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A new deep learning model
for predicting IMRT dose
distributions for lung cancer
with dose masks
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Yuxi Pan2, Guoping Zuo1* and Ruijie Yang2*

1School of Nuclear Science and Technology, University of South China, Hengyang, China,
2Department of Radiation Oncology, Cancer Center, Peking University Third Hospital, Beijing, China,
3School of Physics, Beihang University, Beijing, China, 4Institute of Operations Research and
Information Engineering, Beijing University of Technology, Beijing, China
Purpose: 3D U-Net deep neural networks are widely used for predicting

radiotherapy dose distributions. However, dose prediction for lung cancer

IMRT is limited to conventional radiotherapy, with significant errors in

predicting the intermediate and low-dose regions.

Methods: We included a mixed dataset of conventional radiotherapy and

simultaneous integrated boost (SIB) radiotherapy with various prescription

schemes. In addition to inputting CT images and anatomical structures, we

incorporated dose mask information to provide richer local low-dose details. We

trained five models with varying numbers of dose masks to investigate their

impact on dose prediction models.

Results: The inclusion of dose masks led to significant improvements in

prediction accuracy for both the PTV and OARs. In particular, the mean

absolute error (MAE) of dosimetric metrics for most OARs fell below 2%, and

voxel-wise MAE within each structure steadily decreased as more dose masks

were supplied—most notably in low-dose regions. These results demonstrate

that incorporating dose masks effectively enhances training efficiency and

prediction stability. Among models receiving varying numbers of dose masks,

the configuration with ten masks achieved the highest predictive accuracy.

Conclusion: This study proposes a dose mask-assisted method for lung cancer

IMRT dose prediction. It demonstrates high accuracy and robustness in clinical

radiotherapy scenarios with various prescription schemes, including

conventional radiotherapy and SIB. The inclusion of additional dose masks

significantly improved model performance, with prediction accuracy increasing

as the number of masks increased.
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1 Introduction

Lung cancer is one of the leading malignancies globally in terms

of both incidence and mortality (1), and radiotherapy is considered

an effective and commonly used method for tumor control. Over

the past few decades, the development of intensity-modulated

radiotherapy (IMRT) has significantly improved the effectiveness

of lung cancer radiotherapy (2). Treatment planning systems (TPS)

are capable of generating high-quality radiotherapy plans, but

physicists must repeatedly fine-tune the dose objectives until the

desired dose distribution is achieved. This process is time-

consuming and highly dependent on the physicist’s experience

and skill, leading to significant variability in plan quality (3).

To address this issue, the research community has focused on

automating the treatment planning process to reduce manual

intervention and accelerate plan optimization (4). Predicting three-

dimensional radiotherapy dose distributions has become a popular

research direction. In recent years, deep learning methods, especially

convolutional neural networks (CNNs), have shown great potential in

medical image processing and dose prediction (5). Many U-Net

networks, which take CT images and organ contours as input, have

successfully predicted voxel-level 3D dose distributions and are widely

used in cancers such as prostate cancer (6–11), head and neck cancer

(12–16), and cervical cancer (17–20). Similarly, many studies have

focused on lung cancer (21–27) IMRT planning. These studies generally

train networks using CT and PTV/OARs structures as input, leading to

noticeable dose errors in normal tissue regions far from the PTV.

Figure 1 shows an example of dose errors that may occur using

conventional input types. These networks use CT and contour

structures as input, resulting in good prediction accuracy at the

PTV location where the beams intersect. However, dose errors in
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normal tissue regions are more pronounced, affecting the dose

protection of healthy tissues. Therefore, in dose prediction tasks, it

is essential to evaluate not only the target conformity and coverage but

also the dose differences along the beam path, with a focus on the

protection of organs at risk in the intermediate- and low-dose regions.

To make the model suitable for lung cancer IMRT applications

and improve its prediction accuracy and robustness, researchers

have adopted complex flux-convolutional wide-beam (FCBB) dose

calculation methods (25, 28) to process beam information,

enhancing the model’s ability to predict lung cancer IMRT dose

distributions for different beam angle setups (21). To further

improve the robustness of the model when using a mixed lung

cancer dataset with two types of conventional prescription schemes,

researchers introduced the Squeeze and Excitation (SE) module,

allowing the network to focus more on the dose results for small-

volume structures (22, 24). In addition, studies have shown that

using cascaded convolutional neural networks can significantly

improve both the overall and local dose prediction performance

of the model (14).

These methods, through end-to-end learning, minimize

reliance on manual features and have shown promising predictive

performance in preliminary results. However, existing studies

primarily focus on accurately predicting the dose to the planning

target volume (PTV), especially when dealing with diverse beam

setup strategies, multiple prescription dose schemes, and clinically

complex tumor spatial distributions. As a result, they still face

significant dose prediction errors in the intermediate- and low-dose

regions (22), limiting the accuracy and robustness of the models in

different clinical scenarios.

To address these shortcomings, this study introduces the

following improvements:
FIGURE 1

'Visualization comparison of dose distribution predictions between the conventional input model and the dose mask-assisted model. (a) CT image of
a sample patient; (b) Dose distribution of the clinical treatment plan; (c) Model-predicted dose distribution with CT and anatomical structures as sole
inputs; (d) Model-predicted dose distribution with additional dose mask input.
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1. Diverse prescription dose schemes and complex tumor

spatial distributions: This study incorporates more types

of conventional radiotherapy plans and simultaneous

integrated boost (SIB) plans (e.g., 60 Gy, 50-60 Gy, 50-

60-65 Gy), as well as both unilateral and bilateral tumors,

enhancing the model’s applicability and flexibility to cover

a wider range of clinical treatment scenarios.

