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Purpose: 3D U-Net deep neural networks are widely used for predicting
radiotherapy dose distributions. However, dose prediction for lung cancer
IMRT is limited to conventional radiotherapy, with significant errors in
predicting the intermediate and low-dose regions.

Methods: We included a mixed dataset of conventional radiotherapy and
simultaneous integrated boost (SIB) radiotherapy with various prescription
schemes. In addition to inputting CT images and anatomical structures, we
incorporated dose mask information to provide richer local low-dose details. We
trained five models with varying numbers of dose masks to investigate their
impact on dose prediction models.

Results: The inclusion of dose masks led to significant improvements in
prediction accuracy for both the PTV and OARs. In particular, the mean
absolute error (MAE) of dosimetric metrics for most OARs fell below 2%, and
voxel-wise MAE within each structure steadily decreased as more dose masks
were supplied—most notably in low-dose regions. These results demonstrate
that incorporating dose masks effectively enhances training efficiency and
prediction stability. Among models receiving varying numbers of dose masks,
the configuration with ten masks achieved the highest predictive accuracy.
Conclusion: This study proposes a dose mask-assisted method for lung cancer
IMRT dose prediction. It demonstrates high accuracy and robustness in clinical
radiotherapy scenarios with various prescription schemes, including
conventional radiotherapy and SIB. The inclusion of additional dose masks
significantly improved model performance, with prediction accuracy increasing
as the number of masks increased.
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1 Introduction

Lung cancer is one of the leading malignancies globally in terms
of both incidence and mortality (1), and radiotherapy is considered
an effective and commonly used method for tumor control. Over
the past few decades, the development of intensity-modulated
radiotherapy (IMRT) has significantly improved the effectiveness
of lung cancer radiotherapy (2). Treatment planning systems (TPS)
are capable of generating high-quality radiotherapy plans, but
physicists must repeatedly fine-tune the dose objectives until the
desired dose distribution is achieved. This process is time-
consuming and highly dependent on the physicist’s experience
and skill, leading to significant variability in plan quality (3).

To address this issue, the research community has focused on
automating the treatment planning process to reduce manual
intervention and accelerate plan optimization (4). Predicting three-
dimensional radiotherapy dose distributions has become a popular
research direction. In recent years, deep learning methods, especially
convolutional neural networks (CNNs), have shown great potential in
medical image processing and dose prediction (5). Many U-Net
networks, which take CT images and organ contours as input, have
successfully predicted voxel-level 3D dose distributions and are widely
used in cancers such as prostate cancer (6-11), head and neck cancer
(12-16), and cervical cancer (17-20). Similarly, many studies have
focused on lung cancer (21-27) IMRT planning. These studies generally
train networks using CT and PTV/OARs structures as input, leading to
noticeable dose errors in normal tissue regions far from the PTV.

Figure 1 shows an example of dose errors that may occur using
conventional input types. These networks use CT and contour
structures as input, resulting in good prediction accuracy at the
PTV location where the beams intersect. However, dose errors in

(c) CT+Structure

FIGURE 1
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normal tissue regions are more pronounced, affecting the dose
protection of healthy tissues. Therefore, in dose prediction tasks, it
is essential to evaluate not only the target conformity and coverage but
also the dose differences along the beam path, with a focus on the
protection of organs at risk in the intermediate- and low-dose regions.

To make the model suitable for lung cancer IMRT applications
and improve its prediction accuracy and robustness, researchers
have adopted complex flux-convolutional wide-beam (FCBB) dose
calculation methods (25, 28) to process beam information,
enhancing the model’s ability to predict lung cancer IMRT dose
distributions for different beam angle setups (21). To further
improve the robustness of the model when using a mixed lung
cancer dataset with two types of conventional prescription schemes,
researchers introduced the Squeeze and Excitation (SE) module,
allowing the network to focus more on the dose results for small-
volume structures (22, 24). In addition, studies have shown that
using cascaded convolutional neural networks can significantly
improve both the overall and local dose prediction performance
of the model (14).

These methods, through end-to-end learning, minimize
reliance on manual features and have shown promising predictive
performance in preliminary results. However, existing studies
primarily focus on accurately predicting the dose to the planning
target volume (PTV), especially when dealing with diverse beam
setup strategies, multiple prescription dose schemes, and clinically
complex tumor spatial distributions. As a result, they still face
significant dose prediction errors in the intermediate- and low-dose
regions (22), limiting the accuracy and robustness of the models in
different clinical scenarios.

To address these shortcomings, this study introduces the
following improvements:

3
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'Visualization comparison of dose distribution predictions between the conventional input model and the dose mask-assisted model. (@) CT image of
a sample patient; (b) Dose distribution of the clinical treatment plan; (c) Model-predicted dose distribution with CT and anatomical structures as sole
inputs; (d) Model-predicted dose distribution with additional dose mask input.
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1. Diverse prescription dose schemes and complex tumor
spatial distributions: This study incorporates more types
of conventional radiotherapy plans and simultaneous
integrated boost (SIB) plans (e.g., 60 Gy, 50-60 Gy, 50-
60-65 Gy), as well as both unilateral and bilateral tumors,
enhancing the model’s applicability and flexibility to cover
a wider range of clinical treatment scenarios.

2. Introduction of dose mask information: The model input
data includes 10 different dose threshold-based masks,
significantly improving prediction accuracy in the
intermediate- and low-dose regions and demonstrating
the model’s precision in predicting local doses.

By introducing a mixed dataset with multiple prescription
schemes and incorporating dose mask information, this study
significantly improves the accuracy and generalizability of lung
cancer IMRT dose distribution predictions. These improvements
not only address the limitations of existing methods in dose
prediction but also provide strong technical support for more
efficient and personalized treatment planning in clinical practice.

