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Radiomics features from the
peritumoral region can be
associated with the epilepsy
status of glioblastoma patients
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Sabine Wolf1,3, Freya Garhöfer1,3, Anja Hohmann4,
Philipp Vollmuth1, Martin Bendszus1, Heinz-Peter Schlemmer2,
Felix Sahm5,6, Sabine Heiland1, Wolfgang Wick4,
Varun Venkataramani4,7 and Felix T. Kurz1,2,8*

1Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany, 2Division of
Radiology, German Cancer Research Center, Heidelberg, Germany, 3Faculty of Medicine, Heidelberg
University, Heidelberg, Germany, 4Department of Neurology, Heidelberg University Hospital,
Heidelberg, Germany, 5Department of Neuropathology, Heidelberg University Hospital,
Heidelberg, Germany, 6Clinical Cooperation Unit Neuropathology, German Cancer Consortium
(DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany, 7Department of Functional
Neuroanatomy, Heidelberg University, Heidelberg, Germany, 8Department of Neuroradiology, Geneva
University Hospitals, Geneva, Switzerland
Purpose: Identifying radiomics features that help predict whether glioblastoma

patients are prone to developing epilepsy may contribute to an improvement of

preventive treatment and a better understanding of the underlying pathophysiology.

Materials and methods: In this retrospective study, 3-T MRI data of 451

pretreatment glioblastoma patients (mean age: 61.2 ± 11.8 years; 268 men, 183

women) were analyzed. Three hundred thirty-six patients reported no epilepsy,

while 115 patients were diagnosed with symptomatic epilepsy. A total of 1,546

radiomics features were extracted from contrast-enhancing tumor, peritumoral

regions, and normal-appearing white matter as regions of interest using

PyRadiomics. The dataset was initially split into a training (70%) and a validation

(30%) cohort. The training cohort was used for feature selection with ElasticNet

and model optimization. Various machine learning models, including logistic

regression (LR), were used to predict epilepsy status. The models’ performances

were evaluated with the validation cohort, and the area under the curve of the

receiver operating characteristics (AUC) was used as a measure. For identifying

relevant features, permutation feature importance was applied.

Results: The performance of LR using radiomics features from only a single ROI

in the validation cohort was AUC = 0.83 (95% CI: 0.76–0.91) and AUC = 0.77 (95%

CI: 0.69–0.85) for the peritumoral and white matter regions, respectively. The

most important features in peritumoral regions were shape features, while for the

white matter region, higher-order features from FLAIR were most relevant.
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Conclusion: Radiomics features from peritumoral and normal-appearing white

matter can be associated with epilepsy status at diagnosis, suggesting an

important role of these regions for the development of epilepsy in

glioblastoma patients.
KEYWORDS

glioblastoma, epilepsy, radiomics, MRI, machine learning, radiomics features
from peritumoral
Introduction

Glioblastoma is one of the most common primary tumors of the

central nervous system (1). A variety of neurological symptoms at

diagnosis is associated with this tumor, including, for example,

headaches, deficits in sensomotoric functions, loss of cognitive

functions, and changes in personality (2). For 30%–50% of

glioblastoma patients, the tumor is associated with epilepsy (3).

Regardless of the etiology of epilepsy, this neurological condition

can severely compromise patients’ quality of life.

Radiomics is a method to extract quantitative features from

diagnostic radiologic images in a high-throughput manner (4, 5). It

can contribute to a more objective evaluation of radiological data.

The strength of radiomics in a neuro-oncology setting has been

demonstrated in several previous studies to identify genetic

mutations of gliomas or for glioma grading (6–8).

Identifying MRI-based radiomics features that are associated

with epilepsy status for glioblastoma patients can contribute to a

better understanding of epilepsy in the context of neuro-oncology.

Multiple other works have shown the important role of the

peritumoral region for developing epileptic seizures (9, 10). This

finding is supported by multiple other studies where changes in

molecular and cellular environments in both tumor and

peritumoral regions have been associated with epileptic seizures

(11, 12). To assess whether changes to the normal-appearing white

matter region (WM) are also of importance for the development of

epilepsy, the region of interest (ROI) for radiomics feature

extraction in our study was not limited to the contrast-enhancing

tumor region (CET) and the non-enhancing lesion (NEL)

presenting as a hyperintense lesion in T2w/FLAIR images.

