

using gene expression data to stratify breast
cancer subtypes.

(119)

Hierarchical clustering creates nested clusters using agglomerative/divisive
proximity matrices.

modeling intricate distributions of biomarkers to
detect cancer early.

(120)

GMM (Gaussian Mixture Model) Data are represented as mixtures of Gaussian
distributions in a probabilistic model.

Analyze complex Biomarker distributions (121)
FIGURE 7

Hierarchical classification of machine learning algorithms (131).
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of machine learning used for predicting new data based on previous

datasets (115). K Mean Algorithm is a clustering algorithm that

partitions data into small clusters based on similarity between data

points (129). C Mean Algorithm is used for medical image

segmentation and disease prediction (119). Hierarchical

Algorithm evaluates raw data in the form of matrices, with each

cluster separated by a probability model. Gaussian Mixture

Algorithm is a popular unsupervised learning technique that

computes the probability of different types of clustered data based

on expectation maximization (121).

Machine learning techniques are only effective if the first input

data has significant predictive characteristics. DL, a subset of ML,

was created to use deep, multi-layered structures to enhance the

performance of traditional ANNs. Among the various deep neural

networks, CNNs rely on convolutional processes to transform

unprocessed image data into intricate representations, eliminating

the requirement for explicit feeding of features extracted from the

image (130).

The use of AI and machine learning has led to substantial

enhancements in breast cancer treatment outcomes. AI algorithms

assess patient-specific data to predict treatment responses and

identify the best treatment plans, thereby decreasing side effects

and increasing effectiveness. AI-enhanced image analysis assists

surgeons in accurately locating tumors and planning surgeries,

ensuring precise tumor excision and better cosmetic results.

Additionally, AI refines radiation therapy strategies for accurate

tumor targeting, reducing harm to surrounding healthy tissues.

Machine learning approaches evaluate patient data to forecast

recurrence risk, allowing for timely interventions that boost

survival rates. Notable examples include AI tools analyzing

mammograms to predict breast cancer risk and customize

screening schedules, as well as machine learning models that

anticipate patient responses to chemotherapy. Table 5 explains

the A Comprehensive Review of Major Machine Technique from

2015-2019 (For Breast Cancer Prediction).

2.3.3.1.2 Deep learning techniques for breast cancer prediction

An extension of artificial neural networks, or ANNs, is called

deep learning. The architecture of deep learning algorithms is made

up of numerous layers. These algorithms can recognize all of the

data from various categories and are used to process a significant

amount of natural data. When we have a large amount of unlabeled

data, we typically use unsupervised deep learning algorithms (132).

Autoencoders are neural networks that learn from large datasets by

training their network to ignore irrelevant signals like noise (133,

134). Sparse auto-encoders learn from unlabeled data using a feed-

forward and backpropagation algorithm, handling the sparsity

regularizer (132–134). Stacked Sparse Auto Encoder (SSAE) (132)

combines the basic layers to construct a stacked sparse, with hidden

layers based on classifiers providing output (133, 134).

Convolutional neural networks (CNN) analyze cancer datasets

using CovNet for data analysis and filters to capture different

dimensions of images. CNN consists of pooling, convolutional,

classification, and fully contacted layers (133, 135). Recurrent

neural networks (RNNs) are a class of neural networks that
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consist of hidden states that use the output of previous states as

input for the next state. While they can process a sequence of inputs

using the same parameters at each layer, they cannot process a large

number of inputs through ReLU and Tanh activation functions.

2.3.3.2 Imaging techniques

The landscape of breast cancer detection has evolved with a

variety of imaging techniques, each offering its own capabilities for

early diagnosis and monitoring. Artificial Neural Networks (ANN)

have become an integral part of the field, applying sophisticated

algorithms to analyze complex patterns in image data, thus

improving diagnostic accuracy. Reflective optical imaging devices

(ROIDs) provide high-resolution images by reflecting light that helps

distinguish tissue types and identify potential malignancies.

Microwave imaging (MI) and microwave-induced thermo acoustic

imaging (MITI) represent state-of-the-art techniques that use

microwave signals and thermo acoustic effects to reveal breast

tissue abnormalities and provide a non-invasive method of

detection. Automated Breast Ultrasound (ABUS) and Ultrasound

Imaging Systems (UIS) assist the field by providing detailed, real-time

images of breast tissue, making it easier to detect structural changes

and abnormalities. In addition, infrared imaging technology (IIT)

detects temperature fluctuations in the breast tissue, which can

indicate pathological changes. Together, these imaging modalities

provide a comprehensive toolkit to improve breast cancer detection,

and each offers unique strengths to improve early diagnosis and

treatment strategies. These all imaging techniques are explained in

Figure 8 for the diagnosis of breast cancer.

Here, we provide an overview of popular imagingmodalities used

in breast cancer analysis and diagnosis. Studies have demonstrated

that there are various imaging modalities, such as digital breast

tomosynthesis, positron emission tomography, magnetic resonance

imaging, ultrasound, histopathology, mammography, and

combinations of these modalities (multimodalities). Table 6:

Summary of various imaging modalities for screening of

breast cancer.

2.3.3.2.1 Digital breast tomosynthesis

Due to the limitations of two-dimensional mammography

(DM), digital breast tomosynthesis (DBT) has been developed

and clinically introduced over the last two decades. DBT is an

advanced imaging technique that creates 3d images of the breast

and makes it easy to detect lesions and abnormalities because it

reduces the chance of overlapping tissue (173). DBT detects 15-30%

more cancers than mammography and reduces false positivity rate

by 15-20% (174). Studies have shown that DBT increases cancer

detection and can lower the recall rate depending on the baseline

recall rate for DM. A review on digital breast tomosynthesis has

included results of different studies on why DBT should be used in

regular screenings and what its limitations are. Among the merits of

dbt, it can analyze overlapping breast structures more clearly which

helps radiologists distinguish normal and abnormal shadows and

helps lower the number of false positive recalls (175–178). Figure 9

clearly illustrates that Digital Breast Tomosynthesis (DBT) provides

a clearer image compared to traditional mammography.
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TABLE 5 A comprehensive review of major machine technique from 2015-2019 (for breast cancer prediction).

Technique Description Merits Limitations Year/
reference

Computer-Aided Diagnosis
System (CAD) for predicting
breast cancer.

Involved in the comparative
analysis of Machine learning
algorithms including random
forest, gradient boosting and K
nearest neighbors was conducted.

The random forest algorithm, which
combines both regression as well as
classification methods, achieved the
highest accuracy. It involves multiple
trained models to make predictions
for various training classifiers. A
method called the hybrid method
designed to develop accurately
compute the UCI online dataset,
resulting in the most and precise
accurate outcomes.

The expected probabilities of result
(occurrence and non-occurrence are
calculated via K-fold cross-validation,
which is a more expensive task. The
pre-processing stage of data acquired
most of the time because of raw data
conversion into scalable and valuable
form. Additionally, the number of
patients that were already mentioned
in a list was not considered.

2019 (136)

Comparison of classification
algorithms through weka
and spark

For the evaluation of tree types of
data that contain DM, GE, and a
mix of both, classification models
that support vector machines,
decision trees, and random forests
were taken into consideration.

The support vector machine’s ability
to examine several data sets
simultaneously stems from its parallel
computation foundation. It offers the
best accuracy rate across Weka and
Spark, two distinct tools. Compared
to decision trees and random forests,
SVM has a lower error rate and
calculation time.

Gathering data on gene expression is
a difficult undertaking. Many samples
are needed for calculations in order
to produce sensitive, accurate, and
precise data.

2019 (137)

Comparison of Nonlinear
Machine Learning Algorithms.

MLP in contrast to non-linear
machine learning techniques like K
Nearest Neighbor, Support Vector
Machine, CART, and Naïve Bayes.

Because MLP is composed of multiple
layers, each of which carries out a
distinct task independently, the
calculation of this technique was
sufficiently fast. When the datasets are
linearly separable, it provides a
respectable level of accuracy.

The user must specify the hidden
layers of the MLP algorithm. There
were times when setting a value
resulted in overfitting and other
times in underfitting outcomes.
Without 10-fold cross-validation, it is
difficult to predict the accuracy rate
using train data models.