2 Materials and methods
2.1 Dataset and preprocessing

This dataset includes 190 lung cancer patients who underwent
IMRT treatment at our institution up to June 2024 (58 cases of left-
sided lung cancer, 88 cases of right-sided lung cancer, and 52 cases of
bilateral lung cancer). Ethical approval for the use of patient data was
obtained from the institutional review board of our center. The dataset
was randomly divided into a training set, validation set, and test set at a
ratio of 7:1:2, with 141 cases in the training set, 19 in the validation set,
and 35 in the test set. Table 1 demonstrates the detailed distribution of
patients” prescription regimens. CT images (slice thickness of 3 mm,
512 x 512 matrix) were obtained using a Brilliance CT Big Bore system
(Philips Healthcare, Best, the Netherlands). The planning target
volume (PTV) and organs at risk (OARs) were contoured by
experienced radiation oncologists at our institution. OARs include
organs such as the esophagus, heart, lungs, and spinal cord. The
planning target volume includes both the conventional planning target
volume and the planning gross target volume (PGTV). In all lung
cancer IMRT plans, patients receive a dose prescription ranging from
45 to 65 Gy, with each patient having 1 to 3 PTVs.

All treatment plans were developed for clinical purposes and
optimized by experienced physicists at our institution using the
Eclipse TPS (Varian Medical Systems, Palo Alto, CA, USA). All
plans include 5 to 9 beams and use 6 MV photon energy
for irradiation.

The data for each patient includes CT images, anatomical
structures, and the planned dose distribution. The resolution of
the CT images is 512x512 with a slice thickness of 5 mm. Each PTV
and OAR is set as a separate binary mask for input. If a voxel is
assigned to an OAR, it is assigned a value of 1 in the corresponding
channel; otherwise, it is assigned a value of 0. All CT images, PTV
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TABLE 1 Model-specific architectural parameters for the Cascaded
U-Net model.

Component Description Parameters

Initial 3D
volume input Channels: in_ch (e.g. 1 image + N

1 t L
nput Layer masks), Shape: (X, Y, Z, in_ch)

(image +
dose masks)

Conv3D — InstanceNorm3d —
ReLUKernel: 3x3x3, Padding: 1, Stride:
variable, Out channels variable

SingleConv Block | Basic conv unit

Two SingleConv

X in_ch — list_ch[1] — list_ch[1],
at resolution

Encoder Stage 1
ncoder Stage Stride: 1

level 1

Downsample + o 111 S list_ch[2] (stride=2) —

E 2
neoder Stage list_ch[2] (stride=1)

Two SingleConv
at level 2

Downsample + 0 112] — list_ch[3] (stride=2) —

Two SingleC
WO SIgIET-ony list_ch[3] (stride=1)

Encoder Stage 3
at level 3

D 1
ownsampre + list_ch[3] — list_ch[4] (stride=2) —

Encoder Stage 4 list_ch[4] (stride=1)

Two SingleConv
at level 4

Downsample + 10 1 (4] s Tist_ch[5] (stride=2) —

E
neoder Stage 5 list_ch(5] (stride=1)

Two SingleConv
at level 5
Up-sampling Interpolate x2, Conv3D(in=list_ch[5],
out=list_ch[4]), Kernel:
3x3x3, Padding=1

Decoder
UpConv 4

convolution for
stage 4

Fusion conv at SingleConv x2 on 2xlist_ch[4] —

Decoder Conv 4

stage 4 list_ch[4]
Decoder Up-sam'pling Interpolate ><'2, Conv3D(in=list_ch[4],
convolution for out=list_ch[3]), Kernel:
UpConv 3

stage 3 3x3x3, Padding=1

Fusion conv at SingleConv x2 on 2xlist_ch[3] —

Decoder Conv 3

stage 3 list_ch[3]
Decoder Up-sa@pling Interpolate ><'2, Conv3D(in=list_ch[3],
convolution for out=list_ch[2]), Kernel:
UpConv 2

stage 2 3x3x3, Padding=1

Fusion conv at SingleConv x2 on 2xlist_ch[2] —

Decoder Conv 2

stage 2 list_ch[2]
Decoder Up-sam'pling Interpolate ><'2, Conv3D(in=list_ch[2],
convolution for out=list_ch[1]), Kernel:
UpConv 1

stage 1 3x3x3, Padding=1

Fusion conv at SingleConv x1 on 2xlist_ch[1] —

Decoder Conv 1

stage 1 list_ch([1]
Final dose Conv3D(list_ch[1], out_ch=1),
Output Heads prediction Kernel:1x1x1, separate heads for
outputs net_A and net_B
Cascade Two-stage net_A output concatenated with input
Connection cascaded UNet to net_B (in_ch + list_ch_A[1])

and OAR masks, and dose volumes were resampled to match the
pixel size of the dose distribution (1 mm x 1 mm), with the pixel
size in the z-axis direction maintained at 5 mm. The CT images,
structure masks, and dose distributions were then resampled to a
unified grid size (128 x 128 x 128) to reduce computational
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resource consumption. The CT values were then clipped to the
range [-1024, 1500] and normalized to [-1.024, 1.5]. The dose values
were normalized to the range [0, 1] based on a standard dose of 65
Gy, which helps the model learn features more effectively.
Additionally, data augmentation was applied, including random
flips along the X and Z axes, random rotations around the Z axis (0°,
40°, 80°, 120°, 160°, 200°, 240°, 280°, 320°), and random translations
with a maximum displacement of 20 pixels. Furthermore, using 65
Gy as the standard prescription dose, dose values were selected at
10% intervals from 10% to 100% of 65 Gy to generate 10 dose
thresholds, which were used to generate dose region masks that
exceed these thresholds in the dose distribution map.

Our dataset comprises IMRT plans for single-target irradiation
and SIB plans for multi-target irradiation, and the cascaded CNN
enhances its generalization capability through training. To enable
the model to handle variations in different prescription schemes,
during data preprocessing, when multiple overlapping PTV
structures exist within a patient, the outer PTV structure will
crop and discard the inner PTV structure. Then, using 65 Gy as
the standard dose, all the trimmed PTVs are merged using the
following Equation 1, while assigning the corresponding
prescription dose labels. Here, PTV45cut, PTV50cut, PTV60cut,
and PTV65cut represent the structures obtained by trimming the
planning target volumes prescribed to receive 45 Gy, 50 Gy, 60 Gy,
and 65 Gy, respectively.