2. Introduction of dose mask information: The model input

data includes 10 different dose threshold-based masks,

significantly improving prediction accuracy in the

intermediate- and low-dose regions and demonstrating

the model’s precision in predicting local doses.
By introducing a mixed dataset with multiple prescription

schemes and incorporating dose mask information, this study

significantly improves the accuracy and generalizability of lung

cancer IMRT dose distribution predictions. These improvements

not only address the limitations of existing methods in dose

prediction but also provide strong technical support for more

efficient and personalized treatment planning in clinical practice.
2 Materials and methods

2.1 Dataset and preprocessing

This dataset includes 190 lung cancer patients who underwent

IMRT treatment at our institution up to June 2024 (58 cases of left-

sided lung cancer, 88 cases of right-sided lung cancer, and 52 cases of

bilateral lung cancer). Ethical approval for the use of patient data was

obtained from the institutional review board of our center. The dataset

was randomly divided into a training set, validation set, and test set at a

ratio of 7:1:2, with 141 cases in the training set, 19 in the validation set,

and 35 in the test set. Table 1 demonstrates the detailed distribution of

patients’ prescription regimens. CT images (slice thickness of 3 mm,

512 × 512 matrix) were obtained using a Brilliance CT Big Bore system

(Philips Healthcare, Best, the Netherlands). The planning target

volume (PTV) and organs at risk (OARs) were contoured by

experienced radiation oncologists at our institution. OARs include

organs such as the esophagus, heart, lungs, and spinal cord. The

planning target volume includes both the conventional planning target

volume and the planning gross target volume (PGTV). In all lung

cancer IMRT plans, patients receive a dose prescription ranging from

45 to 65 Gy, with each patient having 1 to 3 PTVs.

All treatment plans were developed for clinical purposes and

optimized by experienced physicists at our institution using the

Eclipse TPS (Varian Medical Systems, Palo Alto, CA, USA). All

plans include 5 to 9 beams and use 6 MV photon energy

for irradiation.

The data for each patient includes CT images, anatomical

structures, and the planned dose distribution. The resolution of

the CT images is 512×512 with a slice thickness of 5 mm. Each PTV

and OAR is set as a separate binary mask for input. If a voxel is

assigned to an OAR, it is assigned a value of 1 in the corresponding

channel; otherwise, it is assigned a value of 0. All CT images, PTV
tiers in Oncology 03
and OAR masks, and dose volumes were resampled to match the

pixel size of the dose distribution (1 mm × 1 mm), with the pixel

size in the z-axis direction maintained at 5 mm. The CT images,

structure masks, and dose distributions were then resampled to a

unified grid size (128 × 128 × 128) to reduce computational
TABLE 1 Model-specific architectural parameters for the Cascaded
U-Net model.

Component Description Parameters

Input Layer

Initial 3D
volume input
(image +

dose masks)

Channels: in_ch (e.g. 1 image + N
masks), Shape: (X, Y, Z, in_ch)

SingleConv Block Basic conv unit
Conv3D → InstanceNorm3d →

ReLUKernel: 3×3×3, Padding: 1, Stride:
variable, Out channels variable

Encoder Stage 1
Two SingleConv
at resolution

level 1

in_ch → list_ch[1] → list_ch[1],
Stride: 1

Encoder Stage 2
Downsample +
Two SingleConv

at level 2

list_ch[1] → list_ch[2] (stride=2) →
list_ch[2] (stride=1)

Encoder Stage 3
Downsample +
Two SingleConv

at level 3

list_ch[2] → list_ch[3] (stride=2) →
list_ch[3] (stride=1)

Encoder Stage 4
Downsample +
Two SingleConv

at level 4

list_ch[3] → list_ch[4] (stride=2) →
list_ch[4] (stride=1)

Encoder Stage 5
Downsample +
Two SingleConv

at level 5

list_ch[4] → list_ch[5] (stride=2) →
list_ch[5] (stride=1)

Decoder
UpConv 4

Up-sampling
convolution for

stage 4

Interpolate ×2, Conv3D(in=list_ch[5],
out=list_ch[4]), Kernel:
3×3×3, Padding=1

Decoder Conv 4
Fusion conv at

stage 4
SingleConv ×2 on 2×list_ch[4] →

list_ch[4]

Decoder
UpConv 3

Up-sampling
convolution for

stage 3

Interpolate ×2, Conv3D(in=list_ch[4],
out=list_ch[3]), Kernel:
3×3×3, Padding=1

Decoder Conv 3
Fusion conv at

stage 3
SingleConv ×2 on 2×list_ch[3] →

list_ch[3]

Decoder
UpConv 2

Up-sampling
convolution for

stage 2

Interpolate ×2, Conv3D(in=list_ch[3],
out=list_ch[2]), Kernel:
3×3×3, Padding=1

Decoder Conv 2
Fusion conv at

stage 2
SingleConv ×2 on 2×list_ch[2] →

list_ch[2]

Decoder
UpConv 1

Up-sampling
convolution for

stage 1

Interpolate ×2, Conv3D(in=list_ch[2],
out=list_ch[1]), Kernel:
3×3×3, Padding=1

Decoder Conv 1
Fusion conv at

stage 1
SingleConv ×1 on 2×list_ch[1] →

list_ch[1]

Output Heads
Final dose
prediction
outputs

Conv3D(list_ch[1], out_ch=1),
Kernel:1×1×1, separate heads for

net_A and net_B

Cascade
Connection

Two-stage
cascaded UNet

net_A output concatenated with input
to net_B (in_ch + list_ch_A[1])
frontiersin.org

https://doi.org/10.3389/fonc.2025.1587788
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Feng et al. 10.3389/fonc.2025.1587788
resource consumption. The CT values were then clipped to the

range [-1024, 1500] and normalized to [-1.024, 1.5]. The dose values

were normalized to the range [0, 1] based on a standard dose of 65

Gy, which helps the model learn features more effectively.

Additionally, data augmentation was applied, including random

flips along the X and Z axes, random rotations around the Z axis (0°,

40°, 80°, 120°, 160°, 200°, 240°, 280°, 320°), and random translations

with a maximum displacement of 20 pixels. Furthermore, using 65

Gy as the standard prescription dose, dose values were selected at

10% intervals from 10% to 100% of 65 Gy to generate 10 dose

thresholds, which were used to generate dose region masks that

exceed these thresholds in the dose distribution map.

Our dataset comprises IMRT plans for single-target irradiation

and SIB plans for multi-target irradiation, and the cascaded CNN

enhances its generalization capability through training. To enable

the model to handle variations in different prescription schemes,

during data preprocessing, when multiple overlapping PTV

structures exist within a patient, the outer PTV structure will

crop and discard the inner PTV structure. Then, using 65 Gy as

the standard dose, all the trimmed PTVs are merged using the

following Equation 1, while assigning the corresponding

prescription dose labels. Here, PTV45cut, PTV50cut, PTV60cut,

and PTV65cut represent the structures obtained by trimming the

planning target volumes prescribed to receive 45 Gy, 50 Gy, 60 Gy,

and 65 Gy, respectively.