2019 (138)

Comparing SVM and ANN for
Breast Cancer Prediction

Metrics including accuracy,
precision, recall, and ROC area
were used to evaluate the
performance of SVM and ANN.

Since SVM divides classes based on
hyper lines and generates results with
a better accuracy than ANN, it was
found to be the most suitable
technique for predicting breast cancer
after comparison.

The predicted probability of
occurrence and non-occurrence are
calculated using K fold cross
validation. This is a more
expensive endeavor.

2019 (139)

Optimizing algorithms using
genetic programming techniques

To obtain the data, digital pictures
were put through feature
extraction and selection processes.

Then, specific characteristics were
selected and several machine
techniques were compared using the
polynomial features operator. The
additional tree classifier yielded the
highest accuracy when compared to
other techniques.

The processes for training and
evaluating the model were excessively
lengthy. The GP algorithm was used
to solve the hyperparameter problem,
but processing it was extremely
time-consuming.

2019 (140)

Comparative Analysis of Data
Mining Classifiers for Cancer
Prediction and Detection.

The classification algorithms
random forest, bagging algorithm,
random committee, simple CART,
and IBK were investigated using k-
fold cross-validation.

The adobe forest algorithm, which
requires less effort, had the highest
accuracy throughout the evaluation.
Random forest algorithms don’t need
data to be standardized or
normalized, and they might be better
at handling nonlinear data.

To detect malignancies, a new model
was developed, however processing it
took too long. Our iterative use of K-
fold cross-validation led to an
excessive amount of time spent on
each iteration.

2019 (141)

Prediction of breast cancer
using Naive Bayes, KNN,
and J48.

Training data and testing data
were the two categories into which
the dataset was divided. Tenfold
cross validation was applied to the
evaluation techniques.

The most effective way to predict
cancer datasets was to group the data
based on the degree of similarity
between each incidence. Assign high
accuracy to both training and
testing data.

Testing is slow and takes a long time.
Choosing a K value could be difficult.

2019 (142)

Recursive Features Selection for
Breast Cancer Detection

Several kernels, including linear,
RBF, polynomial, and sigmoid,
were used to examine the SVM
algorithm. On linear kernels, SVM
performed more accurately than
alternative techniques.

The most accurate method for
choosing relevant traits for breast
cancer prediction is to use SVM linear
kernels. High accuracy was achieved
by developing the projected model

Calculation time arose when
irrelevant information was extracted.
Compared to other models, the SVM
linear kernel computed more slowly
and had higher error rates.

2019 (143)

(Continued)
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TABLE 5 Continued

Technique Description Merits Limitations Year/
reference

and feature selection method for
large datasets.

Breast cancer diagnoses
through
classification techniques.

Using linear discriminant analysis
(LND) and dimension reduction
methodology, machine learning
approaches are compared.

Through feature selection and
extraction, the classification model—
which was developed using a training
dataset—improves patient
classification of benign or malignant
tumors while requiring less
data storage

Although the evaluation step takes a
long time because of CFS, LDA, and
PCA approaches, the solution uses
the R programming language, which
has fewer packages and requires less
processing than other languages.

2019 (144)

Breast Cancer risk prediction
and Diagnosis.

Performance metrics evaluate the
C4.5, SVM, NB, and KNN models’
sensitivity, accuracy, and precision.
Out of all the models, SVM has
the highest accuracy.

Each method is accurately evaluated
by the ROC curve. The SVM
algorithm increases the precision of
accurately classifying events. The
error rate value was lower for
this algorithm.

The ROC curve provides an accurate
evaluation of each algorithm. The
SVM algorithm improves accuracy in
predicting correctly classified
occurrences. This algorithm had a
reduced error rate value.

2018 (145)

Most effective machine learning
for predicting breast cancer.

The dataset was divided in two
parts. Prior to the feature
extraction and selection
techniques, the K-fold validation
methodology was employed. SVM
improved the accuracy
of predictions.

SVM provided an accuracy of 99.7%
for the benign class and 94.6% for the
malignant class when a predictive
model was developed. Compared to
other algorithms, SVM has a lower
error rate and a quicker
turnaround time.

It’s crucial to use a suitable approach
when evaluating a machine learning
algorithm. The conflict matrix was
created with the intended class
outcome in mind; it correctively
predicted the occurrences, but the
maximum prediction time was used.

2018 (146)

Hyperparameter Optimization
for the Prediction of
Breast Cancer.

The HPO technique’s clustering
method was used to identify the
best prediction algorithm for
breast cancer.

Hyperparameterization utilizing the
clustering method yielded the highest
accuracy.
Hyperparameters performed better
with continuous and categorical
data types.

Certain features also gave some
redundant data. There are too many
steps in the BCOAP model, and each
one takes too long to analyze breast
cancer data.

2018 (147)

A Neural Artificial Network for
Breast Cancer.

ANN algorithms were employed
for prediction using the
backpropagation process. Each
hidden layer provided a different
level of accuracy during evaluation.

The arbitrary weight produced by the
multi-layered neural network
produced the Mean Square Error,
whose rate is too low. By changing
the weight, the feed-forward
algorithm lowers error.

Demand a lot of processing power
and time for a significant amount of
data, which has an impact on the
data’s overall correctness. For
computations, a huge number of
samples are required in order to
attain good accuracy, precision, and
sensitivity of data.

2018 (148)

Comparing data mining
techniques for the
categorization of breast cancer

The fusion classifier, which
combines many classifiers, was
created to assess the algorithm
using various data mining tools.

More accuracy was obtained from a
single classification than from a fusion
classification. When the confusion
matrix was designed, the WPBC,
WBC, and LBCD datasets offered the
higher level of accuracy throughout
the evaluation of various algorithms.

With the exception of the LBCD
dataset, the Weka tool’s accuracy was
subpar. However, it was the most
accurate for the WPBC and
WBC datasets.

2017 (149)

Breast cancer prediction by the
use of data mining methods.

For the purpose of comparing the
classification and clustering
algorithms, a confusion matrix
was created.

Compared to the other algorithms,
the classification algorithms C4.5 and
SVM produced better results.
Furthermore, EM created the most
effective clustering method for
breast cancer.

One of the hardest tasks is figuring
out the effect algorithm that predicts
the onset and recurrence of diseases.

2017 (150)

Breast cancer using computer
algorithms for diagnosis
and prognosis.

The time build model was created
to analyze the effectiveness of
various classifiers.

After evaluating each classifier using a
confusion matrix, SVM has a higher
accuracy rate and lower error rate for
breast cancer prognoses.

SVM was longer to process than
KNN, however KNN was a lazy
learner approach with poor
accuracy results.

2016 (151)

Breast Cancer Analysis Using
Classification Algorithms

The classification algorithm’s
performance was evaluated using
accuracy, sensitivity, and
precision metrics.

We compared categorization
algorithms using weighted average
values. The CART algorithm
accurately predicts breast cancer
outcomes in a short period of time.

The model compares the data mining
decision tree algorithms J48, CART,
and ADtree. The evaluation step took
too much time.

2016 (152)
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A study in 2019 aiming to compare the results of dbt over

multiple years to digital mammography concluded that dbt

outperformed digital mammography in detecting invasive cancers,

reducing false negative rates and higher sensitivity. The findings

supported the use of dbt in breast cancer screening, despite longer

follow-ups and more data to support such claims (179). Another

research in 2024 comparing dbt and dm (digital mammography)

concluded that dbt improved cancer detection rates especially those

at early stages. Findings from the paper highlight dbts potential in

screening practices globally, but further long-term studies are

needed to evaluate its impact on screening outcomes (180).
Frontiers in Oncology 16
However, one drawback is that interpreting DBT images takes

about twice as long as readingDM images due to the higher number of

images. To introduce DBT into large-scale screening programs,

methods to reduce reading time need to be developed. Automated

interpretation methods could play a significant role in this by enabling

faster image navigation and reducing variability in interpretation,

potentially improving the impact of DBT on recall rate at screening.

The demerits of dbt include higher radiation exposure, increased cost,

longer reading times, data storage, and changes to diagnostic practice

(181). Dbt also has potential for overdiagnosis which raises concern

for its incorporation in daily screening (174). Although DBT has
TABLE 5 Continued

Technique Description Merits Limitations Year/
reference

Data mining categorization
algorithms for risk prediction
of breast cancer.