45 50 60
PTVs = T X PTV45,, + r X PTV50,,, + T x PTV60,,,

65
+ 3 x PTV65,,; (1)

10.3389/fonc.2025.1587788

Specifically, each PTV is initially a three-dimensional structure
mask where every voxel is assigned a value of 1. Using the following
formula and taking 65 Gy as the standard dose, all the trimmed
PTV45cut, PTV50cut, PTV60cut, and PTV65cut for a single patient
are merged into a single structure, PTVs, with label values ranging
between 0 and 1, which serves as the single-channel input for the
deep learning model. At the same time, during preprocessing, the
dose values in the dose distribution are also scaled using 65 Gy, so
that the dose values fall within the range [0, 1] and correspond to
the PTV label values. This helps the model understand the dose
delivered to the PTV under different prescription schemes,
accelerates the convergence of model training, and improves its
prediction performance.

2.2 Network architecture

2.2.1 Architecture

In this study, we propose the Cascaded U-Net (CascU-Net)
model. The model consists of two cascaded U-Net structures, with
the first stage being Global DoseNet (GD-Net) and the second stage
being Refine DoseNet (RD-Net), as shown in Figure 2. The input
channels consist of 1 PTV mask, 7 OAR masks, and 1 CT image,
totaling 9 independent input channels. In the encoder of GD-Net,
there are 5 resolution levels. Each level extracts key features and
reduces image resolution through convolution and downsampling
operations. The first level consists of two 3 x 3 x 3 convolutions
with a stride of 1 for feature learning; the next 4 levels use 3 x 3 x 3
convolutions (with a stride of 2 for downsampling) and 3 x 3 x 3
convolutions with stride 1 to further extract features. After each

CT/PTV/OARs/Dose mask Coarse dose Precise dose
3x3x3 Conv(stride=1) - IN - ReLU O 3x3x3 Cony(stride=2) - IN - ReLU
O trilinear up-sampling - 3x3x3Conv(stride=1) - IN - ReLU [l 1x1x1 Conv(stride=1)
----- »  Skip concatenation @ Data merge
FIGURE 2

Schematic of the CascU-Net cascaded model for predicting 3D dose distributions. GD-Net and RD-Net are two sequentially connected dose

prediction submodels.
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downsampling, the number of channels in the feature map is
doubled while the spatial dimensions are halved. Thus, the
number of channels in the feature map increases from 16 to 256,
while the spatial dimensions decrease from 16 x 128 x 128 to 2 x 16
x 16.

In the decoding path of GD-Net, upsampling, convolution, and
skip connections are used to restore image details and spatial
dimensions. Each decoding level uses trilinear interpolation for
upsampling, followed by convolution operations. Each level
contains two 3 x 3 x 3 convolutions with a stride of 1, with the
last layer containing only one 3 x 3 x 3 convolution and one 1 x 1 X
1 convolution. Skip connections are used to pass the corresponding
feature maps from the encoding path to the decoding path to
recover information lost during downsampling.

RD-Net receives the output of GD-Net (low-precision dose
distribution) along with the original 9 input channels. RD-Net also
contains 5 resolution levels in the encoding path and 2 decoding
paths, continuing to extract features and ultimately outputting a
high-precision dose distribution. Instance normalization and ReLU
activation functions are applied to each convolutional layer to
prevent overfitting and gradient explosion. Finally, the decoder of
RD-Net outputs 1 channel with dimensions restored to 32 x 128 x
128. Detailed model architecture parameter information is shown
in Table 2.

2.2.2 Model training

The model uses the mean absolute error (MAE) between the
predicted dose and TPS calculated results as the loss function. GD-
Net and RD-Net use the same loss function, but since the output of
GD-Net is dose distribution D, and RD-Net further improves the
prediction accuracy based on GD-Net, outputting dose distribution
DB. To train these two sub-networks more effectively, a custom L1
loss function was defined, and its calculation method is shown in
Equation 2:

_— \DAﬁ);IGT(m

i=1

N i) — GT(i
i=1

Here, D (i) represents the predicted dose value of the i-th voxel
by GD-Net, Dg(i) represents the predicted dose value of the i-th
voxel by RD-Net, GT(i) is the optimal dose value of the i-th voxel,
and N is the total number of voxels that can receive dose.
Considering the relationship between GD-Net and RD-Net, as
well as the importance of RD-Net in the final dose distribution
prediction, o and [ are set to 0.5 and 1, respectively.

The network is trained using the cascaded U-Net on a
workstation equipped with two 24GB Nvidia RTX 3090 GPUs. The
model uses Kaiming initialization[34] for weight initialization, with a
batch size of 2, a maximum of 80,000 iterations, 68 iterations per
epoch, for a total of 1,176 epochs. The Adam optimizer is used to
accelerate convergence and improve training efficiency. The initial
learning rate is set to 3e-4, and a cosine annealing strategy is used to
gradually reduce the learning rate at each epoch until the minimum
learning rate (1le-7) is reached, at which point training stops. Table 3
shows the detailed training configuration information.
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TABLE 2 Training configuration table.

Setting Value

Batch Size 2
List of GPU IDs [0, 1]
Max Iterations 80,000
Learning Rate 3e-4
Weight Decay le-4

Loss Function Custom Loss Function (Loss class)

Training 0.01

Loss Threshold ’
Learning
Cosi li

Rate Scheduler osine anneaiing

Scheduler Arguments T_max=80,000, eta_min=1e-7, last_epoch=-1

Optimizer Adam
Train Batch Size 2
Validation Batch Size 2
Training Iterations 500

per Epoch

Validation Iterations

per Epoch
CascU-Net (Model class) with in_ch=18, out_ch=1,
Network X i
i list_ch_A=[-1, 16, 32, 64, 128, 256], list_ch_B=[-1, 32,
Architecture

64, 128, 256, 512]

2.3 Experimental grouping

2.3.1 Control group

The first experiment, uses CT images, PTV, bilateral lungs, left
lung, right lung, spinal cord, esophagus, and heart as input to the
neural network. An independent dataset is used for training and
evaluation, with the goal of observing the dose distribution
prediction results based solely on CT, PTV, and OAR:s.

2.3.2 Comparative experiments

The first experiment uses only CT, PTV masks, and OARs
masks as inputs. While these inputs aid the model in effectively
predicting the dose distribution, they lack the information necessary
to help the model learn the rate and direction of dose falloff in
regions distant from the PTV. Therefore, incorporating different
numbers of dose masks to improve dose attenuation in the low and
intermediate dose regions is a valuable regions of research. In this
study, five input combinations were set up and five models were
trained using the same patient dataset:

1. CT + PTV + OARs + BODY mask.

2. CT + PTV + OARs + BODY mask + 3 dose masks (masks
corresponding to doses greater than 65 Gy at 10%, 50%,
and 90%).
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TABLE 3 Distribution of patient prescription dose types.