PTVs =
45
65

� PTV45cut +
50
65

� PTV50cut +
60
65

� PTV60cut

+
65
65

� PTV65cut (1)
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Specifically, each PTV is initially a three-dimensional structure

mask where every voxel is assigned a value of 1. Using the following

formula and taking 65 Gy as the standard dose, all the trimmed

PTV45cut, PTV50cut, PTV60cut, and PTV65cut for a single patient

are merged into a single structure, PTVs, with label values ranging

between 0 and 1, which serves as the single-channel input for the

deep learning model. At the same time, during preprocessing, the

dose values in the dose distribution are also scaled using 65 Gy, so

that the dose values fall within the range [0, 1] and correspond to

the PTV label values. This helps the model understand the dose

delivered to the PTV under different prescription schemes,

accelerates the convergence of model training, and improves its

prediction performance.
2.2 Network architecture

2.2.1 Architecture
In this study, we propose the Cascaded U-Net (CascU-Net)

model. The model consists of two cascaded U-Net structures, with

the first stage being Global DoseNet (GD-Net) and the second stage

being Refine DoseNet (RD-Net), as shown in Figure 2. The input

channels consist of 1 PTV mask, 7 OAR masks, and 1 CT image,

totaling 9 independent input channels. In the encoder of GD-Net,

there are 5 resolution levels. Each level extracts key features and

reduces image resolution through convolution and downsampling

operations. The first level consists of two 3 × 3 × 3 convolutions

with a stride of 1 for feature learning; the next 4 levels use 3 × 3 × 3

convolutions (with a stride of 2 for downsampling) and 3 × 3 × 3

convolutions with stride 1 to further extract features. After each
FIGURE 2

Schematic of the CascU-Net cascaded model for predicting 3D dose distributions. GD-Net and RD-Net are two sequentially connected dose
prediction submodels.
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downsampling, the number of channels in the feature map is

doubled while the spatial dimensions are halved. Thus, the

number of channels in the feature map increases from 16 to 256,

while the spatial dimensions decrease from 16 × 128 × 128 to 2 × 16

× 16.

In the decoding path of GD-Net, upsampling, convolution, and

skip connections are used to restore image details and spatial

dimensions. Each decoding level uses trilinear interpolation for

upsampling, followed by convolution operations. Each level

contains two 3 × 3 × 3 convolutions with a stride of 1, with the

last layer containing only one 3 × 3 × 3 convolution and one 1 × 1 ×

1 convolution. Skip connections are used to pass the corresponding

feature maps from the encoding path to the decoding path to

recover information lost during downsampling.

RD-Net receives the output of GD-Net (low-precision dose

distribution) along with the original 9 input channels. RD-Net also

contains 5 resolution levels in the encoding path and 2 decoding

paths, continuing to extract features and ultimately outputting a

high-precision dose distribution. Instance normalization and ReLU

activation functions are applied to each convolutional layer to

prevent overfitting and gradient explosion. Finally, the decoder of

RD-Net outputs 1 channel with dimensions restored to 32 × 128 ×

128. Detailed model architecture parameter information is shown

in Table 2.

2.2.2 Model training
The model uses the mean absolute error (MAE) between the

predicted dose and TPS calculated results as the loss function. GD-

Net and RD-Net use the same loss function, but since the output of

GD-Net is dose distribution DA, and RD-Net further improves the

prediction accuracy based on GD-Net, outputting dose distribution

DB. To train these two sub-networks more effectively, a custom L1

loss function was defined, and its calculation method is shown in

Equation 2:

L = ao
N

i=1

DA(i) − GT(i)j j
N

− bo
N

i=1

DB(i) − GT(i)j j
N

  (2)

Here, DA(i) represents the predicted dose value of the i-th voxel

by GD-Net, DB(i) represents the predicted dose value of the i-th

voxel by RD-Net, GT(i) is the optimal dose value of the i-th voxel,

and N is the total number of voxels that can receive dose.

Considering the relationship between GD-Net and RD-Net, as

well as the importance of RD-Net in the final dose distribution

prediction, a and b are set to 0.5 and 1, respectively.

The network is trained using the cascaded U-Net on a

workstation equipped with two 24GB Nvidia RTX 3090 GPUs. The

model uses Kaiming initialization[34] for weight initialization, with a

batch size of 2, a maximum of 80,000 iterations, 68 iterations per

epoch, for a total of 1,176 epochs. The Adam optimizer is used to

accelerate convergence and improve training efficiency. The initial

learning rate is set to 3e-4, and a cosine annealing strategy is used to

gradually reduce the learning rate at each epoch until the minimum

learning rate (1e-7) is reached, at which point training stops. Table 3

shows the detailed training configuration information.
Frontiers in Oncology 05
2.3 Experimental grouping

2.3.1 Control group
The first experiment, uses CT images, PTV, bilateral lungs, left

lung, right lung, spinal cord, esophagus, and heart as input to the

neural network. An independent dataset is used for training and

evaluation, with the goal of observing the dose distribution

prediction results based solely on CT, PTV, and OARs.

2.3.2 Comparative experiments
The first experiment uses only CT, PTV masks, and OARs

masks as inputs. While these inputs aid the model in effectively

predicting the dose distribution, they lack the information necessary

to help the model learn the rate and direction of dose falloff in

regions distant from the PTV. Therefore, incorporating different

numbers of dose masks to improve dose attenuation in the low and

intermediate dose regions is a valuable regions of research. In this

study, five input combinations were set up and five models were

trained using the same patient dataset:
1. CT + PTV + OARs + BODY mask.

2. CT + PTV + OARs + BODY mask + 3 dose masks (masks

corresponding to doses greater than 65 Gy at 10%, 50%,

and 90%).
TABLE 2 Training configuration table.

Setting Value

Batch Size 2

List of GPU IDs [0, 1]

Max Iterations 80,000

Learning Rate 3e-4

Weight Decay 1e-4

Loss Function Custom Loss Function (Loss class)

Training
Loss Threshold

0.01

Learning
Rate Scheduler

Cosine annealing

Scheduler Arguments T_max=80,000, eta_min=1e-7, last_epoch=-1

Optimizer Adam

Train Batch Size 2

Validation Batch Size 2

Training Iterations
per Epoch

500

Validation Iterations
per Epoch

1

Network
Architecture

CascU-Net (Model class) with in_ch=18, out_ch=1,
list_ch_A=[-1, 16, 32, 64, 128, 256], list_ch_B=[-1, 32,

64, 128, 256, 512]
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3. CT + PTV + OARs + BODY + 5 dose masks (masks

corresponding to doses greater than 65 Gy at 10%, 30%,

50%, 70%, and 90%).

4. CT + PTV + OARs + BODY + 7 dose masks (masks

corresponding to doses greater than 65 Gy at 10%, 20%,

30%, 50%, 60%, 70%, and 90%).