A performance matrix was used to
compare Naive Bayes and J48
models. The J48 algorithm
outperformed Naive Bayes in
terms of accuracy rate.

The naive Bayes algorithm produced
the lowest error rate throughout
computing. Increasing the number of
attributes and sample size resulted in
improved accuracy.

The expression rule was intended to
identify the best features for breast
cancer prediction, but the review
procedure was overly difficult.

2015 (153)
FIGURE 8

Different imaging methods in the diagnosis of breast cancer (154).
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better results than mammography, it still requires extensive research

to be used as a proper screening tool. This is because DBT has a higher

radiation dose and longer reading time (182) Table 7 shows the

Comparison of several Digital Breast Tomosynthesis (DBT) methods,

emphasizing the advantages and disadvantages of each for the

identification of breast cancer.
Frontiers in Oncology 17
2.3.3.2.2 Reflective optical imaging device

Accurate vein identification and early breast cancer detection

are critical in modern medicine. Vein location can be challenging,

especially in children, obese patients, and those with difficult venous

access, causing patient discomfort and complications during blood

collection. Meanwhile, breast cancer remains a leading cause of
TABLE 6 Summary of imaging modalities for screening of breast cancer.

Imaging
Modalities

Principles Diagnostic
accuracy

Advantages Limitations References

Mammography
(first line tool for
detecting breast cancer)

Detailed images can be
found in low dose
ionizing X-rays.

Sensitivity: 75–90%
Specificity: 90–95%
Spatial Resolution: 50 µm

most economical.
Excellent reaction with a
high level of sensitivity and
specificity.
portable gadget.

Ionizing radiation is used.
As breast density increases,
sensitivity falls.
The accuracy of young ladies is
low.
Young women with thick
breasts have a high rate of
false-positive outcomes.
In contrast to MRI, the
contrast is poor.

(155–157)

Magnetic Resonance
Imaging

obtains fine-grained
images of the breast’s
architecture using
powerful magnets and
low-energy radio waves.

Sensitivity: 75–100%
Specificity: 83–98.4%
Spatial Resolution: 25–100 µm

Capacity to identify breast
cancers that frequently
evade diagnosis by clinical,
mammography, and
ultrasound
.

costly, and the test cannot be
standardized.
unnecessary breast biopsies as a
result of the incapacity to
differentiate between benign
and malignant tumors.

(158–161)

Dynamic Contrast
Enhanced MRI
(DCE-MRI)

Several MRI scans
performed after an
intravenous contrast
agent injection

Sensitivity: 89–99%
Specificity: 37–86%
Spatial Resolution: 25–100 µm

performs well in tracking
reaction after treatment.

Artifacts based on tumor shape
and hemorrhage caused false-
negative results.

(162–164)

Diffusion-Weighted
Imaging

creates contrast by using
the diffusion of
water molecules.

Sensitivity: 83%
Specificity: 84%
Spatial Resolution: 25–100 µm

Non-radioactive
imaging technique

High apparent diffusion
coefficients make it difficult to
identify cancerous tumors with
a high water content.

(165)

MR Elastography (MRE) dynamic elasticity
imaging method that
blends low frequency
with MRI imaging.
evaluates tissue stiffness
by producing an
elastogram using
mechanical waves.

Sensitivity: 90–100%
Specificity: 37–80%
Spatial Resolution: 25–100 µm

Non-invasive, non-ionizing
and cross-sectional
imaging modality

inability to detect small focal
lesions and lack of
spatial resolution.

(166, 167)

Positron Emission
Tomography conjugated
with computed
Tomography (PET-CT)

Combines nuclear
medicine technique and
computed tomography
resulting in high
detailed images.

Sensitivity: 90–100%
Specificity: 75–90%
Spatial Resolution: 2–10 mm

not invasive.
offers twice as many
diagnostic advantages
(intricate images of tissues
and organs by CT scan, and
elevated activity within the
body detected by
PET scan).

High-cost.
Unable to detect tumors less
than 8 mm.

(166)

Sentinel lymph node
biopsy (SLNB)

Surgical procedure to
detect spreading of
cancer in
lymphatic system.

Sensitivity: 90.5%
Specificity: 85.7%
Spatial Resolution:
Not Applicable

Significantly reduces post-
operative complications

Patients with inflammatory
breast cancer and locally
progressed tumors will not
benefit from this treatment.

(167, 168),

Breast Specific
Gamma Imaging

Employs use of a
radiotracer.
Image captured using a
special camera.

Sensitivity: 90–96%
Specificity: 71–80%
Spatial Resolution: ≥7 mm

Able to identify smaller
lesions (<1 cm)

High radiation dose.
Not suited for routine
tumor screening.

(169–171)

Ultrasound Employs sound waves to
image breast tissues

Sensitivity: 80–89%
Specificity: 34–88%
Spatial Resolution: 50–500 µm

Accessible, real-time lesion
visualization, cost-effective,
patient compliant.

Not helpful for those with
inflammatory breast cancer and
locally advanced tumors.

(172)
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FIGURE 9

Breast Cancer Imaging: (A) mammography, (B) Digital Breast tomosynthesis (DBT) (183).
TABLE 7 Comparison of several Digital Breast Tomosynthesis (DBT) methods, emphasizing the advantages and disadvantages of each for the
identification of breast cancer.

Techniques Advantages Disadvantages References

Artificial Neural Networks (ANN) High accuracy in detecting BC
Can be integrated with Computer- aided Diagnosis (CAD)
systems
Can be used in thermal imaging, mammography, ultrasound,
MRI, and other imaging modalities.

Computationally intensive
Requires large amount of data for training

(184)

Reflective Optical Imaging
Device (ROID)

Offer real-time, high-resolution imaging, making potential
anomalies easier to see.
ROIDs are typically less expensive.
More comfortable diagnostic technique to patients

Penetration limit of approximately 15 cm
ROID procedures can be complex and
time-consuming.

(185)

Microwave Imaging (MWI) Non-invasive and non-ionizing
Better differentiation in dense tissues
Designed to be portable

Complexity of Interpretation
More thorough clinical trials are required
to confirm its efficacy.

(186, 187)

Automated Breast
Ultrasound (ABUS)

Enhanced Visualization
Automation streamlines and speeds up picture registration
and segmentation.

Dependence on Fiducial Markers
Limited Lesion Visibility

(188)

Ultrasound Imaging System (UIS) Cost-Effective
Non-Contact and Painless

Complex Setup
Maintaining a constant temperature is
crucial for accurate imaging

(188)

Microwave-Induced Thermos
Acoustic Imaging (MITI)

Detects very small tumors (radius of 0.25 cm) early.
Higher temperature and pressure in tumor area for
distinguishability.
Combines microwave and ultrasound imaging benefits.

Complex multi-physics modeling and
simulations.
Harder detection in glandular tissues.

(189)

Infrared Imaging Technology (IIT) Noninvasive and radiation-free imaging.
Potential for early detection of breast cancer.

Sensitivity and specificity remain less
than optimal.

(190, 191)
F
rontiers in Oncology
 18
 frontiersin.org

https://doi.org/10.3389/fonc.2025.1587517
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Khan et al. 10.3389/fonc.2025.1587517
cancer death globally. Traditional diagnostic methods like

mammography, MRI, and CT scans have limitations such as high

cost and long scan times. The BKA-06 device was developed to

improve the accuracy and efficiency of detecting blood vessels and

breast tumors using red to near-infrared light-emitting diodes,

providing a non-invasive, cost-effective solution for real-time

imaging in clinical settings (185).

The BKA-06 is an advanced medical imaging device using red

to near-infrared LEDs to capture real-time images of blood vessels

and breast tumors. It offers a non-invasive and cost-effective

alternative for breast cancer detection, providing high-resolution

images of breast tissue for early tumor detection. With a maximum

light intensity of 98,592 lux, it enables thorough examinations and

quick visible results. It is more affordable than MR and CT scans,

making it a more accessible option for many patients. However,

extensive clinical validation is needed to ensure accuracy,

particularly in detecting deeper tumors. Continuous research and

development are crucial to enhance its capabilities for better health

outcomes and more accessible medical care.