Instead, radiomics features extracted from the peritumoral region

surrounding the CET (PeriCET) and WM were included as well.
Materials and methods

Patients

In this retrospective study, patients were recruited between

April 2010 and March 2022 from the Department of
02
Neuroradiology of the University Hospital of Heidelberg

(Germany). A total of 451 patients with pretreatment IDH wild-

type glioblastoma were included if the following criteria were met: i)

the diagnosis of glioblastoma was confirmed by pathology, ii) high-

quality MRI data of pre- and post-contrast T1-weighted (T1w and

T1-CE, respectively) were available, T2-weighted (T2w) and fluid

attenuated inversion recovery (FLAIR) images were available prior

to treatment, and (iii) medical reports with epilepsy status at

diagnosis were available. Here, the epilepsy status at diagnosis

was mostly based on clinical presentation or anamnestic

information provided by patients. Figure 1 shows the flow

diagram of the study population and summarizes the exclusion

criteria. The retrospective evaluation of de-identified imaging and

medical data was approved by the Ethics Committee of the

University of Heidelberg.
Magnetic resonance imaging

As presented in another work (13), every patient in this

retrospective study received MR imaging of their head in one of

the following 3.0-T clinical magnetic resonance devices: Magnetom

Trio TIM, Prisma fit, Verio, or Skyra (all from Siemens Healthineers

AG, Germany). For signal acquisition, a 12-channel head-matrix

coil was used. The MR protocol included the following four

sequences: axial T1w and T1-CE images after the administration

of a gadolinium-based contrast agent, an axial T2w image, and an

axial FLAIR image. For obtaining T1w and T1-CE, a 3D

magnetization-prepared rapid acquisition with gradient echo

(MPRAGE) sequence was used with the following parameters:

inversion time (TI) = 900–1,100 ms, echo time (TE) = 3–4 ms,

repetition time (TR) = 1,710–2,250 ms, and flip angle = 15°.

Gadoterate meglumine (Dotarem®, Guerbet, France) with a dose

of 0.1 mmol/kg was administered as an MR contrast agent. For axial

T2, the following parameters were chosen: TE = 85–88 ms, TR =

2,740–5,950 ms, section thickness = 5 mm, and spacing = 5.5 mm.

For axial FLAIR, the parameters were as follows: TI = 2,400–2,500

ms, TE = 85–135 ms, TR = 8,500–10,000 ms, section thickness = 5

mm, and spacing = 5.5 mm.
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Image preprocessing—brain extraction,
intensity normalization, registration, and
segmentation

HD-BET was used as a semi-automatic brain extraction tool to

obtain brain images from each MRI (14). T2w, T1-CE, and FLAIR

were registered to T1w images of the same MRI exam by using FSL-

FLIRT (15, 16). MRI signal intensity values were normalized using

white-stripe normalization as described here (17). CET regions in T1-

CE images and non-enhancing lesion (NEL) presenting as T2w-/

FLAIR-hyperintense regions in FLAIR images were segmented

automatically using HD-GLIO (18, 19). Normal-appearing WM

was segmented by using FAST (20) from the FSL software library

(version 6.0, Oxford, United Kingdom) (21). After a visual inspection

of segmented masks obtained from HD-GLIO by two board-certified

neuroradiologists (J.M.E.J., F.T.K.), the segmentation masks were

manually corrected in consensus if the segmentation was

inaccurate. Corrections for the segmentation were needed for 21

cases (<5% of total cases). Furthermore, a 5-mm layer surrounding

the CET was identified as a peritumoral region (PeriCET). Masks for

these peritumoral regions were obtained using five iterations of the

binary_dilation-function from Python’s SciPy package (SciPy 1.12.0).
Radiomics feature extraction

For radiomics feature extraction, PyRadiomics 3.1.0 was used

(22). For each ROI, 4 * 19 first-order features, 14 2D and 3D shape

features, and 4 * 75 texture features were extracted from T1w, T2w,

T1-CE, and FLAIR images without applying any image filters.