Sublet

10.3389/fonc.2025.1587788

Training set 11 47 8
Validation set 2 6 1
Test set 3 10 2
Sum 16 63 11

3. CT + PTV + OARs + BODY + 5 dose masks (masks
corresponding to doses greater than 65 Gy at 10%, 30%,
50%, 70%, and 90%).

. CT + PTV + OARs + BODY + 7 dose masks (masks
corresponding to doses greater than 65 Gy at 10%, 20%,
30%, 50%, 60%, 70%, and 90%).

5. CT + PTV + OARs + BODY + 10 dose masks (masks

corresponding to doses greater than 65 Gy at 10%, 20%,
30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100%).

The model in the first group uses only CT, PTV masks, and
OAR masks as inputs, referred to as CascU-Net-B (Basic Cascaded
U-Net). Models in groups b-e use CT, PTV mask, OARs mask, and
dose masks as inputs, referred to as CascU-Net-DM (Dose Mask-
Assisted Cascaded U-Net). Furthermore, to make the CascU-Net-
DM model applicable to clinical radiotherapy scenarios, we pre-
trained a dose distribution prediction model, CascU-Net, which has
the same structure as shown in Figure 3. Each dose mask was
generated by threshold segmentation of the dose distribution results
predicted by the CascU-Net model, thereby preventing issues where

Data Preprocessing
(Sampling,Scaling,Cropping,
Data Augmentation)

l

CT+Strcture

CascU-Net

Dose Distribution

50-60Gy  50-65Gy 50-60-65Gy
48 5 17 ‘ 136
7 1 2 ‘ 19
13 2 5 ‘ 35
68 8 24 ‘ 190

new patients might be unable to use the model due to the absence of
dose masks. The detailed workflow is illustrated in Figure 3.

2.4 Evaluation

The model’s prediction results and the manual planning results
are evaluated using the Homogeneity Index (HI), Conformity Index
(CI), Mean Absolute Error (MAE), and Dose-Volume
Histogram (DVH).

HI is used to evaluate the uniformity of the PTV dose
distribution, defined as in Equation 3. Here, D, represents the
dose received by n% of the volume, and D, represents the
prescribed dose.

D; — Dyg
Dy

HI= (3)

CI is an important metric for evaluating the dose coverage of
radiotherapy treatment plans, as defined in Equation 4. Here, V1 ,ef
represents the PTV volume covered by the prescribed dose, Vi

. .

=

CascU-Net-B

Dose Distribution

Dose msak

FIGURE 3

 m—

CascU-Net-DM

Dose Distribution

Overview of the data preprocessing workflow and the training of a 3D network to produce voxel-based dose distributions in 3D.
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represents the PTV volume, and vf represents the volume covered
by the prescribed dose.

CI = VT,ref _ VT,ref (4)
VT Vref

MAE represents the mean absolute error in the dose within the
PTV or OARs between the predicted dose and the manually
planned dose, as defined in Equation 5. Here, N represents the
number of voxels in the PTV or OARs, Dp.(i) represents the
predicted dose for voxel i, and Dgr(i) represents the manually
planned dose for voxel i.

N (IDpre(d) - Der(D))
N

MAE = 2

()

To further assess the similarity between the closed isodose curve
regions in the model-predicted dose distribution and the clinical
results, the study employed the Dice Similarity Coefticient (DSC) as
a metric, calculated as shown in Equation 6. Here, A represents the
3D voxel dose volume predicted by the model, while B represents
the 3D voxel dose volume from the clinical results. Dose values were
selected at 0.5 Gy intervals from 0 Gy to 65 Gy for calculation, and
the DSC curve was plotted for evaluation.

2(A N B)

DSC =" 6
s¢ A+B ©)

Key dosimetric parameters such as Dgges, Dogos, Dosory Dimaxo
Diean for PTV, and Do Dieans Vaogys V3oay Vaocy and Vsgy for
OARs were assessed, and the differences and standard deviations
between the predicted and manually planned results were
calculated. The smaller the mean difference and standard
deviation, the higher the accuracy of the prediction results.

This study employs statistical tests (paired t-test or Wilcoxon
signed-rank test, depending on the normality assumption of the
differences) to evaluate the final predictive efficacy. All tests were
conducted at a significance level of o = 0.05, with p< 0.05 indicating
that the dose differences are statistically significant.

3 Results
3.1 Impact of dose masks

Tables 4 and 5 summarize the mean absolute errors (MAE) of
the PTV and OARs dosimetric parameters for 35 patients. In
CascU-Net-DM, the MAEs of nearly all PTV and OARs clinical
parameters are significantly reduced compared to CascU-Net-B.
With the exception of D2% and Dmax for all PTVs, the MAEs for
most structures are below 2%.

Figure 4 shows the dose distribution of CascU-Net-B and
CascU-Net-DM on the cross-sectional images of six patients in
the test set, including clinical dose distributions, predicted dose
distributions, and dose difference maps. Six patients were randomly
selected from the test set of 6 prescribed dose, corresponding to the
following prescribed dose: (a) 50 Gy; (b) 60 Gy; (c) 50-65 Gy; (d) 50-
60-65 Gy; (e) 50-60 Gy; (f) 45-60 Gy. In the dose distribution plots
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for all prescriptions, the difference between the predicted voxel dose
and the clinical outcome was much smaller for CascU-Net-DM.The
protective effect of CascU-Net-DM on OARs was comparable to
that of the manual plan in the low and medium dose regions, while
the dose prediction accuracy improvement effect was limited in the
higher dose regions. Figure 5 shows the dose-volume histograms
(DVH) of the clinical dose distributions versus the predicted dose
distributions for all the patients in Figure 4 in turn. From the DVH
plot, it can be seen that the PTV and OARs prediction results of
CascU-Net-DM are highly consistent with the clinical results,
realizing the dose coverage ability of the target area and the
protection of the critical organs comparable to the clinical results,
and especially in the low and intermediate dose regions, the error is
significantly reduced.