2.3.3.2.3 Microwave Imaging

MBI (microwave breast imaging system) is another imaging

technique that is non-invasive, cost-effective and nonionizing which

makes it safe for patients (192). Microwave Imaging (MWI) is a

promising method for detecting breast cancer using non-invasive

electromagnetic waves in the microwave frequency range. Tumors

with higher water content than normal tissues have distinct

dielectric properties that MWI can detect. Microwave antennas

such as monopole antennas provide the simplest design among

different antennas in MBI (microwave breast imaging systems)

systems. Monopole antennas are easily fabricated into pcb, which

makes it cost-effective. Slot antennas are also low-cost and offer

wideband performance antennas are used in wearable systems but

require improvements in radiation, bandwidth, and gain (193).

Different countries have conducted research on their mbi-based

prototypes. A study in UK (Bristol) claimed to achieve a sensitivity

of 76% by clinical trials on 225 patients, using mbi prototype

MARIA (194). Mammowave a prototype developed in Italy, gave

a sensitivity of 78% in clinical trials on 58 patients (195).

The SAFE device is a noninvasive, painless, and non-invasive

microwave imaging system designed for early detection of breast

cancer. It uses harmless electromagnetic waves and does not require

breast compression, making it a safer alternative to traditional X-

rays. The device’s sensitivity varies by breast size, suggesting

potential for improved detection (186, 189). Another study in the

medical imaging department of Italy validated their mbi-based

prototype called Wavelia on 24 subjects and achieved an accuracy

of 88.5% by successfully differentiating between benign and

malignant lesions (196). New technologies such as MTM

(metamaterial antenna), MTS (meta surface antenna), AMC

(artificial magnetic conductor antenna) are recently used by

researchers. For example, the MTM microstrip patch antenna was

developed in 2022 with AMC to enhance gain (197). Another

MIMO (multiple input multiple output) UWB antenna was

developed to improve detection accuracy to be successfully used
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in breast imaging devices (198). The first radar-based system was

developed in 1997 for breast cancer (199). Their system was able to

detect size and tumor inside the breast. Radar-based microwave

imaging techniques use electromagnetic signals to create high-

resolution breast images. These techniques include CMI, TSAR,

MIST, MSA, and TDDA. TSAR analyzes signals that penetrate

tissue, while CMI concentrates microwaves for subsurface imaging.

While MSA employs several radar pairs for screening, TDDA uses

algorithms to evaluate time-domain data for imaging, and MIST

creates 3D images from multiple radar signals (193).

Various MWI techniques, such as microwave tomography and

radar-based imaging, have shown promising results, but challenges

such as variation in performance due to breast size and the need for

better resolution remain. Future research will focus on overcoming

these challenges and integrating machine learning to enhance

MWI’s clinical applications. Overall, MWI has significant

potential as a stand-alone or adjunctive tool in breast cancer

screening, but further research and development are needed to

fully integrate it into clinical practice (189).

2.3.3.2.4 Ultrasound Imaging System

Ultrasound is becoming popular because this imaging

technique is suitable for dense breasts, unlike mammography

(200). Ultrasound is inexpensive and suitable for those who are

not eligible for mammography. It can also prove beneficial for those

who cannot tolerate breast MRI (201). Many systems have been

developed for analyzing ultrasound images which are computer-

aided (202). The main point highlighted in them is the need for

improvement of the resolution of images (203). Figure 10

demonstrates that Ultrasound scans of breast in different

conditions. Recent studies have revealed the increased sensitivity

of ultrasound for dense breasts because mammography has reduced

effectiveness for that kind of breast. Mammography has the

potential for false negative results, leading to the masking of

abnormalities. When used as an adjunct therapy, ultrasound can

identify malignancies that are often missed by mammography. This

means women with dense breasts have a reduced chance of missing

malignancies because of the increased sensitivity of ultrasound (22,

204–209).

Ultrasound offers real time imaging which helps in identifying

minor irregularities and lesion features. This real time feature

enables ultrasound guided biopsies, reducing need for more

invasive procedures for breast cancer diagnosis and improved

tissue sample accuracy (211–214). Recent studies suggest that

ultrasound is effective for identifying tumors in young females.

Because mammography is not recommended particularly for

younger women and may not be as effective. Ultrasound detects

lesions in a broader group of people without sacrificing its

sensitivity. Thus, it allows for personalized treatment depending

on every person’s risk factors (215, 216). Although there are

advantages to using ultrasound as a diagnostic tool for breast

cancer diagnosis it also has significant drawbacks. Ultrasound has

difficulties while assessing thick breast tissues. This reduces

sensitivity of ultrasound. Mammography because of its capacity to

penetrate is useful while accessing thick breasts. RI offers a better
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diagnosis in terms of thick breast tissue (206, 217). Ultrasound is

operator-dependent, and its results depend on the skills of operator

compared to MRI and mammography which are regarded as more

objective and do not rely on operator for the interpretation of

images (218–220). Ultrasound has the ability to be used as

independent screening tool for breasts, but More research and

rigorous clinical trials are needed to assess the efficacy and

limitations of utilizing it as the primary screening method (221).

Ultrasound is dependent on the operator. To overcome this

problem automated breast ultrasounds can give more fruitful

results (222).

2.3.3.2.4.1 The inherent limitations and biases of particular imaging

techniques

Although imaging methods are essential for detecting breast

cancer, it is important to recognize their inherent drawbacks and

possible biases. Ionizing radiation is used in mammography, for

instance, and although the dosage is usually low, repeated exposure

over time, especially during long-term follow-up, increases the risk

of radiation-induced cancer. Furthermore, because tumors and

dense tissue can appear similar on mammograms, abnormalities

may be obscured, reducing the sensitivity of mammography in

women with dense breast tissue. Some women may be discouraged

from getting screened for breast cancer on a regular basis due to the

discomfort of breast compression during the procedure. Another

popular imaging technique, ultrasound, has limited specificity and

is operator-dependent, which means that different people may

interpret it differently. Additional biopsies are often necessary to

distinguish between benign and malignant lesions. Although

magnetic resonance imaging (MRI) provides good soft tissue

contrast, it is more costly and less widely available than other

methods. Additionally, it has a higher risk of false positives, which

could result in needless procedures. Additionally, patients who have

certain metallic implants should not have an MRI. Lastly, compared

to mammography, other imaging methods such as CT and PET

scans require much larger doses of ionizing radiation, which raises

concerns about radiation exposure. Additionally, PET scans may

have limited spatial resolution. Digital breast tomosynthesis (DBT),
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contrast-enhanced mammography, and the creation of artificial

intelligence (AI) algorithms to help with image interpretation and

boost diagnostic accuracy are some of the innovations being

researched to help overcome these constraints.

2.3.4 Sensors
Sensors offer painless and non-invasive diagnosis of breast

cancer (223, 224). In comparison to other modalities, it reduces

safety threats, allowing women to receive routine breast cancer

screening (225). The work done on sensors and sensor-based

devices between 2015 and 2024 is explained in the following section.

Table 8 outlines the sensors used in experimental

configurations, including the models of the sensors, how they are

oriented during testing, and the technology used to identify

breast abnormalities.

2.3.4.1 Thermography based sensors

Thermography is a commonly used method for the detection of

Breast Cancer. In essence, thermography uses imaging technologies

such as cameras and sensors to map the variations in breast

temperature. The idea behind this procedure is that when the

breasts experience abnormalities, the blood flow pattern to them

is altered, which causes significant temperature variations (226).

When using the current detection technologies, such as

mammography, women with higher breast density levels

frequently receive the wrong diagnosis. For women with higher

breast densities, thermography is a useful approach (227). Figure 11

demonstrates the Normal vs Abnormal breast thermogram.

Sensors integrated with breast thermography make an excellent

combination because they are small, cost effective and easily

available. A 2018 study created a Breast Cancer detecting device

by correlating the output from a thermographic camera and a

thermal sensor. According to the study, the thermal sensor and

camera produced almost identical results, suggesting that this

gadget could be useful for BC screening. The sensor LM35, FLIR

C2 thermal camera, microcontroller, heater (which was imitating a

tumor), and breast phantom were the materials used. On the bra

pad, eight heat sensors were arranged quarterly (228).
FIGURE 10

Ultrasound scans of breast in different conditions (210).
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TABLE 8 An outline of the sensors used in experimental configurations.