5. CT + PTV + OARs + BODY + 10 dose masks (masks

corresponding to doses greater than 65 Gy at 10%, 20%,

30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100%).
The model in the first group uses only CT, PTV masks, and

OAR masks as inputs, referred to as CascU-Net-B (Basic Cascaded

U-Net). Models in groups b-e use CT, PTV mask, OARs mask, and

dose masks as inputs, referred to as CascU-Net-DM (Dose Mask-

Assisted Cascaded U-Net). Furthermore, to make the CascU-Net-

DM model applicable to clinical radiotherapy scenarios, we pre-

trained a dose distribution prediction model, CascU-Net, which has

the same structure as shown in Figure 3. Each dose mask was

generated by threshold segmentation of the dose distribution results

predicted by the CascU-Net model, thereby preventing issues where
tiers in Oncology 06
new patients might be unable to use the model due to the absence of

dose masks. The detailed workflow is illustrated in Figure 3.
2.4 Evaluation

The model’s prediction results and the manual planning results

are evaluated using the Homogeneity Index (HI), Conformity Index

(CI), Mean Absolute Error (MAE), and Dose-Volume

Histogram (DVH).

HI is used to evaluate the uniformity of the PTV dose

distribution, defined as in Equation 3. Here, Dn represents the

dose received by n% of the volume, and Dp represents the

prescribed dose.

HI =
D2 − D98

DP
(3)

CI is an important metric for evaluating the dose coverage of

radiotherapy treatment plans, as defined in Equation 4. Here, VT,ref

represents the PTV volume covered by the prescribed dose, VT
FIGURE 3

Overview of the data preprocessing workflow and the training of a 3D network to produce voxel-based dose distributions in 3D.
TABLE 3 Distribution of patient prescription dose types.

Sublet 50Gy 60Gy 45-60Gy 50-60Gy 50-65Gy 50-60-65Gy Sum

Training set 11 47 8 48 5 17 136

Validation set 2 6 1 7 1 2 19

Test set 3 10 2 13 2 5 35

Sum 16 63 11 68 8 24 190
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represents the PTV volume, and Vref represents the volume covered

by the prescribed dose.

CI =
VT,ref

VT
−
VT,ref

Vref
    (4)

MAE represents the mean absolute error in the dose within the

PTV or OARs between the predicted dose and the manually

planned dose, as defined in Equation 5. Here, N represents the

number of voxels in the PTV or OARs, DPre(i) represents the

predicted dose for voxel i, and DGT(i) represents the manually

planned dose for voxel i.

MAE = o
N
i=1( DPre(i) − DGT(i)j j)

N
(5)

To further assess the similarity between the closed isodose curve

regions in the model-predicted dose distribution and the clinical

results, the study employed the Dice Similarity Coefficient (DSC) as

a metric, calculated as shown in Equation 6. Here, A represents the

3D voxel dose volume predicted by the model, while B represents

the 3D voxel dose volume from the clinical results. Dose values were

selected at 0.5 Gy intervals from 0 Gy to 65 Gy for calculation, and

the DSC curve was plotted for evaluation.

DSC =
2(A ∩ B)
A + B

(6)

Key dosimetric parameters such as D99%, D98%, D95%, Dmax,

Dmean for PTV, and Dmax, Dmean, V40Gy, V30Gy, V20Gy, and V5Gy for

OARs were assessed, and the differences and standard deviations

between the predicted and manually planned results were

calculated. The smaller the mean difference and standard

deviation, the higher the accuracy of the prediction results.

This study employs statistical tests (paired t-test or Wilcoxon

signed-rank test, depending on the normality assumption of the

differences) to evaluate the final predictive efficacy. All tests were

conducted at a significance level of a = 0.05, with p< 0.05 indicating

that the dose differences are statistically significant.
3 Results

3.1 Impact of dose masks

Tables 4 and 5 summarize the mean absolute errors (MAE) of

the PTV and OARs dosimetric parameters for 35 patients. In

CascU-Net-DM, the MAEs of nearly all PTV and OARs clinical

parameters are significantly reduced compared to CascU-Net-B.

With the exception of D2% and Dmax for all PTVs, the MAEs for

most structures are below 2%.

Figure 4 shows the dose distribution of CascU-Net-B and

CascU-Net-DM on the cross-sectional images of six patients in

the test set, including clinical dose distributions, predicted dose

distributions, and dose difference maps. Six patients were randomly

selected from the test set of 6 prescribed dose, corresponding to the

following prescribed dose: (a) 50 Gy; (b) 60 Gy; (c) 50-65 Gy; (d) 50-

60-65 Gy; (e) 50-60 Gy; (f) 45-60 Gy. In the dose distribution plots
Frontiers in Oncology 07
for all prescriptions, the difference between the predicted voxel dose

and the clinical outcome was much smaller for CascU-Net-DM.The

protective effect of CascU-Net-DM on OARs was comparable to

that of the manual plan in the low and medium dose regions, while

the dose prediction accuracy improvement effect was limited in the

higher dose regions. Figure 5 shows the dose-volume histograms

(DVH) of the clinical dose distributions versus the predicted dose

distributions for all the patients in Figure 4 in turn. From the DVH

plot, it can be seen that the PTV and OARs prediction results of

CascU-Net-DM are highly consistent with the clinical results,

realizing the dose coverage ability of the target area and the

protection of the critical organs comparable to the clinical results,

and especially in the low and intermediate dose regions, the error is

significantly reduced.
3.2 Ablation experiment

Tables 6 and 7 present the mean absolute error (MAE) of the

dose evaluation metrics for PTV and OARs using CascU-Net-DM

with four different numbers of dose masks as inputs. As the number

of dose masks increases, the overall clinical evaluation metric

difference for PTV and OARs are significantly reduced, with the

network using 10 dose masks performing the best.

Figure 6 illustrates the DSC curves of the ablation model across

various isodose volumes. For the model trained solely on CT images

and organ contours, DSC values remain largely stable between 0.8

and 0.9 for regions below the 80% isodose volume. Upon

introducing a limited number of dose masks, predictive accuracy

at the 10%, 50%, and 90% isodose volumes increases markedly, with

adjacent isodose levels also showing improvement. As additional

dose masks are incorporated, the corresponding DSC values

steadily converge toward 1. The shaded bands surrounding each

curve denote the standard deviation of DSC values across all

patients in the test set, indicating that prediction stability is

maximized when ten dose masks are employed.