3.2 Ablation experiment

Tables 6 and 7 present the mean absolute error (MAE) of the
dose evaluation metrics for PTV and OARs using CascU-Net-DM
with four different numbers of dose masks as inputs. As the number
of dose masks increases, the overall clinical evaluation metric
difference for PTV and OARs are significantly reduced, with the
network using 10 dose masks performing the best.

Figure 6 illustrates the DSC curves of the ablation model across
various isodose volumes. For the model trained solely on CT images
and organ contours, DSC values remain largely stable between 0.8
and 0.9 for regions below the 80% isodose volume. Upon
introducing a limited number of dose masks, predictive accuracy
at the 10%, 50%, and 90% isodose volumes increases markedly, with
adjacent isodose levels also showing improvement. As additional
dose masks are incorporated, the corresponding DSC values
steadily converge toward 1. The shaded bands surrounding each
curve denote the standard deviation of DSC values across all
patients in the test set, indicating that prediction stability is
maximized when ten dose masks are employed.

Figure 7 presents the voxel-wise dose MAE for each anatomical
structure, displayed as boxplots for models receiving different
numbers of dose masks as input. It is apparent that increasing the
number of input dose masks yields a uniformly positive effect on
dose-prediction accuracy across all structures. The benefit is most
pronounced for larger lung volumes, whereas smaller structures
near the tumor—such as the spinal cord and esophagus—exhibit
more modest improvements. Furthermore, as the count of dose
masks grows, the MAE distributions for all structures become more
concentrated and the overall dose error decreases. This suggests
that, although adding further masks beyond a certain point offers
diminishing returns in mean performance enhancement, it still
contributes to greater stability of the predictive results.

Figure 8 shows the changes in training loss for the models with
different numbers of dose masks as inputs. From the figure, it can be
observed that as the number of masks increases, the training loss
gradually decreases and stabilizes at a lower value. This indicates
that adding dose masks provides additional prior information,
helping the model better fit the data and improve training
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TABLE 4 Comparison of PTV clinical dosimetric parameters in CascU-Net-B and CascU-Net-DM through the MAE (mean + standard deviation).

CT/PTV/OARs CT/PTV/OARs/10mask
Evaluation Metrics Ground truth
Prediction MAE Prediction MAE
Dy, (Gy) 64.89 + 0.18 61.45 + 1.98 444 +3.17 p=0.5 66.12 + 1.47 232+ 020 p=1
Dosy; (Gy) 44.94 + 0.06 47.15 +0.24 221 +0.18 p=05 4453 +0.01 1.56 + 0.01 p=1
Dogys (Gy) 43.03 + 1.93 4481 + 035 428 +2.08 p=05 42,57 +1.73 2.89 +0.15 p=1
PTV45 Doean (Gy) 5461 + 0.69 53.85 + 1.57 0.88 +0.75 p=1 55.1 +1.29 0310 p=1
Dunax (Gy) 68.74 + 0.08 63.93 + 0.63 6.81 + 4.27 p=0.5 69.11 + 0.95 436 + 1.62 p=1
CI 0.32 +0.02 041 +0.10 0.09 + 0.08 p=0.5 0.33 +0.03 0.06 + 0.05 p=1
HI 041 + 0.02 030 + 0.01 0.16 + 0.10 p=0.5 0.5+ 0.01 0.1+ 0.05 p=1
D,y (Gy) 62.93 + 4.09 62.60 + 3.01 1.65 + 1.24 p=03 6252 + 334 1.23 +0.76 p=0.9
Dosy; (Gy) 48.65 + 1.18 49.68 + 1.01 1.68 + 1.63 p<0.05 48.53 +1.29 1.22 + 1.02 0.01
Dogys (Gy) 46.24 + 1.43 47.19 + 1.24 1.86 + 2.05 p<0.05 46.39 + 1.74 1.35 + 0.86 p=0.17
PTV50 Donean (Gy) 54.85 + 1.76 56.38 + 1.20 1.58 + 0.99 p<0.05 54.82 + 1.93 1.02 + 0.57 0
Dinax (Gy) 65.36 + 4.69 64.76 + 3.80 375+ 1.95 p=0.33 6427 + 3.81 149 + 1.26 0
ol 0.40 + 0.14 044 +0.13 0.06 + 0.05 p<0.05 0.35 + 0.1 0.04 + 0.03 0.05
HI 0.30 + 0.09 0.27 + 0.05 0.06 + 0.05 p<0.05 0.3 + 0.07 0.03 + 0.03 p=0.59
Dyy (Gy) 65.79 + 1.90 6531 +2.07 3.32 + 451 p=0.42 65.72 + 1.68 1.67 + 1.15 p=0.94
Dosy (Gy) 58.89 + 0.86 58.35 + 1.08 1.38 +0.96 0 58.89 + 1.41 1.15 + 0.70 p<0.05
Dosy (Gy) 57.29 + 1.36 56.84 + 1.84 162+ 1.1 p=0.08 5691 + 1.7 1.16 + 0.87 p<0.05
PTV60 Dinean (GY) 62.55 + 1.20 62.09 + 1.13 129 +1.2 p=0.06 62.98 + 1.21 1.01 + 0.71 p=0.92
Dpnax (Gy) 67.01 + 2.09 66.23 + 227 3.65 + 471 p=0.18 66.67 + 1.85 195 + 1.43 p<0.05
I 0.63 +0.16 0.65 + 0.18 0.11 + 0.08 p=0.32 0.63 + 0.16 0.06 + 0.04 p=0.97
HI 0.13 + 0.04 0.13 + 0.04 0.06 + 0.08 p=0.97 0.14 + 0.04 0.04 + 0.02 p=0.14
D,y (Gy) 70.23 + 1.94 70.66 + 2.58 6.43 + 547 p=0.39 6633 + 191 3.09 +1.93 p<0.05
Dosys (Gy) 64.07 + 0.64 64.04 + 0.86 191+ 1.28 p=0.63 6256 + 1.13 091 +0.17 p=0.58
Dogys (Gy) 62.62 + 1.19 62.36 + 1.60 3.18 3.8 p=0.67 61.82 + 0.94 228 +1.71 p=0.79
PTV65 Dpnean (Gy) 67.53 + 1.01 66.87 + 0.97 1.85 + 1.04 p=0.45 64.61 + 1.61 1.31 + 0.54 p<0.05
Dinax (Gy) 71.04 + 2,12 71.97 +2.77 7.68 + 6.40 p=0.37 66.71 + 2.01 358 + 1.67 p<0.05
o 0.70 + 0.08 0.69 + 0.08 024 +0.17 p=0.64 0.42 +0.21 0.17 + 0.07 p=0.19
HI 0.13 +0.08 0.15 + 0.07 0.12 +0.10 p=0.59 0.09 + 0.04 0.06 + 0.07 p=0.13

performance. Especially in the 7-mask and 10-mask models, the
training loss decreases more rapidly, and the final loss values are
lower, suggesting that dose masks provide significant support in
these models.