Name
of sensor

Model Orientation of sensors
in experiment

Name of tech-
nology used

Reference Pictures of devices:

Digital
temperature
sensor

ADT7420 Biometric patch Thermography (239)

Piezoresistive
sensor

Not
mentioned

Vertically/perpendicularly Not mentioned (231)

IR
theomorphic
sensor

FLIR
A 300

Not mentioned Thermography (243)

IR imaging sensor AMG
8833

Sensor embedded in bra cup Thermography (229)

Multiple leads Not
mentioned

In form of array NIRS (244)

Bioimpedance
sensor

Not
mentioned

Not mentioned BIS (244)

Thermal Sensor LM35 In quarterly order Thermography (228)

Antenna sensor Not
mentioned

Circular/Rectangular Microwaves (242)

(Continued)
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Many studies have been carried out in which sensors based on

the concept of thermography are being attached to some kind of

patches or brassiere with proper skin contact (227). For example, a

2020 study that used infrared thermography to create a smart bra.

Irt sensor AMG8833, microprocessor, and image acquisition system

were among the materials employed. By gathering radiation from

the breast region, the infrared sensor was able to produce a thermal

gram based on variations in temperature. The sensors were created

for both the left and right breast. When conducting self-

examinations at home, this can be more helpful than potentially

dangerous alternative diagnostic techniques (229). Another study

from the same year used thermal microsensors as a 3*3 matrix.

CMS sensors, a PCB with embedded microsensors, a processing

unit, a Raspberry Pi web server, and a Wi-Fi system for temperature

data transmission made up the system. CMS sensors have an

operational temperature range of 0 to 50 degrees Celsius and are

small, sensitive, and have low energy consumption. The future aim

of the paper was to increase the number of microsensors in order to

improve the quality of thermal photographs (230).
2.3.4.1.1 Piezoresistive sensors

A critical component of early cancer detection is clinical breast

examination. When a Piezoresistive sensor comes into contact with

a lump, it changes its electrical resistance. In 2020, an automated

probe that can take the role of CBE was introduced. This probe

made use of a microprocessor and Piezoresistive sensor based on

electro graphite. According to research on this idea, which is

allegedly still ongoing, the probe can detect the position, depth,
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and size of the mass but is unable to distinguish between normal

and pathological breast masses. Future developments in this field

will focus on improving sensor calibration, streamlining the

production process, and creating real-time smartphone

applications (231).

In another study, a piezoresistive sensor was used in an

Intelligent Breast Exam device (iBE) to detect breast stiffness.

This non-invasive, low-cost method was used for screening. The

device was part of a comparative study with clinical breast exams

and mammography. While iBE and CBE missed some small lesions,

they can be utilized in resource-limited areas for early detection

(232). In 2021, a piezoresistive fabric sensor was utilized to enhance

clinical breast exam simulators. The sensor performance was

compared to existing sensor maps of the simulator. The sensors

did not interfere with the clinical examination and also improved

the measurement capabilities of the simulator (233).
2.3.4.2 Near infrared and bio-impedance spectroscopy-
based sensors

Another radiation-free near-infrared sensor was utilized in a

paper published in 2016. The beer lambert theory forms the basis of

this tumor detection technology. An array sensor produces light in

the infrared spectrum. Technology can distinguish between a

healthy breast and an unhealthy breast based on the amount of

light absorbed by breast tissue. The development of breast phantom

models with various scattering and absorption coefficients was the

main goal of the project. For the others, the breast with the normal

absorption coefficient and representation was used as a guide. Breast
TABLE 8 Continued

Name
of sensor

Model Orientation of sensors
in experiment

Name of tech-
nology used

Reference Pictures of devices:

Textile sensor Not
mentioned

Circular Microwaves (225)
FIGURE 11

Normal vs abnormal breast thermogram.
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phantoms were made with India ink to resemble tumors. The

suggested method of determining the ink concentration in sick

breasts worked well (234). In 2018 near-infrared spectroscopy and

bioimpedance-based sensors were utilized in the same device.

Bioimpedance has been used to differentiate healthy tissues from

cancerous tissues (235). The control unit received the results from

both sensors. In recent years bioimpedance is increasingly used in

bioengineering and many products have been launched in the

market (236). The PCB was used to implement the entire device.

The gadget and app were connected via a Bluetooth module as well.

BIS intended to measure output impedance after stimulating breast

tumors with low current. In contrast, NIRS sought to employ

various LEDs with various wavelengths. The photo detector

OPT101 is used to measure the NIRS output. The suggested

device is known to have a 99.3% accuracy rate in addition to its

80mW low power consumption (237). Bioimpedance spectroscopy

has a bright future in terms of human health applications (238).

2.3.4.3 Digital temperature sensors

In 2020, a circadian device with digital temperature sensors was

created with the goal of enhancing breast cancer detection in

conjunction with other modalities. Temperature sensors

ADT7420 were integrated into patches designed for both breasts,

with eight sensors per patch. For a full day, the device recorded data.

This sensor-based artificial intelligence device was claimed to have a

78% accuracy rate in differentiating between malignant and benign

tumors. The device’s accuracy is similar to that of mammography.

However, some temperature data values were missing as a result of

the sensor’s inadequate skin contact (239).

2.3.4.4 Microwave based sensors

Diagnostic techniques like mammography, x-rays, ultrasounds,

and CT scans have been used for ages to identify cancer early still

more advanced techniques are required (193). It has been

demonstrated that recent developments in microwave imaging

and sensing is offering ease in the detection of breast cancer. The

promising results of using antennas to deliver microwaves have

attracted the attention of numerous researchers. Antenna has

shapes from simple to spirals (240). An attempt was made in

2016 to incorporate a microwave-based antenna array for

screening purposes in a bra (241). It has also been demonstrated

that circularly polarized microwave sensors, which have an axial

ratio that makes them more efficient than linearly polarized ones,

are safe to employ in brassieres (225). The addition of microwaves

to an imaging system can improve its capabilities for breast cancer

diagnosis. A study in 2016 with a compact micro strip antenna

proved to be sensitive and effective on detecting breast tumors when

the antenna was in contact with the skin. This antenna could easily

be implemented in UWB microwave imaging system for more

enhanced diagnosis. The experimentation on textile monopole

sensors in 2021 did simulations of rectangle shaped monopoles

with and without tumor (242). A more enhanced version of this

work came out in 2023, where rectangle and circular antennas were

used. Computer simulations as well as experimentation on breast

models were conducted. The study claims antennas to be effective
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on tumors greater than 5mm only (225, 242). If we are considering

using microwave imaging for diagnosis, we should employ sensor

arrays while working with microwave sensors, and we should also

examine their sensitivity since this will directly affect the quality of

the images. Uneven spacing between sensor arrays and approaches

like compressed sensing in signal and image processing should be

taken into consideration if image quality improvement is to be

achieved at a reasonable cost (224).

2.3.5 Wearable technology for breast cancer
detection

Novel, non-invasive techniques for the early detection of breast

cancer have been made possible by recent developments in wearable

technology. New developments in wearable technology provide a

continuous, non-invasive, and patient-friendly method of screening

for breast cancer. In order to identify physiological and molecular

alterations suggestive of cancer, these devices combine biosensors,

imaging elements, and artificial intelligence (AI) algorithms. With

an emphasis on smart bras and other cutting-edge gadgets, this

section examines the creation, clinical validation, engineering

difficulties, and socioeconomic effects of wearable technologies.

These devices are a promising replacement or addition to

conventional diagnostic methods like mammography and

ultrasound because they provide real-time data analysis, enhanced

comfort, and continuous monitoring.

Wearable technology uses biosensors to continuously track

physiological biomarkers like blood flow, tissue elasticity,

electrical impedance, and temperature. Among these, smart bras

with optical, piezoresistive, and electrochemical sensors have shown

encouraging outcomes in identifying abnormalities in breast tissue

early on. These tools have the potential to increase early detection,

especially in women with dense breast tissue, which lowers the

sensitivity of mammography.

