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Background: Early diagnosis of breast cancer (BC) is crucial for improving patient

outcomes. Features of the peritumoral region have been shown to significantly

enhance the predictive performance of deep learning radiomics (DLR) models.

This study aims to explore the impact of key parameter selection on improving

the performance of the intratumoral-peritumoral region fusion model. The goal

is to enhance the modal’s non-invasive diagnostic capability for distinguishing

benign and malignant breast tumors.

Materials and methods: This retrospective study included 411 female patients

with breast lesions from four hospitals. DLR models were constructed using their

contrast-enhanced ultrasound (CEUS) images. The intratumoral region of

interest (ROI) was gradually expanded to generate peritumoral regions of

varying thicknesses. Six groups of fusion models were constructed using

different key parameter combinations, including pseudo-color (PC) vs.

grayscale (GRAY) images, original precise (OP) ROI vs. bounding box (BB) ROI,

and direct extension (DE) strategy vs. feature-level fusion (FLF) strategy.

Additionally, a reader study was conducted, comparing the diagnostic

performance of the best fusion model with that of six radiologists. The

performance of the models was evaluated using the area under the curve (AUC).

Results: Incorporating the peritumoral region significantly enhanced the

diagnostic performance of the DLR models. The PC-OP-DE-Peri (4mm) model

achieved the highest performance in the testing cohort, with an AUC of 0.837.

The performance surpassed both the intratumoral models and all radiologists.

The effects of different key parameter selections on fusion model

performance varied.
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Conclusion: This study suggests that the selection of PC images, OP ROIs, and

the DE strategy effectively improves the performance of intratumoral-

peritumoral region fusion models for predicting BC.
KEYWORDS

deep learning radiomics, multicenter, breast cancer, peritumoral region, contrast-
enhanced ultrasound
Introduction

Deep learning radiomics (DLR), an emerging field, has garnered

considerable attention in the medical community in recent years. By

extracting high-throughput image features, DLR provides non-

invasive biomarkers for clinical outcomes. Unlike traditional

radiomics, DLR can learn directly from raw images and

automatically extract appropriate, undefined features (1, 2). DLR

plays a significant role in lesion detection and cancer diagnosis (3).

In the context of personalized medicine, DLR holds promise for

significant improvements in disease diagnosis, prognosis

evaluation, and treatment response prediction.

Breast cancer (BC) is the most common malignancy in women

worldwide, with 2.31 million new cases reported in 2022 (4). The

development of advanced imaging techniques, such as DLR, has

been pivotal in improving the diagnosis and treatment of BC (5).

Recent studies have demonstrated that DLR based on ultrasound

images can effectively predict various critical clinical outcomes in

BC, such as response to neoadjuvant chemotherapy (6, 7), sentinel

lymph node metastasis (8), axillary lymph node metastasis (9),

tumor benignity or malignancy (10, 11), disease-free survival (12),

molecular subtypes (13), and recurrence (14). Furthermore,

contrast-enhanced ultrasound (CEUS) provides significant

advantages in assessing tumor blood flow and microvascular

status. These benefits enhanced the accuracy of BC diagnosis (15).

Recent imaging advances, like hyperspectral imaging–based

computer-aided detection (16), have improved lesion detection

but face challenges in clinical use due to high costs and

complexity. Socioeconomic disparities limit screening, with family

support and economic status as key factors for early diagnosis (17).

These challenges highlight the need for diagnostic methods that are

accurate, affordable, interpretable, and widely usable. Thus,

developing a CEUS-based DLR model to classify breast tumors as

benign or malignant is highly promising.

Although many existing DLR studies focus on the intratumoral

region (18, 19), increasing evidence indicates that the peritumoral

region can also offer valuable supplementary information (20, 21).

Recent studies have shown that changes in the tissue surrounding

the tumor, including angiogenic factors (22), lymphangiogenesis

(23), peritumoral lymphocytic infiltration (24), peripheral edema

(25), and stromal response (26), are important indicators of clinical
02
outcomes. Thus, the peritumoral region may provide valuable

information for tumor diagnosis and prognosis. Recent studies

have extensively utilized the characteristics of the peritumoral

region. Sun et al. (20) utilized peritumoral features to predict

axillary lymph node metastasis in BC. Liu et al. (27) evaluated

lymphatic vessel invasion in BC using peritumoral features. These

studies further validate the feasibility of constructing a DLR

intratumoral-peritumoral region fusion model to predict the

benignity or malignancy of breast tumors.

Despite numerous studies attempting to integrate peritumoral

region features, significant discrepancies remain in the key

parameters for constructing intratumoral-peritumoral region fusion

models. In terms of image color selection, some studies retain the

pseudo-color (PC) of the image (28), while others convert the image

to grayscale (GRAY) (29). Regarding region of interest (ROI) shape

selection, some studies directly use the original precise (OP) ROI for

image analysis (30). In contrast, others employ bounding box (BB)

ROIs, which expand outward from the OP ROI to form the smallest

enclosing rectangle (31). Concerning the fusion strategy of

intratumoral and peritumoral regions, some studies adopt a direct

extension (DE) strategy. In this approach, the intratumoral region is

directly expanded to obtain the peritumoral region, and features are

extracted from the entire region (32). In contrast, other studies

employ a feature-level fusion (FLF) strategy. In the FLF approach,

features are separately extracted from the intratumoral and

peritumoral regions and then fused to construct the model (33).

Although these strategies have achieved some success, there is

currently a lack of systematic research exploring how to determine

the optimal parameters. This uncertainty hinders the widespread

clinical application of these advancements.

This study aims to identify the optimal parameters for

constructing an intratumoral-peritumoral fusion model using

DLR and CEUS images. Specifically, we focus on evaluating how

different combinations of these parameters affect diagnostic

performance. The goal is to enhance the ability of DLR models to

predict the benign or malignant nature of breast tumors.

Specifically, this study will address the following three core issues:

(1) Comparison of CEUS image color selection (PC vs. GRAY); (2)

Selection of ROI shape (OP ROI vs. BB ROI); (3) Selection of fusion

strategy for intratumoral and peritumoral regions (DE strategy vs.