4 Discussion

This study uses a cascaded model to predict the multi-
prescription dose distributions for lung cancer IMRT. Compared to
existing studies on lung cancer IMRT dose distribution prediction,
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this study’s dataset covers a variety of conventional radiotherapy and
simultaneous integrated boost radiotherapy prescription schemes,
making it applicable to a broader range of clinical scenarios.
Additionally, this study incorporates dose masks as inputs to assist
model training, thereby improving the prediction accuracy for the
low and intermediate dose regions. For most PTV and OARs metrics,
the dose mask-assisted model showed a significant reduction in errors
compared to clinical results, demonstrating the effectiveness of using
dose masks as additional input information. Moreover, this model
has broad applicability across multiple clinical scenarios without the
need to train separate models for each prescription scheme.

frontiersin.org


https://doi.org/10.3389/fonc.2025.1587788
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Feng et al.

10.3389/fonc.2025.1587788

TABLE 5 Comparison of OARs clinical dosimetric parameters in CascU-Net-B and CascU-Net-DM through the MAE (mean + standard deviation).

e lliaifor S CT/PTV/OARS CT/PTV/OARs/10mask
Metrics truth Prediction MAE Prediction MAE

Lung_L V5Gy (%) 41.07 + 26.62 41.17 + 27.33 5.08 + 5.05 p=0.79 40.66 + 26.6 3.25 +3.21 p=0.36
Lung L Vagg, (%) 21.23 +23.10 2124 + 24.18 2.57 +2.57 p=0.53 2142 + 232 172 + 1.99 p=0.59
Lung_L Dinean (Gy) 12.37 £ 12.32 12.36 + 12.68 0.85 £ 0.73 p=0.75 12.34 + 12.39 0.73 £ 0.61 p=0.23
Lung R V;Gy (%) 4490 + 22.76 4545 + 21.19 3.75 £ 3.55 p=0.75 44,58 + 22.74 2.96 + 2.37 p=0.85
Lung_R VZOGY (%) 23.56 + 19.58 23.21 + 19.60 221 £ 1.61 p=0.66 23.82 + 19.63 1.58 +1.14 p=0.45
Lung R Dyyean (Gy) 13.34 + 10.76 13.25 + 10.63 0.84 + 0.60 p=0.64 13.36 + 10.84 0.53 + 0.41 p=0.55
Double Lung V5Gy (%) 41.14 + 14.61 41.10 + 13.97 3.98 + 3.06 p=0.87 40.75 + 14.67 246 +2.12 p=0.54
Double Lung VzoGy (%) 20.30 + 1491 20.06 + 14.96 1.53 +1.14 p=0.65 20.51 + 14.89 1.13 £ 0.83 p=0.45
Double Lung Dinean (Gy) 11.80 + 9.21 11.72 £ 9.25 0.65 + 0.38 p=0.39 11.8 £9.28 0.38 + 0.29 p=0.89
Heart V30C,y (%) 13.51 + 18.89 13.90 + 18.78 1.72 £ 2.55 p=0.11 13.32 + 18.86 1.11 £ 1.22 p=0.5
Heart V4OGY (%) 9.66 + 17.62 9.65 + 17.51 1.64 £ 197 p=0.58 9.83 +17.67 1.19 + 1.49 p=0.24
Heart Dean (Gy) 10.56 + 11.14 10.82 + 11.13 0.96 + 1.03 p=0.6 10.58 + 11.2 0.65 + 0.58 p=0.43
Esophagus Dinax (Gy) 53.18 + 14.13 53.30 £ 14.30 3.44 + 4.09 p=0.7 53.22 + 14.29 297 +2.18 p=0.97
Esophagus Dinean (Gy) 20.37 + 11.97 20.51 + 12.09 1.36 £+ 1.13 p=0.18 20.38 + 12 0.82 + 0.76 p=0.83
Spinalcord Dinax (Gy) 37.89 + 7.37 37.28 + 8.30 4,04 + 4.63 p=0.36 38.14+75 3.66 + 3.38 p=0.15

In the first experiment, the base model was trained and
evaluated, followed by the addition of ten dose masks as auxiliary
information for further training. CascU-Net-B exhibits larger errors
in regions far from the target, whereas CascU-Net-DM significantly
reduces these errors in those regions. This may be because dose
masks help the model more effectively learn the direction and rate
of dose falloff in the low and intermediate dose regions, resulting in
more precise dose sculpting in these regions by the improved
model. For the Dy, metric of the PTV, the model incorporating
dose masks also showed significant improvement. Although D,,,.x is
an extreme value with a large range of variation, the stability of the
model improved noticeably after adding the masks, indicating that
the dose masks help the model better capture dose fluctuations in
the clinical plan. Therefore, models incorporating dose mask
information are a more effective alternative to models that only
input CT and structure delineation.

Compared to CascU-Net-B, the model in this study shows a
lower mean absolute error (MAE) after the introduction of dose
masks, indicating that the predicted results are numerically closer to
the clinical plan. However, based on statistical tests of the predicted
and clinical plan values, the p-value shows that there is still a
statistically significant difference. The reason is that, the p-value
results are closely related to the sample size and the consistency of
the bias direction. Even small biases, if consistent in the majority of
patients and with a sufficiently large sample size, will be detected by
the statistical test and yield p< 0.05. From a clinical application
perspective, what matters more is whether the prediction error can
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be kept within an acceptable range. Although statistical differences
still exist, our model reduces the MAE by 1.5%, which provides
higher reference value for clinical dose distribution decisions and
subsequent plan optimization.