2.3.5.1 Working principles of wearable technologies

Wearable devices incorporate sophisticated engineering

principles to facilitate continuous, non- invasive monitoring of

physiological and biochemical signals. Below, we detail their

fundamental operational mechanisms:

2.3.5.1.1 Flexible electronics and sensor integration

Contemporary wearables utilize flexible materials (such as

polymers, graphene, or elastomers) to adapt to the skin’ s

contours, promoting comfort and ensuring signal accuracy. These

materials house microsensors (like strain gauges and temperature

sensors) and biosensors (such as electrochemical and optical

sensors) to monitor biomarkers (like glucose, lactate, or pH) and

physiological parameters (such as heart rate or movement). For

instance, stretchable circuits printed on polydimethylsiloxane

(PDMS) allow for real- time tracking of joint movements during

rehabilitation (245).

2.3.5.1.2 Biosensing mechanisms

Optical Biosensors: Leverage light- matter interactions (e.g.,

photoplethysmography (PPG) used in smartwatches) to gauge
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blood oxygen levels (SpO 2) or pulse rates. They also use techniques

such as surface plasmon resonance (SPR) and near- infrared

spectroscopy (NIRS) for biomarker identification.

Electrochemical Biosensors: Identify analytes through redox

reactions (for example, glucose oxidase- based sensors utilized in

diabetes management patches). These systems typically employ

enzyme- coated electrodes to transform biochemical signals into

electrical outputs.

2.3.5.1.3 Energy harvesting and power management

Wearables adopt energy- efficient designs to enhance their

operational lifespan:

Battery- Powered Systems: Most commercial devices, such as

fitness trackers, are powered by miniaturized lithium- ion batteries.

Energy Harvesting: Innovative solutions like triboelectric

nanogenerators (which convert mechanical energy from

movement) and solar cells (which harness light energy) aim to

create self- sustaining devices.

2.3.5.1.4 Wireless data transmission

Low- power transmission protocols, including Bluetooth Low

Energy (BLE) or ZigBee, facilitate the transfer of data to

smartphones or cloud services. Edge computing minimizes

latency by processing data locally before it is sent.

2.3.5.1.5 Signal processing and machine learning

Raw sensor data undergo filtering (for instance, noise reduction

through Kalman filters) and are analyzed with algorithms (like

neural networks) to derive actionable insights (such as detecting

arrhythmias from ECG signals).

2.3.5.2 Smart bras

A leading wearable technology for breast cancer detection is the

smart bra. These bras are equipped with various biosensors that

monitor physiological indicators such as blood flow, tissue stiffness,

and temperature, each potentially signaling the early stages of

tumor development. By employing IoT-enabled sensors, including

ultrasound transducers and thermal sensors, smart bras facilitate

early detection by consistently observing breast tissue. They can

identify irregularities like temperature fluctuations, changes in

density, or concerning lumps (246).

2.3.5.2.1 Thermosensors

Because tumors typically have higher metabolic activity, heat is

produced locally. Thermal sensor-equipped smart bras, like

Cyrcadia Health’s iTBra, continuously measure the temperature

of the breast skin to identify anomalies. Clinical studies showed

sensitivity rates that were on par with mammography, especially in

dense breast tissue where conventional imaging is ineffective.

2.3.5.2.2 Piezoresistive sensors

These sensors identify variations in the elasticity of breast tissue,

which may indicate the existence of tumors. Research has indicated

that modifications in mechanical characteristics frequently precede

detectable morphological changes.
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A pilot clinical study evaluating a thermal-based smart bra

reported promising sensitivity in detecting asymmetric heat

patterns associated with malignancies, supporting its potential in

early detection strategies.

2.3.5.3 Wearable ultrasound patch

The creation of a wearable ultrasound patch by Massachusetts

Institute of Technology (MIT) researchers is a noteworthy

development in wearable technology for breast cancer. This

cutting-edge tool allows users to perform breast imaging at home

by attaching to a bra. This patch’s technology uses a miniature

ultrasound scanner that creates high-resolution images of breast

tissue using piezoelectric materials. Users can obtain a level of detail

similar to that of conventional ultrasound probes used in medical

imaging centers by moving a tracker along the patch to image the

breast from various perspectives (247). This scanner’s initial tests

have shown that it can identify cysts as small as 0.3 cm in diameter,

which is in line with early-stage tumors.4. By enabling more

frequent screening, especially for high-risk individuals who may

develop cancer in between routine mammograms, this capability

holds great promise for increasing the overall survival rate for

patients with breast cancer (247). Additionally, this technology may

make breast cancer screening more accessible in rural areas or in

less developed nations. Even though there are still efforts to reduce

the size of the imaging system and integrate artificial intelligence for

image analysis, the device is a big step in the direction of more

accessible and individualized breast cancer detection.

2.3.5.4 Biosensors for biomarker detection

Wearable biosensors target specific biomarkers present in

bodily fluids, such as blood, sweat, or interstitial fluid, providing

early biochemical evidence of malignancy.

2.3.5.4.1 Photonic Crystal Fiber Surface Plasmon Resonance
biosensors

PCF-SPR biosensors are highly sensitive to molecular

interactions, making them ideal for detecting breast cancer

biomarkers like HER2 and CA15-3. Recent advancements in

PCF-SPR technology have demonstrated high sensitivity and

selectivity for breast cancer detection at low biomarker

concentrations. Another study explored SPR biosensors for early

cancer detection, noting their potential for non-invasive and real-

time monitoring.

2.3.5.4.2 Electrochemical and optical biosensors

These devices measure electrical and optical signals when

interacting with specific cancer biomarkers. They offer the

advantage of being cost-effective and suitable for at-home use.

Additionally, scientists are working to create customized

wearable technology that uses biosensors to analyze bodily fluids

non-invasively to find cancer biomarkers. These cutting-edge

gadgets, which make use of thin and flexible sensor arrays, can be

made into a variety of form factors, including contact lenses,

wristbands, mouthguards, and headbands (248). These wearables

with biosensors are primarily designed to allow for continuous and
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real-time monitoring of molecular markers that may indicate the

occurrence or recurrence of breast cancer. Early detection,

treatment efficacy monitoring, and even the identification of

interval cancers—cancers that might arise in between planned

screenings—are all possible with this strategy (248). Even though

this technology is still mostly in the early stages of development, it is

a major step forward for non-invasive diagnostics and could lessen

the need for frequent, invasive procedures.

2.3.5.5 Wearables for real-time imaging

Continuous breast tissue monitoring is now possible without

the need for expensive imaging facilities thanks to advancements in

wearable technology.

2.3.5.5.1 Microwave Imaging

Wearable MWI devices identify variations in breast tissue’s

dielectric characteristics. Because malignant tissues contain more

water, they can be identified.

2.3.5.5.2 DICOM analysis integration

Continuous, high-resolution imaging and automated anomaly

detection outside of clinical settings are made possible by DICOM

(Digital Imaging and Communications in Medicine) analysis, which

is transforming wearable technologies for breast cancer detection.

Its incorporation into smart bras and chest-worn devices, which

have historically been used for hospital imaging, offers real-time

monitoring, early detection, and enhanced accuracy, especially in

dense breast tissues. These devices leverage machine learning

algorithms to classify lesions and transmit data remotely,

enhancing accessibility through telehealth platforms. Recent

studies, such as those employing DICOM-based CT chest

imaging (249), show comparable sensitivity to conventional

methods with better patient compliance. However, challenges in

data management, privacy, and regulatory approval remain. These

obstacles should be overcome by developments in edge computing

and secure data protocols, making DICOM-integrated wearables a

game-changing instrument in breast cancer screening.

2.3.5.6 Artificial intelligence in wearable technologies
2.3.5.6.1 Convolutional Neural Networks

CNNs are used in smart bras and other wearable devices to

distinguish between benign and malignant tissue patterns; these

models increase sensitivity while lowering false positives.

2.3.5.6.2 Machine learning for risk stratification

Machine learning algorithms evaluate patient-specific data,

such as age, genetic factors, and hormonal profiles, to predict

breast cancer risk and recommend customized screening

intervals.