FLF strategy).
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Materials and methods

Patients

This study is a retrospective multicenter study that included 411

female patients with breast lesions. The study was conducted at four

hospitals in different regions of China, with data collected between

January 2018 and May 2024. A total of 307 patients were from

People’s Hospital of Guangxi Zhuang Autonomous Region

(Hospital 1), 30 from Guilin Municipal Hospital of Traditional

Chinese Medicine (Hospital 2), 28 from Fangchenggang First

People’s Hospital (Hospital 3), and 46 from Minda Hospital of

Hubei Minzu University (Hospital 4). To minimize selection bias,

we enrolled consecutive patients from four hospitals with diverse

imaging protocols and settings. Only non-diagnostic images were

excluded. No manual balancing by lesion type was done to preserve

real-world diversity. The study was conducted in accordance with

the Declaration of Helsinki and approved by the ethics committees

of all participating hospitals. Due to the retrospective design, patient

consent was not required for the study.
Frontiers in Oncology 03
All lesions were confirmed by pathology based on ultrasound-

guided core-needle biopsy or surgical excision. Pathological

diagnoses were made following the WHO Classification of Breast

Tumors (5th edition) and institutional protocols, performed by

board-certified breast pathologists.

Inclusion criteria were: (1) pathologically confirmed breast

lesions; (2) standard and complete CEUS examination performed;

(3) imaging examinations met quality standards. Exclusion criteria

were: (1) incomplete imaging or clinical data; (2) patients who had

received chemotherapy, radiotherapy, or targeted therapy; (3)

pregnant or lactating patients at the time of imaging examination.

To reduce overfitting and potential bias, a center-split cohort

strategy was adopted. Data from Hospital 1, the largest patient

group (n = 307), were used as the training cohort, while data from

Hospitals 2, 3, and 4 (n = 104) formed the testing cohort. The

testing data were obtained from independent external centers to

mimic real-world generalization. This approach also helps

minimize center-specific bias and is consistent with previous

multicenter radiomics studies (34–36). Detailed information on

the patient selection process is shown in Figure 1, and clinical
FIGURE 1

The patient recruitment flowchart for the present study. CEUS, contrast-enhanced ultrasound.
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baseline characteristics were extracted from the databases of

each hospital.
Acquisition of CEUS images

Ultrasound examinations were performed using equipment

including Aplio 500, Aplio i800, Aplio i900, Mindray R7,

Mindray R9, GE LOGIQ E9, and GE LOGIQ E10, all equipped

with high-frequency linear array probes. To reduce inter-machine

variability, all CEUS scans were performed by radiologists from the

same department (≥5 years’ experience) using a standardized

protocol. Device settings including gain, depth, mechanical index,

and focal length were unified before scanning. All images were

reviewed by a senior breast imaging specialist (>20 years’

experience) to ensure quality, as recommended by prior multi-

device imaging studies (29). During the examination, patients were

placed in the supine position with both arms raised to ensure

optimal exposure for breast imaging. Suspicious lesions were

scanned in multiple transverse views to assess their size, location,

and other morphological characteristics. The slice showing the

largest lesion was then selected for CEUS imaging. In CEUS

mode, 4.8 mL of contrast agent (SonoVue) was injected via the

median cubital vein, followed by a flush with 5 mL of saline. The

time storage functions were activated, and dynamic images were

recorded for a minimum of 2 minutes. All ultrasound images were

stored in DICOM format on the workstation for further analysis.
Frontiers in Oncology 04
ROI segmentation and processing

In CEUS imaging, the peak phase with the highest enhancement

intensity was determined using the time-intensity curve (TIC),

based on the largest tumor section. The single frame

corresponding to the peak enhancement moment was selected as

the representative. This method relies on the significant difference

in peak enhancement between benign and malignant tumor masses

(37). CEUS images were exported from the workstation in JPG

format and processed using ITK-SNAP software (http://

www.itksnap.org). A radiologist with over ten years of experience

in breast ultrasound examination independently identified the ROI.

The ROI was then reviewed and optimized by another radiologist

with 20 years of diagnostic experience to ensure consistency

and accuracy.

Using the mask padding toolkit from the OnekeyAI platform

(https://github.com/onekeyai-platform/onekey), we gradually

expanded the intratumoral ROI. The expansion was performed in

2mm increments in each direction up to 10mm. This approach

followed the strategy of Ding et al. (38), who showed that stepwise

peritumoral region expansion is feasible and useful in radiomics

analysis for BC. The toolkit is implemented using the “SimpleItk”

package in Python version 3.7. Ultimately, five peritumoral regions

were obtained: 2mm, 4mm, 6mm, 8mm, and 10mm. Both the

intratumoral and peritumoral regions were used for further

analysis. Figure 2 illustrates the process of expanding the

intratumoral region.
FIGURE 2

The representative images for DLR model construction. (A) Intratumoral ROIs (red) and peritumoral ROIs of different sizes (green). (B) The schematic
images of PC-BB-DE strategy. (C) The schematic images of PC–OP-DE strategy; (D) The schematic images of PC-OP-FLF; (E) The schematic
images of GRAY-BB-FLF strategy; (F) The schematic images of GRAY-OP-DE strategy; (G) The schematic images of GRAY-OP-FLF strategy. PC,
pseudo-color; BB, bounding box; Intra, intratumoral regions; OP, original precise; GRAY, grayscale; DE, direct extension; Peri, peritumoral regions;
FLF, feature-level fusion; DLR, deep learning radiomics; CEUS, contrast-enhanced ultrasound; ROI, region of interest.
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Different parameters for constructing
intratumoral-peritumoral region fusion
models