Figure 7 presents the voxel‐wise dose MAE for each anatomical

structure, displayed as boxplots for models receiving different

numbers of dose masks as input. It is apparent that increasing the

number of input dose masks yields a uniformly positive effect on

dose‐prediction accuracy across all structures. The benefit is most

pronounced for larger lung volumes, whereas smaller structures

near the tumor—such as the spinal cord and esophagus—exhibit

more modest improvements. Furthermore, as the count of dose

masks grows, the MAE distributions for all structures become more

concentrated and the overall dose error decreases. This suggests

that, although adding further masks beyond a certain point offers

diminishing returns in mean performance enhancement, it still

contributes to greater stability of the predictive results.

Figure 8 shows the changes in training loss for the models with

different numbers of dose masks as inputs. From the figure, it can be

observed that as the number of masks increases, the training loss

gradually decreases and stabilizes at a lower value. This indicates

that adding dose masks provides additional prior information,

helping the model better fit the data and improve training
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performance. Especially in the 7-mask and 10-mask models, the

training loss decreases more rapidly, and the final loss values are

lower, suggesting that dose masks provide significant support in

these models.
4 Discussion

This study uses a cascaded model to predict the multi-

prescription dose distributions for lung cancer IMRT. Compared to

existing studies on lung cancer IMRT dose distribution prediction,
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this study’s dataset covers a variety of conventional radiotherapy and

simultaneous integrated boost radiotherapy prescription schemes,

making it applicable to a broader range of clinical scenarios.

Additionally, this study incorporates dose masks as inputs to assist

model training, thereby improving the prediction accuracy for the

low and intermediate dose regions. For most PTV and OARs metrics,

the dose mask-assisted model showed a significant reduction in errors

compared to clinical results, demonstrating the effectiveness of using

dose masks as additional input information. Moreover, this model

has broad applicability across multiple clinical scenarios without the

need to train separate models for each prescription scheme.
TABLE 4 Comparison of PTV clinical dosimetric parameters in CascU-Net-B and CascU-Net-DM through the MAE (mean ± standard deviation).

Evaluation Metrics Ground truth
CT/PTV/OARs CT/PTV/OARs/10mask

Prediction MAE P Prediction MAE P

PTV45

D2% (Gy) 64.89 ± 0.18 61.45 ± 1.98 4.44 ± 3.17 p=0.5 66.12 ± 1.47 2.32 ± 0.20 p=1

D95% (Gy) 44.94 ± 0.06 47.15 ± 0.24 2.21 ± 0.18 p=0.5 44.53 ± 0.01 1.56 ± 0.01 p=1

D98% (Gy) 43.03 ± 1.93 44.81 ± 0.35 4.28 ± 2.08 p=0.5 42.57 ± 1.73 2.89 ± 0.15 p=1

Dmean (Gy) 54.61 ± 0.69 53.85 ± 1.57 0.88 ± 0.75 p=1 55.1 ± 1.29 0.31 ± 0 p=1

Dmax (Gy) 68.74 ± 0.08 63.93 ± 0.63 6.81 ± 4.27 p=0.5 69.11 ± 0.95 4.36 ± 1.62 p=1

CI 0.32 ± 0.02 0.41 ± 0.10 0.09 ± 0.08 p=0.5 0.33 ± 0.03 0.06 ± 0.05 p=1

HI 0.41 ± 0.02 0.30 ± 0.01 0.16 ± 0.10 p=0.5 0.5 ± 0.01 0.1 ± 0.05 p=1

PTV50

D2% (Gy) 62.93 ± 4.09 62.60 ± 3.01 1.65 ± 1.24 p=0.3 62.52 ± 3.34 1.23 ± 0.76 p=0.9

D95% (Gy) 48.65 ± 1.18 49.68 ± 1.01 1.68 ± 1.63 p<0.05 48.53 ± 1.29 1.22 ± 1.02 0.01

D98% (Gy) 46.24 ± 1.43 47.19 ± 1.24 1.86 ± 2.05 p<0.05 46.39 ± 1.74 1.35 ± 0.86 p=0.17

Dmean (Gy) 54.85 ± 1.76 56.38 ± 1.20 1.58 ± 0.99 p<0.05 54.82 ± 1.93 1.02 ± 0.57 0

Dmax (Gy) 65.36 ± 4.69 64.76 ± 3.80 3.75 ± 1.95 p=0.33 64.27 ± 3.81 1.49 ± 1.26 0

CI 0.40 ± 0.14 0.44 ± 0.13 0.06 ± 0.05 p<0.05 0.35 ± 0.1 0.04 ± 0.03 0.05

HI 0.30 ± 0.09 0.27 ± 0.05 0.06 ± 0.05 p<0.05 0.3 ± 0.07 0.03 ± 0.03 p=0.59

PTV60

D2% (Gy) 65.79 ± 1.90 65.31 ± 2.07 3.32 ± 4.51 p=0.42 65.72 ± 1.68 1.67 ± 1.15 p=0.94

D95% (Gy) 58.89 ± 0.86 58.35 ± 1.08 1.38 ± 0.96 0 58.89 ± 1.41 1.15 ± 0.70 p<0.05

D98% (Gy) 57.29 ± 1.36 56.84 ± 1.84 1.62 ± 1.1 p=0.08 56.91 ± 1.7 1.16 ± 0.87 p<0.05

Dmean (Gy) 62.55 ± 1.20 62.09 ± 1.13 1.29 ± 1.2 p=0.06 62.98 ± 1.21 1.01 ± 0.71 p=0.92

Dmax (Gy) 67.01 ± 2.09 66.23 ± 2.27 3.65 ± 4.71 p=0.18 66.67 ± 1.85 1.95 ± 1.43 p<0.05

CI 0.63 ± 0.16 0.65 ± 0.18 0.11 ± 0.08 p=0.32 0.63 ± 0.16 0.06 ± 0.04 p=0.97

HI 0.13 ± 0.04 0.13 ± 0.04 0.06 ± 0.08 p=0.97 0.14 ± 0.04 0.04 ± 0.02 p=0.14

PTV65

D2% (Gy) 70.23 ± 1.94 70.66 ± 2.58 6.43 ± 5.47 p=0.39 66.33 ± 1.91 3.09 ± 1.93 p<0.05

D95% (Gy) 64.07 ± 0.64 64.04 ± 0.86 1.91 ± 1.28 p=0.63 62.56 ± 1.13 0.91 ± 0.17 p=0.58