2.3.3.6.2.1 Challenges in integrating AI with biosensors and wearable

technologies

There are many obstacles to overcome when integrating AI-

powered imaging with data from wearables and biosensors,

especially when it comes to data privacy, effective data transfer,
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and the requirement for real-time, on-the-fly processing. The

complexity is increased by the need for complex fusion

algorithms due to the varied nature of the data produced by these

technologies (such as photos and time-series sensor readings) (250).

Since biosensors and wearable technology gather private health

data, data privacy is crucial. Strong encryption and access control

systems are essential for ensuring compliance with laws like HIPAA

(in the US) and GDPR (in Europe) (251). Another challenge is the

effective transfer of data from biosensors and wearable technology

to processing units. High-bandwidth communication channels and

optimized data compression techniques are necessary to prevent

bottlenecks and delays due to the sheer volume of data, particularly

when combined with imaging data (252). Additionally, real-time

applications like instant feedback or alerts frequently call for on-

the-fly processing. This calls for strong computer resources and

effective algorithms that can process and analyze data almost

instantly, which is computationally demanding and difficult for

wearable technology with constrained processing power (253).

2.3.3.6.2.2 Challenges in implementing wearable technologies

Wearable technologies designed for breast cancer detection

show great potential, but several hurdles need to be overcome to

achieve widespread use in clinical settings.

Accuracy and reliability: While advancements in technology

are promising, the issues of false positives and false negatives persist.

Over-detection can cause unnecessary worry and lead to invasive

procedures, whereas missed diagnoses may delay crucial treatment.

To enhance diagnostic accuracy, ongoing sensor calibration and the

creation of sophisticated signal processing algorithms are vital.

Battery life and material durability: For continuous, long-term

monitoring, devices must be made of robust materials with efficient

power management. Products like smart bras and biosensors need

to perform reliably even after extended use. Researchers are

investigating flexible electronics and energy-efficient circuits to

improve both battery life and the durability of materials.

Cost and accessibility: The steep production costs and the

complexity of advanced sensor technology can make these wearable

devices too expensive for many, especially in low-resource

environments. Strategies like government subsidies, collaborations

with healthcare organizations, and scalable manufacturing

processes are essential for lowering costs and advancing

global adoption.

Tackling these challenges is essential for wearable technologies

to evolve from experimental tools into dependable clinical

instruments, significantly enhancing early breast cancer detection

and improving patient outcomes.

Accessibility and affordability are key factors in the broad

adoption of wearable breast cancer detection technologies. These

devices could become more economically feasible for mass

production if production costs are lowered by developments in

flexible electronics, material science, and 3D printing (254).

Government policies and non-governmental organization (NGO)

initiatives are also essential in bridging the gap between public

health needs and technological innovation. These life-saving

technologies can reach low-income populations with the help of
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subsidies and healthcare funding, especially in settings with limited

resources where traditional screening methods are less accessible.

Additionally, by enabling remote screening and follow-up care, the

combination of wearable technology and telehealth services offers a

revolutionary approach that lowers logistical and geographic

barriers to healthcare. Wearable technology holds the key to

solving infrastructure and economic issues.

Wearable technology has a lot of promises for detecting breast

cancer, but there are still a number of practical issues. Because false

positives or negatives might cause needless concern or missed

diagnosis, accuracy and dependability are critical issues. Long-

term use also depends on battery life and material durability,

particularly for devices that are intended for continuous

monitoring. Widespread accessibility is nevertheless hampered by

high expenses, especially in environments with limited resources.

Beyond technical constraints, moral considerations are becoming

more and more important. These include preventing AI biases that

could impair the accuracy of diagnoses in a variety of populations,

guaranteeing informed consent, and protecting private patient data

gathered by wearables. To achieve fair, secure, and clinically

successful deployment, addressing these issues calls for strong

data governance frameworks, inclusive algorithm training, and

supportive public health policies.

Table 9 shows the Weaknesses of Wearable Technologies for

Breast Cancer Detection and Potential Solutions.

2.3.3.6.2.3 Wearable technology’s cost-benefit analysis for breast

cancer screening

To assess the clinical and financial feasibility of these novel

methods, a thorough cost-benefit analysis contrasting wearable

technology with traditional breast cancer screening is necessary.

Both direct costs, like the equipment, personnel and Maintenance,

and indirect costs, like lost productivity and travel/logistics, must be

taken into account in this analysis. Furthermore, it is important to
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carefully evaluate how wearable technology might enhance

scalability and lessen the strain on healthcare systems. This

section offers a preliminary summary of the main cost and benefit

factors involved, but a definitive analysis necessitates more

investigation and long-term data. To qualitatively assess

traditional breast cancer screening techniques, such as

mammography and MRI, against emerging wearable technology

methods, the authors created a conceptual cost-benefit framework

illustrated in Table 10. Conventional screening techniques usually

entail significant initial equipment and facility expenses, alongside

ongoing costs for clinical appointments, technician labor, and

maintenance. Conversely, while still in clinical development,

wearable devices have the potential to lower operational costs due

to continuous home monitoring and a diminished necessity for

frequent hospital visits. Our analysis indicates that the long-term

costs of wearable screening might be more advantageous,

particularly in minimizing expenses related to delayed diagnoses

and treatments. The authors’ analytical review of cost estimates,

clinical workflow needs, and diagnostic features from diverse

academic literature, healthcare technology assessments, and

market analysis served as the foundation for the data presented,

which was not derived from a single empirical source. It’s essential

to note that most wearable breast cancer detection technologies

remain in pre-commercial or experimental phases and have yet to

secure full clinical approval for routine diagnostic use. Therefore,

this comparison aims to explore how wearable systems may

complement traditional modalities, highlighting possible benefits

and drawbacks. The figures provided do not indicate precise

financial modeling or direct clinical equivalency; they are instead

illustrative, intended to facilitate forward-thinking discussions

about cost-effectiveness, patient experience, and healthcare access

Table 10.

Wearable technology has the potential to change cost

distributions, as shown by the data in Table. For instance,
TABLE 9 Weaknesses of wearable technologies for breast cancer detection and potential solutions.

Weakness Description Impact on Detection Potential Solutions References

False Positives/Negatives

The presence (false positive) or
absence (false negative) of breast
cancer may be misidentified by
wearable technology.

False positive results lead to worry,
pointless testing, and higher
expenses. False negative results can
worsen outcomes by delaying
diagnosis and treatment.

Enhanced sensitivity and specificity of
the sensor. sophisticated algorithms to
distinguish between signals that are
benign and those that are malignant.

(255)

Reliability of
Continuous Monitoring

Wearable sensor accuracy can
change over time and be impacted
by motion artifacts, skin contact,
and sensor drift.

Inaccurate or inconsistent data
limits the device’s clinical utility
and undermines confidence in
its readings.

methods for calibrating sensors to
account for drift. sturdy designs to
reduce the effects of environmental
influences and motion.

(256, 257)

Clinical Utility

Wearable technology’s place in
standard clinical practice is still
developing, and there are still
issues with data interpretation
and integration.

ambiguity regarding the
incorporation of wearable data into
decisions regarding diagnosis and
treatment. absence of established
procedures for interpreting data.

extensive clinical studies to confirm
efficacy. Rules for clinical decision-
making and data interpretation.

(258, 259)

Data Interpretation

It can be challenging to distinguish
between signs of cancer and
normal physiological changes;
multimodal analysis and
sophisticated algorithms
are needed.

may lead to either a failure to
recognize actual problems or an
overabundance of data analysis and
unnecessary actions.

Machine learning algorithms uncover
subtle patterns that could be signs of
cancer. A more comprehensive
analysis can be accomplished by
combining different data streams.

(260, 261)
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frequent clinical visits may result in lower costs, but it is necessary

to account for the cost of wearable technology and the

infrastructure that supports it. Furthermore, even though they are

hard to measure in monetary terms, wearable technology’s

increased convenience and decreased patient anxiety represent

substantial potential advantages that ought to be taken into

account in addition to the financial considerations. Opportunities

for long-term cost savings and better health outcomes are also

presented by wearable technologies’ scalability, particularly in

remote areas, and their potential for personalized screening. To

provide a more conclusive cost-benefit analysis, however, more

research is required, including extensive clinical trials and health

economic studies.