Three factors were considered to determine the optimal

parameters: (1) CEUS image color selection: the images were

divided into two groups, the PC image group (retaining color)

and the GRAY image group (converted to grayscale). (2) ROI shape

selection: the images were categorized into the OP ROI group and

the BB ROI group based on the shape of the ROI. The OP ROI

retains only the delineated ROI area, with background pixels

outside the ROI removed. In contrast, the BB ROI retains the

smallest enclosing rectangle containing the OP ROI. (3) Fusion

strategy selection: regarding the fusion strategy for intratumoral

and peritumoral regions, the images were categorized into the FLF

group and the DE group. FLF involves feature-level fusion, where

features are first extracted from the intratumoral and peritumoral

ROIs and then combined. DE involves expanding the intratumoral

ROI to create a new ROI that includes both intratumoral and

peritumoral regions. Features are then directly extracted from this

combined ROI. Based on the above strategies, this study

constructed six groups of different model combinations to

evaluate the impact of each parameter on model performance: (1)

PC-BB-DE; (2) GRAY-BB-DE; (3) PC-OP-DE; (4) GRAY-OP-DE;

(5) PC-OP-FLF; and (6) GRAY-OP-FLF. The combinations ‘PC-

BB-FLF’ and ‘GRAY-BB-FLF’ were excluded due to the partial

overlap between the intratumoral BB ROI and peritumoral ROI,

which could affect model accuracy. Figure 2 illustrates the entire

process of constructing the intratumoral-peritumoral region fusion

model. To enhance clarity, Table 1 provides clear definitions of

abbreviat ions used in the model names , a long with

representative examples.
DLR feature extraction and model
construction

All DLR analyses were performed using the OnekeyAI platform

(version 4.9.1). This Python-based system includes popular libraries

such as PyTorch (1.11.0), CUDA (11.3.1), cuDNN (8.2.1), and

Scikit-learn (1.0.2). All input images were resized to a uniform size

of 224 × 224 pixels. First, the widely used DLR model VGG16 was

pre-trained on the ImageNet dataset, and transfer learning was

applied to the training cohort. After training the VGG16 model,

deep features were extracted from the fifth-to-last pooling layer

(block1_pool). This layer preserves more low-level spatial details. A

total of 100,352 features (112 × 112 × 8) were obtained. This layer

was chosen instead of the final average pooling layer because it

performed better on our dataset. Principal Component Analysis

(PCA) was applied to reduce the dimensionality of the DLR features

to 32, enhancing the model’s generalizability and reducing the risk

of overfitting. Feature selection was performed using the Mann-

Whitney U test, retaining features with a p-value less than 0.05.

Next, Pearson correlation coefficients were calculated to assess

feature redundancy, and redundant features with an absolute
Frontiers in Oncology 05
correlation coefficient of 0.9 or greater were removed. Feature

selection was performed using Least Absolute Shrinkage and

Selection Operator (LASSO) regression, and the most

representative features were selected via ten-fold cross-validation.

To select the optimal classifier for downstream prediction, we

used the built-in Scikit-learn (version 1.0.2) module in the Onekey

AI platform (version 4.9.1). This platform includes several

commonly used machine learning algorithms, such as Support

Vector Machine (SVM), Random Forest (RF), XGBoost, and

Logistic Regression (LR). We compared the classification

performance of these algorithms during model selection. LR

model showed the highest and most consistent performance

across multiple metrics, including area under the curve (AUC),

accuracy, specificity, and sensitivity. Therefore, we selected LR

model as the final classifier for all reported results. Although LR
TABLE 1 Abbreviations and descriptions of model naming components.

Abbreviation
or example

Full
term/
Interpretation

Description

PC Pseudo-Color
CEUS image preserving original
color information.

GRAY Grayscale
CEUS image converted
to grayscale

OP Original Precise

Precisely delineates the tumor
region, retains only ROI pixels,
and removes
background interference.

BB Bounding Box
Minimum enclosing rectangle of
the tumor, focusing on the lesion’s
core area.

DE Direct Extension

Expands the intratumoral ROI
outward to include the
peritumoral region; features are
extracted from the entire
expanded area.

FLF
Feature-
Level Fusion

Intratumoral and peritumoral
features are separately extracted
and then fused at the feature level.

Peri (X mm)
Peritumoral Region
with X
mm Extension

Region defined by radial
expansion from the tumor
boundary (e.g., 2mm,
4mm, 6mm).

PC-OP-DE-
Peri (4mm)

Pseudo-Color
Image + Original
Precise ROI +
Direct Extension
Strategy + 4mm
Peritumoral Region

Example of a fusion model that
preserves CEUS color information,
keeps only ROI pixels, expands
4mm radially around the tumor,
and directly extracts features from
the expanded image.

GRAY-BB-FLF-
Peri (6mm)

Grayscale Image +
Bounding Box ROI
+ Feature-Level
Fusion + 6mm
Peritumoral Region

Example of a fusion model that
converts CEUS images to
grayscale, uses the bounding box
of the OP ROI, expands 6mm
radially, extracts intratumoral and
peritumoral features separately,
and fuses them at the feature level.
PC, pseudo-color; CEUS, contrast-enhanced ultrasound; GRAY, grayscale; OP, original
precise; BB, bounding box; DE, direct extension; FLF, feature-level fusion; Peri, peritumoral
regions; ROI, region of interest.
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is a linear model, we believe that the deep convolutional layers in the

feature extraction network captured enough nonlinear and abstract

patterns. This allowed the linear classifier to perform well without

increasing the risk of overfitting. This approach also improves

model transparency and reproducibility, which are essential for

clinical decision support.

The selected features were input into an LR model to build the

radiomics model. Five-fold cross-validation was performed to

validate the reliability of the selected features. After training, the

model’s predictive performance was evaluated on both the training

and testing cohorts. Evaluation metrics included the receiver

operating characteristic (ROC) curve, AUC, accuracy, sensitivity,

and specificity. The model construction process is illustrated

in Figure 3.