Therefore, a total of up to 390 radiomics features were extracted

from a single ROI. Due to high computing time, shape features were

not extracted from normal-appearing white matter masks. Texture

features were included from the following feature classes: gray-level

co-occurrence matrix, gray-level run length matrix, gray-level size
Frontiers in Oncology 03
zone matrix, gray-level dependence matrix, and neighborhood

gray-tone difference matrix. A complete list of radiomics features

can be obtained from the supplementary materials (see

Supplementary Table S1). Details about the radiomics features

were described in the PyRadiomics documentation (https://

pyradiomics.readthedocs.io/en/latest/).
Machine learning classification

The dataset was randomly split into a training cohort (n = 315,

70%) and a validation cohort (n = 136, 30%). Here, the epilepsy

status at diagnosis was used to stratify both cohorts to obtain two

cohorts with equal frequency of positive/negative epilepsy status.

The following steps were performed with the training cohorts.

First, the feature selection technique using ElasticNet was used,

which can be seen as a generalization of the Lasso technique (23).

Then, a machine learning model was trained with the selected

radiomics features. For the machine learning model, logistic

regression (LR), support vector machine with a linear kernel (L-

SVM), and a neural network as a multilayer perceptron classifier

(MLPC) were used. To determine appropriate parameters for the

feature selection (ElasticNet) and the machine learning model,

hyperparameter optimizations were performed using the grid-

search cross-validation technique (GridSearchCV) with a

stratified 10-fold cross-validation with 10 repetitions. A more

detailed list of parameters chosen for each model can be obtained

from the supplementary materials (see Supplementary Table S2).

Finally, the performance of the optimized model was evaluated

with the validation cohort, which was neither used for training the

model nor for the hyperparameter optimization in previous steps.

The area under the receiver operating characteristic curve (AUC)

was used as a metric to evaluate the model’s performance.

To get insights into the most relevant radiomics features for the

best performing machine learning model, permutation feature
FIGURE 1

Flow diagram of the study population showing the inclusion and exclusion criteria. IDH, isocitrate dehydrogenase.
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importance was computed with 1,000 repetitions. Here, the loss of a

model’s performance after randomly shuffling a single feature was

used as an indicator of the importance for the model’s prediction

(24). For our analysis, every value of permutation feature

importance was normalized to the maximum value of 100 and a

minimum value of 0 as described here (25).

All machine learning steps were performed in Python 3.10.12

(Python Software Foundation, Delaware, USA) using scikit-

learn 1.4.1.
Statistical analysis

The 95% confidence interval (CI) of AUC was computed and

compared according to DeLong’s method (26) implemented in R

version 4.3.1 (The R Foundation for Statistical Computing, Vienna,

Austria). GraphPad Prism 10.0.2 (GraphPad Software Inc., Boston,

USA) and Python 3.10.12 (Python Software Foundation, Delaware,

USA) were used to compare patient characteristics using the two-

sided Mann–Whitney test for age at diagnosis and Fisher’s exact

tests for sex and epilepsy status. A difference was reported as

significant if the p-value from the statistical test was less than 0.05.
Results

Patient characteristics

Patient characteristics from the training and validation cohorts

can be obtained from Table 1. The mean age and standard deviation

were (61.2 ± 11.8) years. In this study, 268 patients (59.4%) were

men, and 183 patients (40.6%) were women. The training and

validation cohorts were not different regarding age at diagnosis

(two-sided Mann–Whitney test, p = 0.43), sex (two-sided Fisher’s

exact test, p = 0.75), and epilepsy status (two-sided Fisher’s exact

test, p = 1.0).
Machine learning models

Machine learning models could be trained with radiomics

features from a single ROI or a combination of all ROIs (i.e.,

CET, NEL, PeriCET, and WM) using data from the training cohort.
Frontiers in Oncology 04
The performance levels of all these trained models to identify

epilepsy status for patients in the training cohort and validation

cohort are summarized in Figure 2 as a heat map. A table

representation of these results can be found in the supplementary

materials (see Supplementary Table S3). The corresponding

receiver operating characteristic curves for the validation cohort

are presented in Figure 3.

The performance levels of machine learning models utilizing

radiomics features from all available ROIs used in this study (i.e.,

CET, NEL, PeriCET, and WM) were consistent regardless of the

choice of the model. The best performing model here was achieved

by using MLPC with a mean AUC of 0.8356 (95% CI: [0.7609;

0.9104]) for the validation cohort.