2.3.6 Smart implants in breast cancer detection
Smart implants are cutting-edge, miniaturized devices

specifically engineered to be seamlessly implanted within breast

tissue, where they play a crucial role in monitoring vital

physiological changes and identifying biomarkers that may signal

the early onset of cancer. Smart implants employ microfluidic

channels and biosensing electrodes to measure biomarker

concentrations in interstitial fluids. When they identify cancer-

specific biomarkers, such as HER2 or estrogen receptors, these

implants wirelessly transmit data to external monitors for analysis.
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This continuous real-time monitoring system serves as an early

warning mechanism for tumor progression.

Now we will explain the smart implants working in the

following workflow:

➢ Integrated sensing technology

These sophisticated implants are equipped with advanced

sensors that continuously gather real-time data on various

parameters, such as temperature fluctuations, pH levels, and other

biochemical markers that can indicate cancerous activity (262).

Implanted microsensors identify physical alterations (such as tissue

density or impedance) or tumor-associated biomarkers (such as pH

changes, hypoxia, or HER2 proteins) connected to the advancement

of cancer (263).

➢ Wireless data transmission

The information collected by the implants is transmitted

wirelessly to external devices—like smartphones or specialized

monitoring systems enabling healthcare professionals to analyze

the data with remarkable accuracy. This innovative approach not

only allows for the continuous assessment of changes within the

body but also acts as a proactive health management tool.

• Power Management and Miniaturization:

Smart implants are engineered with advanced energy-efficient

components that prioritize long-term viability. Some utilize

innovative wireless energy harvesting technologies, drawing
TABLE 10 Cost-benefit analysis framework for breast cancer screening methods.

Cost/Benefit Category Conventional Screening (e.g., Mammography) Wearable Technology-Based Screening

Direct Costs

Equipment MRI, Mammography machines are highly costly(approx;
mammography: $ 150,000 – $500,000,
MRI: $1,000,000 – $3,000,000+)

Less than the cost of an MRI, mammography

Personnel Radiologists, technicians. or any staff member required Minimal staff required, mostly automated

Maintenance 10,000-50,000/year for machine maintenance It’s less than the conventional, we have to check the
software and sensors just

Indirect Costs

Lost Productivity Workdays missed for appointments Home-based monitoring

Travel/logistics Transportation cost if a person travels for screening, and this also
includes the cost for the transporting machines to rural areas etc

none

Benefits

Early detection Detect tumors mostly less than 5mm (85% sensitivity) It can detect early because of biomarker based detection

Patients comfort Moderate; if a person is claustrophobic in MRI or the pain during
compression in Mammography

High; radiation free

Cost savings If detected earlier, than saves the cost of late treatment It can give us long term savings for long-term real-
time monitoring

Challenges

False positive ~10% false positives This is an emerging technology so it has a higher risk of
false positives

Accessibility In a low-resource region, it is difficult for the availability of
such equipment

Requires internet, data security

Regulatory hurdles Approvals from FDA Its novel device so requires more approval
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power from ambient sources or employing cutting-edge miniature

battery systems. This thoughtful integration allows for prolonged

functionality within the human body, significantly reducing the

need for surgical replacements or interventions, thereby lessening

the burden on patients and healthcare systems alike.

Clinical Relevance:

These smart implants facilitate continuous, high-precision

monitoring of breast tissue, employing sophisticated sensors to

detect minute changes in tissue composition and density. This

capability enhances the potential for early detection of

abnormalities, empowering healthcare providers to initiate timely

interventions. As a result, the application of smart implants is

poised to significantly improve treatment outcomes for breast

cancer patients, ultimately contributing to better rates of survival

and quality of life.
3 Limitations

Breast cancer diagnosis has improved over the years, but there

are still some gaps that require further investigation. The barrier

remained in creating unified diagnostic protocol where multiple

imaging (including biosensors, sensor arrays and soon AI) can be

merged. Our current continuing challenge is to increase the

sensitivity and specificity of mammography, particularly in dense

breast tissues as well developing more accurate image quality and

diagnostic precision for MRI and US. The sensors currently used for

diagnosis have low penetration depth, higher degree of which can

give high performance. Besides, the sensors may be integrated to

detect over all breast areas for superior results or fabricated and

movable in circular axis. They are not very suitable for this

diagnosis, like LM35 sensors and mostly they are tested on the

breast phantoms. In addition, the development of new biomarkers

and multiplex biosensors for multiple detection is required to

provide more precise and personalized diagnosis. In AI and deep

learning algorithms our challenges would be image variance as well

at morphological changes, that needs very efficient in coding the

models that can withstand images out of variety of datasets. It’s also

critical to investigate wearable technology for continuous

monitoring, lessen the need for invasive procedures, and advance

non-invasive ways for early detection. Furthermore, it is critical to

develop affordable, user-friendly diagnostic techniques and to

enhance patient comfort and accessibility, particularly in

environments with limited resources. The need for creative and

comprehensive methods to enhance breast cancer diagnosis and

patient care is highlighted by these research gaps.
4 Conclusions and future perspectives

This review has provided a comprehensive analysis of the

standard and emerging techniques used for breast cancer (BC)

diagnosis. Early detection remains crucial for improving treatment

outcomes and survival rates. The study has explored various
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diagnostic approaches, including advanced imaging techniques such

as reflective optical imaging devices (ROIDs), microwave imaging

(MWI), automated breast ultrasound (ABUS), and infrared imaging

technology (IIT). Additionally, we have highlighted innovative

biosensors, including piezoelectric sensors, near-infrared sensors,

and digital temperature sensors, each offering unique advantages

such as non-invasiveness, enhanced sensitivity, and improved

detection accuracy. Despite these advancements, several challenges

persist, including the need to enhance diagnostic accuracy, patient

comfort, and cost-effectiveness. Many existing technologies, while

promising, still require further validation, optimization, and

accessibility improvements to ensure widespread clinical adoption.

By improving diagnostic precision and reducing false positives,

artificial intelligence (AI) has the potential to completely transform

the early detection of breast cancer. A subset of deep learning

algorithms called Convolutional Neural Networks (CNNs) have

shown remarkable performance in image analysis, more accurately

detecting tumors in mammograms and ultrasounds than conventional

techniques. Large datasets can be processed by AI-driven models to

find subtle patterns that humans might miss, resulting in earlier and

more accurate diagnoses. Additionally, combining AI with wearable

technology—like biosensors and smart bras—allows for continuous

data collection and real-time monitoring, which improves patient

outcomes and provides individualized risk assessments. Future

developments in these technologies will probably concentrate on

improving AI algorithms for increased breast cancer screening

sensitivity and specificity.

As breast cancer detection methods continue to evolve,

wearable and integrated technologies are expected to play a

transformative role in early diagnosis and continuous monitoring.

One notable innovation in development is the smart bra insert

equipped with ultrasound sensors, designed to provide real-time,

continuous monitoring of breast tissue. This device detects

abnormalities, such as lumps or irregularities, using embedded

ultrasound technology, potentially reducing reliance on traditional

hospital-based screenings. By integrating these sensors into a

comfortable and user-friendly bra design, this technology aims to

improve accessibility, encourage proactive health monitoring, and

facilitate early detection. Devices like the iTBra have undergone

clinical trials to compare performance with standard

mammography. Results showed that smart bras could detect

anomalies earlier in high-risk populations. Such wearable

innovations could significantly reduce late-stage diagnoses and

enhance patient outcomes by offering convenient, at-home breast

health tracking.

The future of breast cancer detection will likely involve a multi-

modal approach, combining AI-driven imaging, advanced

biosensors, and wearable technologies to create a more efficient,

non-invasive, and personalized diagnostic framework. As research

progresses, optimizing these technologies and seamlessly

integrating them into routine healthcare practices will be critical

in the ongoing fight against breast cancer. Decentralized,

continuous breast cancer care with increased precision and

privacy may be made possible by emerging technologies like
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federated AI frameworks, smart fabrics, and microneedle-based

biosensors. According to current research, improved mechanical

flexibility, multifunctionality, and wireless communication

capabilities are anticipated in next-generation biosensing

platforms—essential characteristics for a smooth transition into

wearable technology and remote healthcare ecosystems (264).

Continued interdisciplinary collaboration, clinical trials, and

technological refinements will be essential to enhancing early

detection methods and ultimately improving patient survival

rates worldwide.
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