To enhance model interpretability, Gradient-weighted Class

Activation Mapping (Grad-CAM) was applied to produce

heatmaps showing image areas that most influence classification.
A reader study

A reader study was conducted to compare the diagnostic

performance of DLR models and radiologists. Six radiologists

participated, including two junior radiologists with less than five

years of experience, two intermediate radiologists with five to ten

years of experience, and two senior radiologists with more than ten

years of experience. The testing cohort consisted of 104 breast

tumor cases, which were presented to the radiologists in a random

order. Throughout the study, radiologists were blinded to the

original diagnostic reports, peer opinions, and final pathological

results to ensure an unbiased evaluation process.
Frontiers in Oncology 06
Statistics

All data analyses were conducted on the OnekeyAI platform

(version 4.9.1) using Python 3.7.12. Statistical analyses were

performed using Statsmodels (version 0.13.2). The LR model was

implemented using Scikit-learn (version 1.0.2). The DLR

framework was developed using PyTorch (version 1.11.0) and

optimized with CUDA (version 11.3.1) and cuDNN (version

8.2.1). In clinical data analysis, continuous variables were assessed

with the Mann-Whitney U test or independent t-test, while

categorical variables were analyzed using the chi-square test or

Fisher’s exact test. A result was considered statistically significant if

the two-sided p-value was less than 0.05.
Results

Clinical characteristics

This study included 411 female patients with breast lesions from

four different hospitals. Of these, 227 were diagnosed as malignant

and 184 as benign based on pathological evaluations. The clinical

characteristics of the patients are summarized in Table 2.
Intratumoral region models performance
analysis

In the testing cohort, the AUC of the PC-BB-Intra model was

0.801, while that of the GRAY-BB-Intra model was 0.792. The AUC

of the PC-OP-Intra model was 0.807, while that of the GRAY-OP-
FIGURE 3

Workflow of ROI extraction and DLR modal construction. (A) Illustrating the image segmentation process, where the red area denotes the
intratumoral ROI and the green area represents the peritumoral ROI. (B) An illustration of obtaining different ROI crops. (C) The process of DLR
feature extraction. (D) The feature selection processing. (E) The model performance evaluation. AUC, the area under the curve; PC, pseudo-color;
BB, bounding box; Intra, intratumoral regions; OP, original precise; GRAY, grayscale; DE, direct extension; Peri, peritumoral regions; ROI, region of
interest; DLR, deep learning radiomics; CEUS, contrast-enhanced ultrasound.
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TABLE 2 Characteristics of patients in the training and testing cohort.

Characteristics
Training cohort (n = 307) Testing cohort (n = 104)

Benign Malignancy P Benign Malignancy P

Age (years) 43.11 ± 11.61 51.86 ± 11.42 <0.001 43.45 ± 11.50 48.82 ± 9.66 0.005

Size (mm) 18.02 ± 11.23 25.51 ± 11.31 <0.001 13.26 ± 8.60 17.21 ± 12.24 0.014

BI-RADS-category <0.001 <0.001

3 31(26.05) 2(1.06) 11(16.92) 1(2.56)

4A 49(41.18) 3(1.60) 45(69.23) 15(38.46)

4B 27(22.69) 19(10.11) 8(12.31) 9(23.08)

4C 12(10.08) 60(31.91) 1(1.54) 9(23.08)

5 null 104(55.32) null 5(12.82)

Location 0.082 0.847

UOQ 50(42.02) 107(56.91) 34(52.31) 18(46.15)

LOQ 27(22.69) 29(15.43) 11(16.92) 6(15.38)

LIQ 12(10.08) 14(7.45) 8(12.31) 7(17.95)

UIQ 30(25.21) 38(20.21) 12(18.46) 8(20.51)

Orientation 0.008 1.0

Parallel 114(95.80) 161(85.64) 57(87.69) 34(87.18)

Not parallel 5(4.20) 27(14.36) 8(12.31) 5(12.82)

Enhancement intensity <0.001 <0.001

Iso or hypo 77(64.71) 22(11.70) 42(64.62) 7(17.95)

Hyper 42(35.29) 166(88.30) 23(35.38) 32(82.05)

Enhancement
homogeneity

<0.001 0.002

Homogenous 80(67.23) 46(24.47) 42(64.62) 12(30.77)

Heterogeneous 39(32.77) 142(75.53) 23(35.38) 27(69.23)

Enhancement scope <0.001 <0.001

Not enlarged 99(83.19) 51(27.13) 52(80.00) 12(30.77)

Enlarged 20(16.81) 137(72.87) 13(20.00) 27(69.23)

CEUS margin <0.001 <0.001

Clear 94(78.99) 40(21.28) 48(73.85) 13(33.33)

Obscure 25(21.01) 148(78.72) 17(26.15) 26(66.67)

Perfusion defect <0.001 0.037

Absent 106(89.08) 132(70.21) 52(80.00) 23(58.97)

Present 13(10.92) 56(29.79) 13(20.00) 16(41.03)

Crab claw-like sign <0.001 0.005

Absent 116(97.48) 158(84.04) 62(95.38) 29(74.36)

Present 3(2.52) 30(15.96) 3(4.62) 10(25.64)
F
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UOQ, upper outer quadrant; LOQ, lower outer quadrant; UIQ, upper inner quadrant; LIQ, lower inner quadrant; CEUS, contrast-enhanced ultrasound.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1587879
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Shen et al. 10.3389/fonc.2025.1587879
Intra model was 0.802. The intratumoral model using PC images

and the OP ROI demonstrated the best diagnostic performance in

the testing cohort. Retaining the PC images or choosing the OP ROI

improved model performance under otherwise identical

conditions (Table 3).
Intratumoral-peritumoral region fusion
models performance analysis

This study constructed six groups of intratumoral-peritumoral

region fusion models. The performance metrics, including AUC,

accuracy, sensitivity, and specificity for all models in training and

testing cohorts, are summarized in Table 3. Incorporating

peritumoral information significantly enhanced model

performance. Extending a certain peritumoral region enhanced the

model’s diagnostic capability among the six model construction

strategies. Compared to the best-performing intratumoral region

model (AUC=0.807), most intratumoral-peritumoral region fusion

models with 2mm and 4mm extensions showed improved diagnostic

performance. These results suggest that the inclusion of peritumoral

regions enhances model performance. However, models extending

6mm, 8mm, and 10mm generally exhibited lower diagnostic

performance than the intratumoral region model. These results

suggest that the over-expansion of the peritumoral region leads to a

decline in performance. Table 4 summarizes the differences in AUC,

sensitivity, specificity, and accuracy between the fusion models and

the best intratumoral model. Figure 4 shows the AUC of all models in

the testing cohort.
Color selection for CEUS images (PC
images vs. GRAY images)