D98% (Gy) 62.62 ± 1.19 62.36 ± 1.60 3.18 ± 3.8 p=0.67 61.82 ± 0.94 2.28 ± 1.71 p=0.79

Dmean (Gy) 67.53 ± 1.01 66.87 ± 0.97 1.85 ± 1.04 p=0.45 64.61 ± 1.61 1.31 ± 0.54 p<0.05

Dmax (Gy) 71.04 ± 2.12 71.97 ± 2.77 7.68 ± 6.40 p=0.37 66.71 ± 2.01 3.58 ± 1.67 p<0.05

CI 0.70 ± 0.08 0.69 ± 0.08 0.24 ± 0.17 p=0.64 0.42 ± 0.21 0.17 ± 0.07 p=0.19

HI 0.13 ± 0.08 0.15 ± 0.07 0.12 ± 0.10 p=0.59 0.09 ± 0.04 0.06 ± 0.07 p=0.13
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In the first experiment, the base model was trained and

evaluated, followed by the addition of ten dose masks as auxiliary

information for further training. CascU-Net-B exhibits larger errors

in regions far from the target, whereas CascU-Net-DM significantly

reduces these errors in those regions. This may be because dose

masks help the model more effectively learn the direction and rate

of dose falloff in the low and intermediate dose regions, resulting in

more precise dose sculpting in these regions by the improved

model. For the Dmax metric of the PTV, the model incorporating

dose masks also showed significant improvement. Although Dmax is

an extreme value with a large range of variation, the stability of the

model improved noticeably after adding the masks, indicating that

the dose masks help the model better capture dose fluctuations in

the clinical plan. Therefore, models incorporating dose mask

information are a more effective alternative to models that only

input CT and structure delineation.

Compared to CascU-Net-B, the model in this study shows a

lower mean absolute error (MAE) after the introduction of dose

masks, indicating that the predicted results are numerically closer to

the clinical plan. However, based on statistical tests of the predicted

and clinical plan values, the p-value shows that there is still a

statistically significant difference. The reason is that, the p-value

results are closely related to the sample size and the consistency of

the bias direction. Even small biases, if consistent in the majority of

patients and with a sufficiently large sample size, will be detected by

the statistical test and yield p< 0.05. From a clinical application

perspective, what matters more is whether the prediction error can
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be kept within an acceptable range. Although statistical differences

still exist, our model reduces the MAE by 1.5%, which provides

higher reference value for clinical dose distribution decisions and

subsequent plan optimization.

In the second experiment, the impact of different numbers of

dose masks on the performance of the dose prediction network was

investigated. Figure 7 shows that as the number of dose masks

increases, the model’s prediction accuracy significantly improves,

the MAE value gradually decreases, and the prediction results

become more stable. This aligns with the study’s hypothesis, as

the denser the dose mask intervals, the more the model can learn

the relationships between dose masks and dose distributions,

including the direction and rate of dose falloff near organs at risk.

The overall trend indicates that dose masks are an effective

supplement in deep learning models for radiation dose prediction

applications. Compared to traditional models, models with varying

numbers of masks significantly improved the stability of the

training process and ultimately achieved lower training losses.

These findings provide important references for further

improving the accuracy of deep learning models based on clinical

prior information in the future.

This study also has some limitations. Although incorporating

dose masks substantially improved model performance—

particularly in mid-to-low-dose regions for OARs protection—the

predictive gains in high-dose areas were marginal. This

shortcoming likely arises because using a fixed number of equally

spaced thresholds (e.g., ten masks) yields relatively broad dose
TABLE 5 Comparison of OARs clinical dosimetric parameters in CascU-Net-B and CascU-Net-DM through the MAE (mean ± standard deviation).

Evaluation
Metrics

Ground
truth

CT/PTV/OARs CT/PTV/OARs/10mask

Prediction MAE P Prediction MAE P

Lung_L V5Gy (%) 41.07 ± 26.62 41.17 ± 27.33 5.08 ± 5.05 p=0.79 40.66 ± 26.6 3.25 ± 3.21 p=0.36

Lung_L V20Gy (%) 21.23 ± 23.10 21.24 ± 24.18 2.57 ± 2.57 p=0.53 21.42 ± 23.2 1.72 ± 1.99 p=0.59

Lung_L Dmean (Gy) 12.37 ± 12.32 12.36 ± 12.68 0.85 ± 0.73 p=0.75 12.34 ± 12.39 0.73 ± 0.61 p=0.23

Lung_R V5Gy (%) 44.90 ± 22.76 45.45 ± 21.19 3.75 ± 3.55 p=0.75 44.58 ± 22.74 2.96 ± 2.37 p=0.85

Lung_R V20Gy (%) 23.56 ± 19.58 23.21 ± 19.60 2.21 ± 1.61 p=0.66 23.82 ± 19.63 1.58 ± 1.14 p=0.45

Lung_R Dmean (Gy) 13.34 ± 10.76 13.25 ± 10.63 0.84 ± 0.60 p=0.64 13.36 ± 10.84 0.53 ± 0.41 p=0.55

Double Lung V5Gy (%) 41.14 ± 14.61 41.10 ± 13.97 3.98 ± 3.06 p=0.87 40.75 ± 14.67 2.46 ± 2.12 p=0.54

Double Lung V20Gy (%) 20.30 ± 14.91 20.06 ± 14.96 1.53 ± 1.14 p=0.65 20.51 ± 14.89 1.13 ± 0.83 p=0.45

Double Lung Dmean (Gy) 11.80 ± 9.21 11.72 ± 9.25 0.65 ± 0.38 p=0.39 11.8 ± 9.28 0.38 ± 0.29 p=0.89

Heart V30Gy (%) 13.51 ± 18.89 13.90 ± 18.78 1.72 ± 2.55 p=0.11 13.32 ± 18.86 1.11 ± 1.22 p=0.5

Heart V40Gy (%) 9.66 ± 17.62 9.65 ± 17.51 1.64 ± 1.97 p=0.58 9.83 ± 17.67 1.19 ± 1.49 p=0.24

Heart Dmean (Gy) 10.56 ± 11.14 10.82 ± 11.13 0.96 ± 1.03 p=0.6 10.58 ± 11.2 0.65 ± 0.58 p=0.43

Esophagus Dmax (Gy) 53.18 ± 14.13 53.30 ± 14.30 3.44 ± 4.09 p=0.7 53.22 ± 14.29 2.97 ± 2.18 p=0.97

Esophagus Dmean (Gy) 20.37 ± 11.97 20.51 ± 12.09 1.36 ± 1.13 p=0.18 20.38 ± 12 0.82 ± 0.76 p=0.83