Similar performance levels for the validation cohort were

observed if the models utilized only radiomics features from the

tumor (CET) or peritumoral (PeriCET) regions. For radiomics

features extracted only from PeriCET, the best performing model

to identify epilepsy status in the validation cohort was achieved

using LR with a mean AUC of 0.8331 (95% CI: [0.7558; 0.9104]). A

similar performance could be obtained by using other models: L-

SVM (mean AUC: 0.8126, 95% CI: [0.7284; 0.8968]), random forest

(RF) (mean AUC: 0.8079, 95% CI: [0.7234; 0.8924]), and MLPC

(mean AUC: 0.8322, 95% CI: [0.7546; 0.9099]).

For radiomics features extracted only fromWMmasks, the best

performing model to identify epilepsy status in the validation

cohort was achieved by using LR with a mean AUC of 0.7720

(95% CI: [0.6903; 0.8536]). A similar performance could be

obtained by using RF (mean AUC: 0.7615, 95% CI: [0.6716;

0.8514]) and MLPC (mean AUC: 0.7519, 95% CI: [0.6680;

0.8359]). L-SVM using only radiomics features from WM masks

had the worst performance in our analysis, with a mean AUC of

0.6594 (95% CI: [0.5579; 0.7609]), although the mean AUC for the

training cohort was 0.9355 (95% CI: [0.8980; 0.9731]).
Feature importance

The five most relevant radiomics features are listed in Table 2 in

descending order of the feature importance values obtained from

the best performing model. A complete list of features with the

normalized scores can be found in the supplementary materials (see

Supplementary Tables S4-S8 as Excel spreadsheets). If radiomics

features from all ROIs were available for the machine learning
TABLE 1 Patient characteristics from the training and validation cohorts.

Parameters Training cohort (n = 315, 70%) Validation cohort (n = 136, 30%) p-value

Age In years 61.3 ± 12.1 61.0 ± 11.0 0.4383

Sex
Male 189 79

0.7541
Female 126 57

Epilepsy status
With epilepsy 80 35

1.0
Without epilepsy 235 101
For age, means ± standard deviation and p-value from a Mann–Whitney test are presented. For sex and epilepsy status, p-values are obtained from Fisher’s exact tests.
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model, mostly shape features from tumor and peritumor ROIs were

relevant. For the LR model, which was trained exclusively on

radiomics features extracted from the CET region, higher-order

features from T1-CE, T1w, and FLAIR were among the five most

important features. For peritumoral regions, both NEL and

PeriCET, first-order features from FLAIR images and shape

features were the most relevant features to identify epilepsy status

in the validation cohort. Here, shape features related to axis length,

like Minor- and MajorAxisLength from NEL and LeastAxisLength

and Maximum2DDiameterSlice from PeriCET, were shown to be

most relevant. Higher-order features from WM regions in FLAIR

images were identified as the most important radiomics features for

the model if only features from WM regions were used for the

classification task. However, the 10th percentile of white-striped

normalized intensity values from the white-striped normalized T2w

was also shown to be highly relevant for identifying glioblastoma

patients with epileptic seizure at pretreatment. In Figure 4, example

cases are shown with prominent values of radiomics features, which

were most relevant for the classification.
Discussion

In this retrospective study with a total of 451 pretreatment

glioblastoma patients, radiomics features extracted from

conventional brain MRIs were assessed for potential associations

with pretreatment epilepsy status. In the approach chosen, the ROI

was not limited to the CET or the NEL presenting as hyperintense

signal in T2w/FLAIR images. Instead, radiomics features from the

5-mm layer of the peritumoral region surrounding the CET

(PeriCET) and the normal-appearing WM region were
Frontiers in Oncology 05
investigated as well. It could be demonstrated that machine

learning models like logistic regression and support vector

machines can identify epilepsy status of pretreatment

glioblastoma with radiomics features obtained only from the

PeriCET (mean AUC: 0.83) or the WM regions (mean AUC:

0.77) with good predictive performance levels. For PeriCET, the

predictive performance of the model was similar to the models

using features only from the CET or a combination of all ROIs and

was superior to the models using features only from the NEL

and WM.