Models retaining PC images outperformed their corresponding

GRAY image models under the same ROI shape and intratumoral

and peritumoral region fusion strategy. In the OP-DE-Peri (4mm)

model, the AUC of PC images (0.837) surpassed that of GRAY

images (0.834) in the testing cohort. Similarly, in the BB-DE-Peri

(2mm) model, the AUC of the PC images (0.826) was higher than

that of the GRAY images (0.814) in the testing cohort. These results

suggest that retaining PC information can enhance the diagnostic

performance of DLR models.
ROI shape selection (OP ROI vs. BB ROI)

Models using the OP ROI outperformed those using the BB ROI

when the image color and intratumoral and peritumoral region

fusion strategies were identical. In the PC-DE-Peri (4mm) model,

the AUC of the OP ROI was 0.837, higher than that of the BB ROI

(0.814) in the testing cohort. Similarly, in the GRAY-DE-Peri

(4mm) model, the AUC of the OP ROI was 0.834, surpassing the

BB ROI (0.804) in the testing cohort. These results suggest that the
Frontiers in Oncology 08
OP ROI can capture lesion features more effectively, thereby

enhancing the diagnostic efficiency of the model.
Intratumoral and peritumoral region fusion
strategy (DE strategy vs. FLF strategy)

The DE strategy outperformed the FLF strategy under identical

image color and ROI shape conditions. In the PC-OP-Peri (4mm)

model, the AUC of the DE model was 0.837, higher than that of the

FLF model (0.817) in the testing cohort. Similarly, in the GRAY-

OP-Peri (4mm) model, the AUC of the DE model was 0.834,

surpassing the FLF model (0.808) in the testing cohort. These

results suggest that the DE strategy can enhance the diagnostic

performance of the model more effectively.
Model interpretation

To explore DLR model interpretability, we used Grad-CAM to

generate localization heatmaps highlighting key classification

regions. We observed that both tumor boundaries and interiors

are important for predicting benign versus malignant breast masses

(Figure 5). This finding supports the value of our intratumoral-

peritumoral region fusion models.
Comparison of the best fusion model with
radiologists

A reader study was performed on the testing cohort. The best

intratumoral-peritumoral region fusion model, namely the PC-OP-

DE-Peri (4mm) model, achieved an AUC of 0.837 in the testing

cohort. To further assess the clinical applicability of the model, we

compared its diagnostic performance with that of six radiologists

(Figure 6). The results showed that the AUC of the best fusion

model was significantly superior to that of two junior radiologists (P

< 0.05), and surpassed that of intermediate and senior radiologists

(P > 0.05). The AUCs of the six radiologists were as follows: Junior

Radiologist 1 (0.718), Junior Radiologist 2 (0.721), Intermediate

Radiologist 1 (0.779), Intermediate Radiologist 2 (0.772), Senior

Radiologist 1 (0.813), and Senior Radiologist 2 (0.810). Table 5

summarizes the AUC, accuracy, sensitivity, and specificity of the

best fusion model and the six radiologists in the testing cohort.
Discussion

This is the first study to systematically analyze the impact of

different combinations of key parameters on the diagnostic

performance of intratumoral-peritumoral region fusion models.

We evaluated the influence of CEUS image color, ROI shape, and

the fusion strategy of intratumoral and peritumoral regions on the

diagnostic efficacy of DLR models. The results revealed the optimal
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TABLE 3 The comparison of the diagnostic performance between different intratumoral and intratumoral-peritumoral region fusion models.

Model Cohort AUC Accuracy Sensitivity Specificity Cohort AUC Accuracy Sensitivity Specificity

PC-BB-Intra Training 0.941 0.863 0.856 0.874 Testing 0.801 0.740 0.821 0.692

PC-OP-Intra Training 0.908 0.837 0.846 0.824 Testing 0.807 0.740 0.744 0.738

GRAY-BB-Intra Training 0.920 0.857 0.846 0.874 Testing 0.792 0.760 0.769 0.754

GRAY-OP-Intra Training 0.871 0.805 0.803 0.807 Testing 0.802 0.750 0.692 0.785

PC-BB-DE-
Peri (2mm)

Training 0.942 0.863 0.814 0.941 Testing 0.826 0.798 0.641 0.892

PC-OP-DE-
Peri (2mm)

Training 0.908 0.821 0.814 0.832 Testing 0.827 0.808 0.641 0.908

PC-OP-FLF-
Peri (2mm)

Training 0.947 0.879 0.899 0.849 Testing 0.813 0.769 0.718 0.800

GRAY-BB-DE-
Peri (2mm)

Training 0.893 0.834 0.856 0.798 Testing 0.814 0.788 0.692 0.846

GRAY-OP-DE-
Peri (2mm)

Training 0.874 0.811 0.761 0.891 Testing 0.826 0.769 0.769 0.769

GRAY-OP-FLF-
Peri (2mm)

Training 0.921 0.827 0.777 0.908 Testing 0.807 0.769 0.564 0.892

PC-BB-DE-
Peri (4mm)

Training 0.943 0.870 0.862 0.882 Testing 0.814 0.817 0.692 0.892

PC-OP-DE-
Peri (4mm)

Training 0.900 0.831 0.867 0.773 Testing 0.837 0.808 0.667 0.892

PC-OP-FLF-
Peri (4mm)

Training 0.943 0.870 0.856 0.891 Testing 0.817 0.750 0.795 0.723

GRAY-BB-DE-
Peri (4mm)

Training 0.919 0.863 0.856 0.874 Testing 0.804 0.760 0.846 0.708

GRAY-OP-DE-
Peri (4mm)

Training 0.876 0.814 0.856 0.748 Testing 0.834 0.731 0.872 0.646

GRAY-OP-FLF-
Peri (4mm)

Training 0.913 0.834 0.824 0.849 Testing 0.808 0.750 0.615 0.831

PC-BB-DE-
Peri (6mm)