In the second experiment, the impact of different numbers of
dose masks on the performance of the dose prediction network was
investigated. Figure 7 shows that as the number of dose masks
increases, the model’s prediction accuracy significantly improves,
the MAE value gradually decreases, and the prediction results
become more stable. This aligns with the study’s hypothesis, as
the denser the dose mask intervals, the more the model can learn
the relationships between dose masks and dose distributions,
including the direction and rate of dose falloff near organs at risk.
The overall trend indicates that dose masks are an effective
supplement in deep learning models for radiation dose prediction
applications. Compared to traditional models, models with varying
numbers of masks significantly improved the stability of the
training process and ultimately achieved lower training losses.
These findings provide important references for further
improving the accuracy of deep learning models based on clinical
prior information in the future.

This study also has some limitations. Although incorporating
dose masks substantially improved model performance—
particularly in mid-to-low-dose regions for OARs protection—the
predictive gains in high-dose areas were marginal. This
shortcoming likely arises because using a fixed number of equally
spaced thresholds (e.g., ten masks) yields relatively broad dose
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The ground-truth, predicted dose results from different models, and the dose differences between the predicted results and the ground-truth for
representative patients from six different prescription schemes in the test set are presented. The corresponding six prescription schemes are as
follows: (a) 50 Gy; (b) 60 Gy; (c) 50-65 Gy; (d) 50-60-65 Gy; (e) 50-60 Gy; (f) 45-60 Gy.

intervals per mask. At the steep dose-falloft regions bordering the
high-dose volume, such coarse masks cannot capture the
submillimeter-scale rapid dose-falloff, leaving the model unable to
learn these fine-grained transitions. Furthermore, low-dose regions
occupy a much larger volume in the dataset; even with a voxel-wise
loss, the network tends to prioritize minimizing global error in the
volumetrically dominant zones. Consequently, errors in the
relatively sparse high-gradient regions contribute little to the
overall loss, and the model achieves limited convergence
improvements there. In future work, we plan to introduce a
gradient-weighted loss that assigns higher penalty to voxels in
steep dose-falloff areas. We will also explore finer thresholding in
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the high-dose region—such as generating masks every 2 Gy—or
adaptive mask generation driven by local gradient magnitude to
enhance spatial resolution in these critical zones.

To our knowledge, this is the first dose prediction network that
considers dose mask auxiliary information. The information on
dose falloff direction and rate in different dose regions is clinically
significant as it helps improve dose sculpting in the low and
intermediate dose regions, which is of critical importance for
protecting important organs at risk. Additionally, it is worth
noting that other models (21, 24, 25, 27) only consider common
50Gy, 60Gy, and 50Gy/60Gy conventional radiotherapy schemes,
whereas this model considers a mixed dataset of 2 conventional
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FIGURE 5
The DVH of the predicted results from different models and the ground-truth for representative patients from six different prescription schemes in
the test set are presented. The corresponding six prescription schemes are as follows: (a) 50 Gy; (b) 60 Gy; (c) 50-65 Gy; (d) 50-60-65 Gy; (e) 50-
60 Gy; (f) 45-60 Gy.

TABLE 6 Comparison of PTV clinical dosimetric parameters in the ablation experiment for 35 test set patients using CascU-Net-DM with different
numbers of dose masks through the MAE (mean + standard deviation).

10 mask
Evaluation Metrics
MAE p-value
D,y (Gy) 3.75 + 0.48 p=1 3.39 +2.19 p=1 2.45 + 2.38 p=0.5 2.32 4020 p=1
Dosy (Gy) 1.92 +1.37 p=0.5 1.72 +0.10 p=1 1.61 +0.21 p=1 1.56 + 0.01 p=1
Dogy; (Gy) 3.55 +2.37 p=1 3.02 + 1.01 p=1 2.92 + 091 p=1 2.89 +0.15 p=1
PTV45 Dpnean (Gy) 0.59 + 0.41 p=1 0.57 + 0.41 p=1 032 +0.17 p=0.5 031+0 p=1
Dinax (Gy) 533 +3.10 p=1 4.9 + 353 p=1 4.87 +2.95 p=0.5 436 + 1.62 p=1
CI 0.08 + 0.07 p=0.5 0.07 + 0.05 p=1 0.07 + 0.05 p=1 0.06 + 0.05 p=1
HI 0.13 + 0.03 p=1 0.11 * 0.06 p=1 0.11 * 0.06 p=1 0.1 % 0.05 p=1
D,y (Gy) 1.49 +1.08 p=0.49 1.41 + 0.87 p=0.4 137 + 1.04 p=0.84 123 +0.76 p=0.9
Dosy, (Gy) 1.53 + 1.02 p=0.09 14+ 111 p<0.05 132 +0.81 p<0.05 1.22 + 1.02 p<0.05
Dosss (Gy) 1.75 + 1.06 p=0.4 1.69 + 0.97 p=0.29 1.51 +0.95 p=0.15 1.35 + 0.86 p=0.17
PTV50 Dinean (GY) 1.28 + 1.07 p<0.05 122 + 1.14 p<0.05 1.1+08 p<0.05 1.02 + 0.57 p<0.05
Dinax (Gy) 1.86 + 1.38 p<0.05 1.74 + 0.95 p=0.23 1.54 + 0.9 p<0.05 1.49 +1.26 p<0.05
CI 0.06 + 0.04 p<0.05 0.05 + 0.03 p=0.92 0.04 + 0.03 p=0.64 0.04 + 0.03 0.05
HI 0.04 + 0.04 p=0.42 0.04 + 0.02 p=0.67 0.04 + 0.02 p=0.49 0.03 + 0.03 p=0.59
D,y (Gy) 2.05 + 1.70 p=0.35 1.95 + 1.63 p=0.68 1.81 + 1.56 p<0.05 167 + 1.15 p=0.94
Dose, (Gy) 1.35 + 0.99 p<0.05 1.24 +0.88 p<0.05 127 +0.79 p=0.05 1.15 + 0.70 p<0.05
PTV60
Dosy, (Gy) 1.51 +0.79 p<0.05 142 +0.75 p<0.05 1.36 + 1.01 p<0.05 1.16 + 0.87 p<0.05
Dinean (GY) 122 +0.74 p=0.08 12 +0.79 p=0.5 1.16 + 0.95 p=0.39 1.01 +0.71 p=0.92
(Continued)
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TABLE 6 Continued
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7 mask 10 mask
Evaluation Metrics vl MAE Sl
Dpnax (Gy) 2.06 + 2.04 p=0.52 2.03 +1.33 p=0.2 2.03 +1.29 p<0.05 1.95 + 1.43 p<0.05
CI 0.08 + 0.08 p=0.62 0.07 + 0.06 p=0.25 0.06 + 0.05 p=0.66 0.06 + 0.04 p=0.97
HI 0.06 + 0.04 p<0.05 0.05 + 0.03 p<0.05 0.05 + 0.04 p=0.12 0.04 + 0.02 p=0.14
D,y (Gy) 3.67 +2.34 p<0.05 3.1+ 163 p<0.05 3.1+148 p<0.05 3.09 +1.93 p<0.05
Dosy (Gy) 1.4 +0.74 p=0.73 119 +0.53 p=0.7 1.07 + 0.39 p=0.33 0.91 + 0.17 p=0.58
Dogys (Gy) 2.55 + 2.48 p=0.77 2.52 +1.98 p=0.88 241 +2.49 p=0.91 228 +1.71 p=0.79
PTV65 Dinean (GY) 1.67 + 0.83 p<0.05 153 + 1.18 p<0.05 1.46 + 0.76 p<0.05 1.31 + 0.54 p<0.05
Dinay (Gy) 4.01 +2.55 p<0.05 3.91 + 1.99 p<0.05 381 +14 p<0.05 3.58 + 1.67 p<0.05
CI 0.22 +0.23 p=0.08 02 +0.12 p=0.07 0.19 + 0.08 p<0.05 0.17 + 0.07 p=0.19
HI 0.07 +0.08 p=0.21 0.07 + 0.04 p=0.12 0.06 + 0.03 p=0.02 0.06 + 0.07 p=0.13