Spinalcord Dmax (Gy) 37.89 ± 7.37 37.28 ± 8.30 4.04 ± 4.63 p=0.36 38.14 ± 7.5 3.66 ± 3.38 p=0.15
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intervals per mask. At the steep dose-falloff regions bordering the

high-dose volume, such coarse masks cannot capture the

submillimeter-scale rapid dose-falloff, leaving the model unable to

learn these fine-grained transitions. Furthermore, low-dose regions

occupy a much larger volume in the dataset; even with a voxel-wise

loss, the network tends to prioritize minimizing global error in the

volumetrically dominant zones. Consequently, errors in the

relatively sparse high-gradient regions contribute little to the

overall loss, and the model achieves limited convergence

improvements there. In future work, we plan to introduce a

gradient-weighted loss that assigns higher penalty to voxels in

steep dose-falloff areas. We will also explore finer thresholding in
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the high-dose region—such as generating masks every 2 Gy—or

adaptive mask generation driven by local gradient magnitude to

enhance spatial resolution in these critical zones.

To our knowledge, this is the first dose prediction network that

considers dose mask auxiliary information. The information on

dose falloff direction and rate in different dose regions is clinically

significant as it helps improve dose sculpting in the low and

intermediate dose regions, which is of critical importance for

protecting important organs at risk. Additionally, it is worth

noting that other models (21, 24, 25, 27) only consider common

50Gy, 60Gy, and 50Gy/60Gy conventional radiotherapy schemes,

whereas this model considers a mixed dataset of 2 conventional
FIGURE 4

The ground-truth, predicted dose results from different models, and the dose differences between the predicted results and the ground-truth for
representative patients from six different prescription schemes in the test set are presented. The corresponding six prescription schemes are as
follows: (a) 50 Gy; (b) 60 Gy; (c) 50-65 Gy; (d) 50-60-65 Gy; (e) 50-60 Gy; (f) 45-60 Gy.
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TABLE 6 Comparison of PTV clinical dosimetric parameters in the ablation experiment for 35 test set patients using CascU-Net-DM with different
numbers of dose masks through the MAE (mean ± standard deviation).

Evaluation Metrics
3 mask 5 mask 7 mask 10 mask

MAE p-value MAE p-value MAE p-value MAE p-value

PTV45

D2% (Gy) 3.75 ± 0.48 p=1 3.39 ± 2.19 p=1 2.45 ± 2.38 p=0.5 2.32 ± 0.20 p=1

D95% (Gy) 1.92 ± 1.37 p=0.5 1.72 ± 0.10 p=1 1.61 ± 0.21 p=1 1.56 ± 0.01 p=1

D98% (Gy) 3.55 ± 2.37 p=1 3.02 ± 1.01 p=1 2.92 ± 0.91 p=1 2.89 ± 0.15 p=1

Dmean (Gy) 0.59 ± 0.41 p=1 0.57 ± 0.41 p=1 0.32 ± 0.17 p=0.5 0.31 ± 0 p=1

Dmax (Gy) 5.33 ± 3.10 p=1 4.9 ± 3.53 p=1 4.87 ± 2.95 p=0.5 4.36 ± 1.62 p=1

CI 0.08 ± 0.07 p=0.5 0.07 ± 0.05 p=1 0.07 ± 0.05 p=1 0.06 ± 0.05 p=1

HI 0.13 ± 0.03 p=1 0.11 ± 0.06 p=1 0.11 ± 0.06 p=1 0.1 ± 0.05 p=1

PTV50

D2% (Gy) 1.49 ± 1.08 p=0.49 1.41 ± 0.87 p=0.4 1.37 ± 1.04 p=0.84 1.23 ± 0.76 p=0.9

D95% (Gy) 1.53 ± 1.02 p=0.09 1.4 ± 1.11 p<0.05 1.32 ± 0.81 p<0.05 1.22 ± 1.02 p<0.05

D98% (Gy) 1.75 ± 1.06 p=0.4 1.69 ± 0.97 p=0.29 1.51 ± 0.95 p=0.15 1.35 ± 0.86 p=0.17

Dmean (Gy) 1.28 ± 1.07 p<0.05 1.22 ± 1.14 p<0.05 1.1 ± 0.8 p<0.05 1.02 ± 0.57 p<0.05

Dmax (Gy) 1.86 ± 1.38 p<0.05 1.74 ± 0.95 p=0.23 1.54 ± 0.9 p<0.05 1.49 ± 1.26 p<0.05

CI 0.06 ± 0.04 p<0.05 0.05 ± 0.03 p=0.92 0.04 ± 0.03 p=0.64 0.04 ± 0.03 0.05

HI 0.04 ± 0.04 p=0.42 0.04 ± 0.02 p=0.67 0.04 ± 0.02 p=0.49 0.03 ± 0.03 p=0.59

PTV60

D2% (Gy) 2.05 ± 1.70 p=0.35 1.95 ± 1.63 p=0.68 1.81 ± 1.56 p<0.05 1.67 ± 1.15 p=0.94

D95% (Gy) 1.35 ± 0.99 p<0.05 1.24 ± 0.88 p<0.05 1.27 ± 0.79 p=0.05 1.15 ± 0.70 p<0.05

D98% (Gy) 1.51 ± 0.79 p<0.05 1.42 ± 0.75 p<0.05 1.36 ± 1.01 p<0.05 1.16 ± 0.87 p<0.05

Dmean (Gy) 1.22 ± 0.74 p=0.08 1.2 ± 0.79 p=0.5 1.16 ± 0.95 p=0.39 1.01 ± 0.71 p=0.92

(Continued)
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FIGURE 5

The DVH of the predicted results from different models and the ground-truth for representative patients from six different prescription schemes in
the test set are presented. The corresponding six prescription schemes are as follows: (a) 50 Gy; (b) 60 Gy; (c) 50-65 Gy; (d) 50-60-65 Gy; (e) 50-
60 Gy; (f) 45-60 Gy.
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radiotherapy and 4 simultaneous integrated boost radiotherapy

prescription dose combinations, making this model more

applicable and robust in real clinical radiation therapy scenarios.