Training 0.938 0.873 0.867 0.882 Testing 0.777 0.779 0.692 0.831

PC-OP-DE-
Peri (6mm)

Training 0.859 0.782 0.755 0.824 Testing 0.826 0.760 0.718 0.785

PC-OP-FLF-
Peri (6mm)

Training 0.967 0.906 0.904 0.908 Testing 0.806 0.731 0.821 0.677

GRAY-BB-DE-
Peri (6mm)

Training 0.914 0.821 0.755 0.924 Testing 0.757 0.731 0.615 0.800

GRAY-OP-DE-
Peri (6mm)

Training 0.879 0.821 0.830 0.807 Testing 0.815 0.750 0.821 0.708

GRAY-OP-FLF-
Peri (6mm)

Training 0.920 0.860 0.878 0.832 Testing 0.786 0.702 0.718 0.692

PC-BB-DE-
Peri (8mm)

Training 0.940 0.876 0.899 0.840 Testing 0.765 0.683 0.846 0.585

PC-OP-DE-
Peri (8mm)

Training 0.863 0.811 0.840 0.765 Testing 0.781 0.683 0.795 0.615

PC-OP-FLF-
Peri (8mm)

Training 0.961 0.889 0.872 0.916 Testing 0.770 0.712 0.897 0.600

GRAY-BB-DE-
Peri (8mm)

Training 0.905 0.824 0.771 0.908 Testing 0.763 0.712 0.769 0.677

(Continued)
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combination of these parameters, thus providing a novel

methodological basis for optimizing DLR for BC diagnosis.

In this study, the peritumoral regions were obtained by

expanding the intratumoral ROI outward by increments of 2mm,

4mm, 6mm, 8mm, and 10mm. The diagnostic performance varied

significantly when different peritumoral regions were combined with

the intratumoral regions to construct fusion models. The study

demonstrated that the AUC of most fusion models improved

compared to the intratumoral model when the peritumoral region

was expanded by 2mm or 4mm. However, models with expansions of

6mm, 8mm, or 10mm generally exhibited lower AUC values. These

result highlights the importance of the peritumoral region in tumor

diagnosis and suggests that the size of the peritumoral region affects

the predictive ability of the models. The tumor microenvironment

contains various critical biological factors from a biological

perspective, such as angiogenesis, lymphatic invasion, and immune

cell infiltration. These factors significantly impact tumor

aggressiveness, metastasis, and recurrence risk. Compared to the

intratumoral region, the peritumoral region provides more valuable

insights into the interaction between the tumor and surrounding

tissues. Therefore, fusing the intratumoral and peritumoral regions

allows for a more comprehensive capture of the tumor’s clinical

features. This, in turn, enhances the diagnostic capability of the

models. This conclusion aligns with previous research. Multiple

studies have demonstrated that information from the peritumoral

region plays a crucial role in tumor prediction (22–24).

Although the 4mm peritumoral margin was chosen based on

empirical model performance, no biological or pathological

rationale currently supports its universal application. Previous

radiomics studies have shown diagnostic benefits from including

peritumoral features but lacked histopathological justification for

specific margins. For example, Xu et al. and Yu et al. reported

improved prediction of lymphovascular invasion and promoter
Frontiers in Oncology 10
methylation status by including peritumoral regions, though they

did not correlate imaging features with tissue characteristics (39,

40). These findings, together with our results, suggest the

peritumoral zone carries complementary diagnostic information.

However, further studies linking histopathologic markers are

needed. These markers include stromal composition, microvessel

density, and immune cell infiltration. Such research will help clarify

the biological basis for the optimal peritumoral margin.

The improvement in fusion model performance is not only

influenced by the size of the peritumoral region but also by the

selection of key parameters. In this study, six groups of fusion

models were constructed with different parameter settings. The

results indicated that the degree of performance improvement

varied depending on the choice of these parameters.

In CEUS image color selection, we found that models using PC

images outperformed those using GRAY images. PC images

enhance contrast and visibility by encoding varying signal

intensities with colors. This is particularly beneficial in low-

contrast regions, where they better highlight the differences

between the tumor and surrounding tissues. In contrast, GRAY

images may lose these details, especially in areas with weaker

signals, leading to an insufficient representation of lesion

characteristics. Overall, PC images offer more detailed

information, particularly regarding subtle changes in the tumor

area, giving them an advantage over GRAY images.

In the selection of ROI shape, we found that models using the

OP ROI outperformed those using the BB ROI. The OP ROI

minimizes interference from background noise and non-tumor

regions by accurately delineating the tumor boundaries. This

enables the model to focus on the tumor region and extract more

precise tumor features. In contrast, the BB ROI includes both the

tumor and surrounding background areas within the smallest

enclosing rectangle. The background potentially introduces
TABLE 3 Continued

Model Cohort AUC Accuracy Sensitivity Specificity Cohort AUC Accuracy Sensitivity Specificity

GRAY-OP-DE-
Peri (8mm)

Training 0.873 0.811 0.771 0.874 Testing 0.766 0.702 0.769 0.662

GRAY-OP-FLF-
Peri (8mm)

Training 0.910 0.844 0.819 0.882 Testing 0.760 0.663 0.769 0.600

PC-BB-DE-
Peri (10mm)

Training 0.945 0.893 0.883 0.908 Testing 0.795 0.731 0.872 0.646

PC-OP-DE-
Peri (10mm)

Training 0.903 0.821 0.819 0.824 Testing 0.804 0.769 0.641 0.846

PC-OP-FLF-
Peri (10mm)

Training 0.968 0.912 0.920 0.899 Testing 0.781 0.692 0.949 0.538

GRAY-BB-DE-
Peri (10mm)

Training 0.914 0.847 0.824 0.882 Testing 0.774 0.740 0.769 0.723

GRAY-OP-DE-
Peri (10mm)

Training 0.894 0.837 0.899 0.739 Testing 0.780 0.731 0.795 0.692

GRAY-OP-FLF-
Peri (10mm)