TABLE 7 Comparison of OARs clinical dosimetric parameters in the ablation experiment for 35 test set patients using CascU-Net-DM with different
numbers of dose masks through the MAE (mean + standard deviation).

Evaluation
Metrics

Lung L Vg, (%) 3.62 £ 3.65 p=0.53 3.5+ 335 p=0.57 342 +3.52 p=0.5 325+321 p=0.36
Lung_L Vogy (%) 2.03 +2.42 p=0.06 1.92 +2.38 p=0.64 1.82 +2.32 p=0.78 1.72 £ 1.99 p=0.59
Lung_L Dean (Gy) 0.81 +0.71 p=0.12 0.78 + 0.68 p=0.2 0.79 + 0.64 p=021 0.73 + 0.61 p=0.23
Lung_R Vs, (%) 322 +2.66 p=0.78 3.04 +£2.51 p=0.6 3.04 +2.36 p=0.96 2.96 + 2.37 p=0.85
Lung R Vsoay (%) 2.02 + 1.68 p=0.49 1.87 + 1.85 p=0.5 177 + 143 p=0.52 1.58 + 1.14 p=0.45
Lung R Dyean (Gy) 0.73 £ 0.55 p=0.89 0.65 + 0.61 p=0.51 0.59 + 0.37 p=0.33 0.53 + 0.41 p=0.55
Double Lung Vs, (%) 2.63 +2.18 p=0.56 2.5 +2.03 p=0.6 2.53 +2.09 p=0.42 2.46 +2.12 p=0.54
Double Lung Vaoay (%) 14 +092 p=0.46 1.3 +0.96 p=0.92 12+ 1.06 p=0.26 1.13 + 0.83 p=0.45

Double Lung
Direan (Gy) 0.57 +0.38 p=0.41 0.46 + 0.35 p=0.48 0.42 +0.31 p=0.95 0.38 £ 0.29 p=0.89
Heart Vsoqy (%) 1.39 + 3.03 p=0.58 127 +2.34 p=0.81 118 + 1.91 p=0.45 1114122 p=0.5
Heart Vycy (%) 1.58 +2.20 p=0.19 1.49 +2.29 p=0.57 1.24 + 1.55 p=0.27 1.19 + 1.49 p=0.24
Heart Dpean (Gy) 0.8 + 0.80 p=0.62 0.76 £ 0.79 p=0.65 0.69 + 0.55 p=0.75 0.65 + 0.58 p=0.43
Esophagus Dynx (Gy) 334 +3.12 p=0.74 3.19 + 261 p=0.42 3.01 +2.57 p=0.63 297 +2.18 p=0.97
Esophagus Dyyean (Gy) 1.09 + 0.96 p=0.51 0.88 + 0.74 p=0.2 0.74 £ 0.57 p=0.67 0.82 + 0.76 p=0.83
Spinalcord Dy (Gy) 391 + 445 p=0.62 3.83 + 4.70 p=0.10 376 £ 36 p=0.08 3.66 + 3.38 p=0.15

radiotherapy and 4 simultaneous integrated boost radiotherapy
prescription dose combinations, making this model more
applicable and robust in real clinical radiation therapy scenarios.
When the dose distribution generated by the model can successfully
be used to create treatment plans in commercial TPS, it will greatly
advance the development of one-stop radiation therapy and
adaptive radiation therapy, leading to greater clinical benefits
for patients.
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5 Conclusion

This study innovatively proposes a dose prediction method based
on the CascU-Net model, which significantly improves the prediction
accuracy of lung cancer IMRT dose distribution by incorporating dose
masks and effectively addresses the issue of diverse prescription
schemes in the dataset. In lung cancer IMRT dose distribution
prediction research, multiple conventional radiotherapy and
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DSC Curves Comparison for Different Models
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FIGURE 6

DSC curves of the ablation model at various isodose volumes. The shaded regions represents the standard deviation of DSC values among patients
in the test set.

Comparison of the average absolute voxel dose error of each structure in different models
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FIGURE 7

The boxplot depicts the mean absolute error (MAE) of the dose distribution prediction model for different numbers of input dose masks. The box
represents the first quartile (Q1) and third quartile (Q3), with the upper and lower whiskers indicating the maximum and minimum values,
respectively. The median is shown by the horizontal line within the box, and outliers are marked by white dots.
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Training loss variation over time for the CascU-Net model with different numbers of dose masks as inputs.

simultaneous integrated boost radiotherapy prescription schemes can
be used as mixed data inputs to the model, rather than being limited to
a single prescription dataset, thereby avoiding the need to configure
multiple models for different radiation therapy scenarios.
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