Classifiers such as LR, RF, and SVM differ substantially in how

they process feature interactions, manage redundancy, and cope

with noise (27). While RF and SVM are better able to capture more

complex structures within a dataset than simpler classifiers like LR

as demonstrated in a radiomics study about glioma grading (28), RF

and SVM can be vulnerable to overfitting, limiting the overall

performance of the model. There are multiple other studies about

radiomics in the context of neuro-oncology (25, 29, 30), and we

observed similar performance levels of the models across different

classifiers. Furthermore, permutation-based feature importance

tends to highlight the features best utilized by each specific

model, rather than identifying a universally optimal subset. The

limited overlap in top-ranked features across models reflects the

high-dimensional, non-convex nature of the radiomics domain,

where multiple distinct solutions can capture different aspects of the

underlying biological variance. For instance, shape-based features

emerged as highly predictive within the tumor core and peritumoral

regions, likely reflecting the pronounced morphological distortions

typical of these zones. In contrast, higher-order textural features

played a dominant role in classifying white matter regions, where

the baseline tissue structure is relatively homogeneous but may
FIGURE 2

The performance of the machine learning model with data from the (A) training cohort and (B) validation cohort is summarized here. Mean AUC
values with 95% confidence intervals (below) are shown for each combination of models [logistic regression (LR), linear support vector machine (L-
SVM), random forest (RF), multilayer perceptron classifier (MLPC)] and ROIs [contrast-enhancing tumor (CET), non-enhancing lesion (NEL),
peritumoral region (PeriCET), white matter (WM)].
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exhibit subtle signal variations, particularly in patients predisposed

to epileptogenic changes. Similarly, as shown in another study,

shape features from peritumor region and texture features from

white matter regions were relevant to identify progressive

glioblastoma at post-treatment (31). These findings underscore

the idea that each ROI contributes distinct, non-redundant

information of biological relevance. Different models appear to

exploit this heterogeneity in complementary ways, depending on

their architectural properties and regularization strategies.

Importantly, the ability of different models to achieve similar

performance using distinct feature sets has positive implications

for generalizability. It suggests that the radiomic signature

associated with epilepsy status in glioblastoma was not dependent

on any one model or feature subset, but rather was distributed

across multiple, semantically meaningful feature domains. This

redundancy enhances the robustness of the findings and reduces

the likelihood that observed performance is an artifact of overfitting

to a specific algorithmic bias.

Since radiomics allows a more quantitative evaluation of

radiological data, the radiomics approach can offer a powerful

tool for clinicians to gain valuable information regarding

molecular and clinical characteristics associated with tumor

disease in a non-invasive manner (32). In this study, radiomics

features could be identified and correlated with epilepsy status of
Frontiers in Oncology 06
pretreatment glioblastoma patients in a large cohort. Our results

can potentially contribute to better identifying these patients at risk

of developing epilepsy. Furthermore, it underlines the important

role of the peritumoral region for developing epilepsy in neuro-

oncology patients.

Multiple works have been published where MRI-based

radiomics features were used to predict epilepsy associated with

adult diffuse glioma (33–36). Two studies included only patients

with low-grade glioma (33, 34). Wang et al. enrolled 205 patients

retrospectively with only low-grade glioma to investigate the role of

radiomics features for identifying the epilepsy type (34). In a study

with 286 low-grade glioma patients, Liu et al. developed models

with radiomics features extracted from NEL to predict patients’

epilepsy status at diagnosis (AUC = 0.82 with the validation cohort)

(33). In two other studies, a mixture of low- and high-grade glioma

was included in their analysis (35, 36). Both studies reported good

performances of their machine learning models to identify epilepsy

status in their validation cohorts with AUC values of 0.836 and

0.866 from Gao et al. (35) and Jie et al. (36), respectively. Here, Gao

et al. included 166 patients with frontal glioma, while Jie et al.

included a total of 380 low- and high-grade glioma patients. Since

epileptic seizures are much more frequently observed in patients

with low-grade glioma than with high-grade glioma (90% vs. 30%–

50%) (3, 37), analyses from Gao et al. and Jie et al. may rather reflect
FIGURE 3

The receiver operating characteristic curves for the validation cohort are shown for each model in (A) logistic regression (LR), (B) support vector
machine with linear kernel (L-SVM), (C) random forest (RF), and (D) multilayer perceptron classifier (MLPC).
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All ROIs = CET + NEL + PeriCET + WM