Training 0.909 0.824 0.830 0.815 Testing 0.777 0.692 0.744 0.662
AUC, the area under the curve; PC, pseudo-color; BB, bounding box; Intra, intratumoral regions; OP, original precise; GRAY, grayscale; DE, direct extension; Peri, peritumoral regions; FLF,
feature-level fusion.
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irrelevant regions, distracting the model during the learning process

and hindering the capture of key tumor features. Moreover, the BB

ROI may not align well with the complex boundaries of irregularly

shaped tumors, leading to a loss of critical boundary details. The OP

ROI, on the other hand, maximizes the retention of tumor

boundary features, thereby improving diagnostic accuracy.
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In the selection of the intratumoral and peritumoral region

fusion strategy, we found that the DE strategy outperforms the FLF

strategy. This suggests that the DE strategy more effectively fuses

information from the intratumoral and peritumoral regions. By

combining these regions at the image level, the spatial relationship

between the tumor and its surrounding microenvironment is
TABLE 4 Relative performance (D) of intratumoral–peritumoral fusion models compared with the best intratumoral model (PC-OP-Intra) in the
testing cohort.

Model
DAUC

(vs. PC-OP-Intra)
DSensitivity

(vs. PC-OP-Intra)
DSpecificity

(vs. PC-OP-Intra)
DAccuracy

(vs. PC-OP-Intra)

PC-OP-Intra 0 0 0 0

PC-BB-DE-Peri (2mm) +0.019 -0.102 +0.154 +0.058

PC-OP-DE-Peri (2mm) +0.020 -0.102 +0.170 +0.067

PC-OP-FLF-Peri (2mm) +0.006 -0.025 +0.062 +0.029

GRAY-BB-DE-Peri (2mm) +0.007 -0.051 +0.108 +0.048

GRAY-OP-DE-Peri (2mm) +0.019 +0.026 +0.031 +0.029

GRAY-OP-FLF-Peri (2mm) 0 -0.179 +0.154 +0.029

PC-BB-DE-Peri (4mm) +0.007 -0.051 +0.154 +0.077

PC-OP-DE-Peri (4mm) +0.030 -0.077 +0.154 +0.067

PC-OP-FLF-Peri (4mm) +0.010 +0.052 -0.015 +0.010

GRAY-BB-DE-Peri (4mm) -0.003 +0.103 -0.030 +0.019

GRAY-OP-DE-Peri (4mm) +0.027 +0.128 -0.092 -0.010

GRAY-OP-FLF-Peri (4mm) +0.001 -0.128 +0.093 +0.010

PC-BB-DE-Peri (6mm) -0.030 -0.051 +0.093 +0.038

PC-OP-DE-Peri (6mm) +0.019 -0.025 +0.047 +0.019

PC-OP-FLF-Peri (6mm) -0.001 +0.077 -0.061 -0.010

GRAY-BB-DE-Peri (6mm) -0.050 -0.128 +0.062 -0.010

GRAY-OP-DE-Peri (6mm) +0.008 +0.077 -0.030 +0.010

GRAY-OP-FLF-Peri (6mm) -0.021 -0.025 -0.046 -0.038

PC-BB-DE-Peri (8mm) -0.042 +0.103 -0.153 -0.058

PC-OP-DE-Peri (8mm) -0.026 +0.052 -0.123 -0.058

PC-OP-FLF-Peri (8mm) -0.037 +0.154 -0.138 -0.029

GRAY-BB-DE-Peri (8mm) -0.044 +0.026 -0.061 -0.029

GRAY-OP-DE-Peri (8mm) -0.041 +0.026 -0.076 -0.038

GRAY-OP-FLF-Peri (8mm) -0.047 +0.026 -0.138 -0.077

PC-BB-DE-Peri (10mm) -0.012 +0.128 -0.092 -0.010

PC-OP-DE-Peri (10mm) -0.003 -0.102 +0.108 +0.029

PC-OP-FLF-Peri (10mm) -0.026 +0.205 -0.200 -0.048

GRAY-BB-DE-Peri (10mm) -0.033 +0.026 -0.015 0

GRAY-OP-DE-Peri (10mm) -0.027 +0.052 -0.046 -0.010

GRAY-OP-FLF-Peri (10mm) -0.030 0 -0.076 -0.048
AUC, area under the curve; DAUC, DSensitivity, DSpecificity, and DAccuracy represent the differences in AUC, sensitivity, specificity, and accuracy, respectively, relative to the best intratumoral
model (PC-OP-Intra). PC, pseudo-color; BB, bounding box; OP, original precise; GRAY, grayscale; DE, direct extension; Peri, peritumoral; FLF, feature-level fusion.
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preserved. This is particularly advantageous when tumor

morphology is irregular or boundaries are unclear. In contrast,

the FLF strategy first extracts features separately from the

intratumoral and peritumoral regions. These features are then

fused, which may lead to information redundancy, particularly

when complex relationships exist between these regions.

Moreover, the DE strategy operates at the pixel level, directly

capturing dynamic changes and spatial information of both the

tumor and surrounding tissues. DE strategy enhances the modal’s

predictive ability and stability, particularly in cases with irregular

tumor characteristics.
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Although variations in key parameter settings among models in

this study led to differences in diagnostic performance, these model

construction strategies remain effective. Multiple studies have

demonstrated the validity of different paraments. Xu et al. (10)

constructed a DLR model using CEUS PC images for BC diagnosis.