When the dose distribution generated by the model can successfully

be used to create treatment plans in commercial TPS, it will greatly

advance the development of one-stop radiation therapy and

adaptive radiation therapy, leading to greater clinical benefits

for patients.
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5 Conclusion

This study innovatively proposes a dose prediction method based

on the CascU-Net model, which significantly improves the prediction

accuracy of lung cancer IMRT dose distribution by incorporating dose

masks and effectively addresses the issue of diverse prescription

schemes in the dataset. In lung cancer IMRT dose distribution

prediction research, multiple conventional radiotherapy and
TABLE 7 Comparison of OARs clinical dosimetric parameters in the ablation experiment for 35 test set patients using CascU-Net-DM with different
numbers of dose masks through the MAE (mean ± standard deviation).

Evaluation
Metrics

3 mask 5 mask 7 mask 10 mask

MAE p-value MAE p-value MAE p-value MAE p-value

Lung_L V5Gy (%) 3.62 ± 3.65 p=0.53 3.5 ± 3.35 p=0.57 3.42 ± 3.52 p=0.5 3.25 ± 3.21 p=0.36

Lung_L V20Gy (%) 2.03 ± 2.42 p=0.06 1.92 ± 2.38 p=0.64 1.82 ± 2.32 p=0.78 1.72 ± 1.99 p=0.59

Lung_L Dmean (Gy) 0.81 ± 0.71 p=0.12 0.78 ± 0.68 p=0.2 0.79 ± 0.64 p=0.21 0.73 ± 0.61 p=0.23

Lung_R V5Gy (%) 3.22 ± 2.66 p=0.78 3.04 ± 2.51 p=0.6 3.04 ± 2.36 p=0.96 2.96 ± 2.37 p=0.85

Lung_R V20Gy (%) 2.02 ± 1.68 p=0.49 1.87 ± 1.85 p=0.5 1.77 ± 1.43 p=0.52 1.58 ± 1.14 p=0.45

Lung_R Dmean (Gy) 0.73 ± 0.55 p=0.89 0.65 ± 0.61 p=0.51 0.59 ± 0.37 p=0.33 0.53 ± 0.41 p=0.55

Double Lung V5Gy (%) 2.63 ± 2.18 p=0.56 2.5 ± 2.03 p=0.6 2.53 ± 2.09 p=0.42 2.46 ± 2.12 p=0.54

Double Lung V20Gy (%) 1.4 ± 0.92 p=0.46 1.3 ± 0.96 p=0.92 1.2 ± 1.06 p=0.26 1.13 ± 0.83 p=0.45

Double Lung
Dmean (Gy)

0.57 ± 0.38 p=0.41 0.46 ± 0.35 p=0.48 0.42 ± 0.31 p=0.95 0.38 ± 0.29 p=0.89

Heart V30Gy (%) 1.39 ± 3.03 p=0.58 1.27 ± 2.34 p=0.81 1.18 ± 1.91 p=0.45 1.11 ± 1.22 p=0.5

Heart V40Gy (%) 1.58 ± 2.20 p=0.19 1.49 ± 2.29 p=0.57 1.24 ± 1.55 p=0.27 1.19 ± 1.49 p=0.24

Heart Dmean (Gy) 0.8 ± 0.80 p=0.62 0.76 ± 0.79 p=0.65 0.69 ± 0.55 p=0.75 0.65 ± 0.58 p=0.43

Esophagus Dmax (Gy) 3.34 ± 3.12 p=0.74 3.19 ± 2.61 p=0.42 3.01 ± 2.57 p=0.63 2.97 ± 2.18 p=0.97

Esophagus Dmean (Gy) 1.09 ± 0.96 p=0.51 0.88 ± 0.74 p=0.2 0.74 ± 0.57 p=0.67 0.82 ± 0.76 p=0.83

Spinalcord Dmax (Gy) 3.91 ± 4.45 p=0.62 3.83 ± 4.70 p=0.10 3.76 ± 3.6 p=0.08 3.66 ± 3.38 p=0.15
TABLE 6 Continued

Evaluation Metrics
3 mask 5 mask 7 mask 10 mask

MAE p-value MAE p-value MAE p-value MAE p-value

Dmax (Gy) 2.06 ± 2.04 p=0.52 2.03 ± 1.33 p=0.2 2.03 ± 1.29 p<0.05 1.95 ± 1.43 p<0.05

CI 0.08 ± 0.08 p=0.62 0.07 ± 0.06 p=0.25 0.06 ± 0.05 p=0.66 0.06 ± 0.04 p=0.97

HI 0.06 ± 0.04 p<0.05 0.05 ± 0.03 p<0.05 0.05 ± 0.04 p=0.12 0.04 ± 0.02 p=0.14

PTV65

D2% (Gy) 3.67 ± 2.34 p<0.05 3.1 ± 1.63 p<0.05 3.1 ± 1.48 p<0.05 3.09 ± 1.93 p<0.05

D95% (Gy) 1.4 ± 0.74 p=0.73 1.19 ± 0.53 p=0.7 1.07 ± 0.39 p=0.33 0.91 ± 0.17 p=0.58

D98% (Gy) 2.55 ± 2.48 p=0.77 2.52 ± 1.98 p=0.88 2.41 ± 2.49 p=0.91 2.28 ± 1.71 p=0.79

Dmean (Gy) 1.67 ± 0.83 p<0.05 1.53 ± 1.18 p<0.05 1.46 ± 0.76 p<0.05 1.31 ± 0.54 p<0.05

Dmax (Gy) 4.01 ± 2.55 p<0.05 3.91 ± 1.99 p<0.05 3.81 ± 1.4 p<0.05 3.58 ± 1.67 p<0.05

CI 0.22 ± 0.23 p=0.08 0.2 ± 0.12 p=0.07 0.19 ± 0.08 p<0.05 0.17 ± 0.07 p=0.19

HI 0.07 ± 0.08 p=0.21 0.07 ± 0.04 p=0.12 0.06 ± 0.03 p=0.02 0.06 ± 0.07 p=0.13
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FIGURE 6

DSC curves of the ablation model at various isodose volumes. The shaded regions represents the standard deviation of DSC values among patients
in the test set.
FIGURE 7

The boxplot depicts the mean absolute error (MAE) of the dose distribution prediction model for different numbers of input dose masks. The box
represents the first quartile (Q1) and third quartile (Q3), with the upper and lower whiskers indicating the maximum and minimum values,
respectively. The median is shown by the horizontal line within the box, and outliers are marked by white dots.
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simultaneous integrated boost radiotherapy prescription schemes can

be used as mixed data inputs to the model, rather than being limited to

a single prescription dataset, thereby avoiding the need to configure

multiple models for different radiation therapy scenarios.
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FIGURE 8

Training loss variation over time for the CascU-Net model with different numbers of dose masks as inputs.
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