MLPC

CET_T1w_glszm_LowGrayLevelZoneEmphasis 100

CET_FLAIR_ngtdm_Coarseness 99.8

CET_shape_LeastAxisLength 81.1

CET_shape_SurfaceArea 71.6

PeriCET_FLAIR_firstorder_Kurtosis 69.3

CET

LR

CET_T1w_gldm_SmallDependenceLowGrayLevelEmphasis 100

CET_T1-CE_ngtdm_Strength 76.6

CET_FLAIR_gldm_SmallDependenceLowGrayLevelEmphasis 57.9

CET_T1w_glszm_LowGrayLevelZoneEmphasis 53.4

CET_FLAIR_firstorder_Skewness 41.8

NEL

RF

NEL_shape_MinorAxisLength 100

NEL_shape_MajorAxisLength 78.7

NEL_shape_Maximum2DDiameterColumn 51.8

NEL_FLAIR_firstorder_10Percentile 36.4

NEL_shape_SurfaceArea 21.8

PeriCET

LR

PeriCET_shape_LeastAxisLength 100

PeriCET_shape_Maximum2DDiameterSlice 68.8

PeriCET_shape_SurfaceArea 62.7

PeriCET_FLAIR_firstorder_Kurtosis 51.3

PeriCET_FLAIR_firstorder_Minimum 47.3

WM

LR
WM_FLAIR_ngtdm_Complexity 100

WM_T2_firstorder_10Percentile 97.3
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the glioma grading instead of the epilepsy status. It has already been

demonstrated by various groups that machine learning or deep

learning approaches with MR-based radiomics features can reveal

glioma grading with very good predictive performance levels (6, 38,

39). Therefore, analyzing low- and high-grade glioma patients

separately may be more appropriate to identify radiomics

signatures specifically associated with epilepsy status. In our

study, we investigated a larger patient cohort (n = 451) with only

glioblastoma. The IDH-wild type was confirmed here by pathology

for each patient. With machine learning models, we achieved

similar predictive performance with glioblastoma patients as

reported by Liu et al., who investigated a patient cohort with low-

grade glioma only. In another work, we could show that

glioblastoma with epilepsy at diagnosis was associated with less

tumor burden than without epilepsy. As already discussed there,

this might be the result from earlier diagnosis of epilepsy-associated

glioblastoma (40). The prominent role of shape features from tumor

and peritumor regions in our study here supports our

previous findings.

This retrospective study has several limitations. First, the

epilepsy status at diagnosis was mostly based on clinical

presentation or anamnestic information provided by patients.

Further information regarding the diagnosis of epilepsy, for

example, results from electroencephalogram, was not available.

Second, omitting shape features from the normal-appearing white

matter region may have impacted the comparative richness of

features between ROIs. However, these features were deliberately

excluded from the white matter ROI due to the absence of discrete

lesion boundaries in WM masks. Furthermore, we have not

investigated models trained with any combinations of radiomics

features extracted from two or three different ROIs, which might

result in more powerful classifiers. Including multiple ROIs

increases the dimensionality of the feature space, which may

introduce redundancy and therefore be more vulnerable to

overfitting. In our study, overfitting could be even observed for

models trained with radiomics features from a single ROI. That is

why we believe that combining radiomics features from two or three

ROIs might not necessarily result in improved models. Finally, the

monocentric study design may limit the generalizability of the study

results. A multicentric study design with various MRI devices may

result in more reproducible radiomics features. As investigated and

discussed by multiple other groups (8, 41), MRI-based radiomics

features can be influenced by the choice of measurement

parameters. In our study, various clinical MR machines with a

wide range of TR for T2w images and TE for FLAIR sequences were

used for image acquisitions. This can introduce heterogeneity that

can enhance the robustness of machine learning models by

exposing them to a broader range of imaging characteristics

during training.
Conclusion

Radiomics features from conventional MRIs of the brain can

predict the epilepsy status for pretreatment glioblastoma patients.
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Machine learning models were trained and validated with radiomics

features extracted from various ROIs from a large patient cohort.

Here, the ROI was not limited to the CET and NEL but included the

peritumoral region (PeriCET) and normal-appearing WM. The

consistent predictive performance of the models using only

radiomics features from PeriCET or WM underlines the

important role of these brain regions for developing epilepsy

associated with glioblastoma.
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