Tong et al. (29) successfully differentiated pancreatic cancer from

chronic pancreatitis using GRAY CEUS images. Han et al. (30)

predicted occult lymph node metastasis in tongue cancer using OP

ROIs. Jiang et al. (7) predicted pathological response after

neoadjuvant chemotherapy for BC using BB ROIs. Wei et al. (32)

predicted the risk of microvascular invasion in hepatocellular
FIGURE 4

The ROC curves of different models in the testing cohort. (A) The ROC curve of the intratumoral model. (B–F) Display the ROC curves of fusion
models with peritumoral regions extended to 2mm, 4mm, 6mm, 8mm, and 10mm, respectively. (G) The ROC curves of the optimal intratumoral
model and the optimal extending different peritumoral sizes fusion models. AUC, the area under the curve; ROC, receiver operating characteristic;
PC, pseudo-color; BB, bounding box; Intra, intratumoral regions; OP, original precise; GRAY, grayscale; DE, direct extension; Peri, peritumoral
regions; DLR, deep learning radiomics.
FIGURE 5

Visualized examples from different patients (labeled A–F). Each example includes heatmaps corresponding to CEUS images. The red regions
represent a larger weight, as decoded by the color bar on the right. As shown in the figure, both the intratumoral and peritumoral regions of the
tumor exhibit highlighted areas. This indicates that both the intratumoral and peritumoral regions are of significant value in the diagnosis of benign
and malignant tumors. Labels (A–F) denote different patients and are shown for illustrative purposes only. CEUS, contrast-enhanced ultrasound; ROI,
region of interest.
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carcinoma using a DE strategy. Can et al. (33) predicted KRAS gene

mutations in rectal cancer using an FLF strategy. Diagnostic

performance is still influenced by the choice of key parameters

while the effectiveness of these models has been established.

Therefore, optimizing the combination of these parameters is

expected to further enhance model performance. This study not

only contributes to refining image processing strategies but also

provides valuable guidance on selecting the most appropriate

imaging parameters for clinical practice. Though focused on CEUS,

the dual-region fusion framework can extend to multimodal imaging.

BC diagnosis often uses various imaging methods. Future studies

should integrate B-mode ultrasound, mammography, or MRI. This

could improve diagnostic accuracy and generalizability.
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The interpretation of ultrasound images is inherently subjective,

and diagnostic outcomes are often significantly influenced by the

radiologist’s experience (41). This subjectivity arises from the

limitations of visual information recognition. It is particularly

evident in cases where imaging appearances resemble one

another, yet the underlying pathological mechanisms differ. For

instance, the CEUS image features of inflammatory breast diseases

and malignant tumors can appear similar, potentially leading to the

misdiagnosis of BC (42). The reader study results of this research

further support this observation. The AUC values for the six

radiologists ranged from 0.718 to 0.813, indicating that greater

experience tends to improve diagnostic performance, though

discrepancies still exist. In contrast, the PC-OP-DE-Peri (4mm)
FIGURE 6

The ROC curves of six radiologists and the best intratumoral-peritumoral region fusion model in the testing cohort. AUC, the area under the curve;
ROC, receiver operating characteristic; PC, pseudo-color; OP, original precise; DE, direct extension; Peri, peritumoral regions.
TABLE 5 The comparison of diagnostic performance between the best fusion model and six radiologists.

Model Cohort AUC Accuracy Sensitivity Specificity

PC-OP-DE-Peri (4mm) Testing 0.837 (95%CI 0.759-0.916) 0.702 0.897 0.585

Junior Radiologist 1 Testing 0.718 (95%CI 0.628-0.808) 0.750 0.590 0.846

Junior Radiologist 2 Testing 0.721 (95%CI 0.632-0.809) 0.760 0.564 0.877

Intermediate Radiologist 1 Testing 0.779 (95%CI 0.695-0.864) 0.808 0.667 0.892

Intermediate Radiologist 2 Testing 0.772 (95%CI 0.687-0.857) 0.798 0.667 0.877

Senior Radiologist 1 Testing 0.813 (95%CI 0.733-0.893) 0.837 0.718 0.908

Senior Radiologist 2 Testing 0.810 (95%CI 0.730-0.891) 0.827 0.744 0.877
AUC, area under the curve; 95%CI, 95% confidence interval; PC, pseudo-color; BB, bounding box; OP, original precise; GRAY, grayscale; DE, direct extension; Peri, peritumoral; FLF, feature-
level fusion.
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model (AUC=0.837) demonstrated higher diagnostic performance.

The result highlights the potential of DLRmodels in minimizing the

impact of human subjectivity.

From the perspective of the characteristics of DLR models, DLR

offers significant advantages in multiple areas. First, DLR models

can automatically extract subtle lesions from large datasets and

image features, identifying details that are often difficult for the

human eye to detect. This enables DLR models to outperform

human radiologists at the level of detail in diagnostic performance.

Second, DLR models maintain a high degree of consistency,

reducing diagnostic variability. This consistency helps mitigate

factors such as workload, emotional fluctuations, or fatigue,

which may affect radiologists handling large numbers of cases. As

a result, DLRmodels provide efficient, stable, and reliable diagnostic

support. This study demonstrates that the intratumoral-

peritumoral region fusion model effectively addresses the

limitations of radiologists in visual recognition, offering robust

support for the precise diagnosis of breast tumors. Although the

proposed model showed promising results, it was developed

without stratified training by tumor size or BI-RADS categories.

Lesion size may affect the importance of the peritumoral region.

Therefore, the current fixed 4mm expansion may not apply well to

all clinical cases. Future studies should include subgroup analyses.

These should focus on tumor size categories: small (<10mm),

medium (10–20 mm), and large (>20mm). This will help improve

the model’s clinical relevance. At the same time, real-time

interpretability and processing time were not formally evaluated.

However, the model’s lightweight design suggests it could be

deployed in real time. Future studies will focus on optimizing

efficiency and adding interpretability tools to aid clinical translation.

This study has several limitations. First, due to the retrospective

design, selection bias may be present. Second, the “black box”

nature of DLR models presents interpretability challenges, which

may hinder their clinical application in the medical field.

Additionally, the external sample size was limited. Larger,

multicenter studies are needed to validate the model ’s

generalizability. Future prospective research should aim to

improve model transparency, interpretability, and optimize

experimental design to strengthen validation.

In summary, this study developed intratumoral-peritumoral

region fusion models based on DLR and CEUS images for the

non-invasive identification of benign and malignant breast lesions.

The study systematically evaluated the selection of key parameters

in intratumoral-peritumoral region fusion modal construction.

These included the preference for PC images over GRAY images,

the superiority of OP ROIs over BB ROIs, and the advantage of the

DE strategy over the FLF strategy.
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