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Background: Early diagnosis of breast cancer (BC) is crucial for improving patient
outcomes. Features of the peritumoral region have been shown to significantly
enhance the predictive performance of deep learning radiomics (DLR) models.
This study aims to explore the impact of key parameter selection on improving
the performance of the intratumoral-peritumoral region fusion model. The goal
is to enhance the modal's non-invasive diagnostic capability for distinguishing
benign and malignant breast tumors.

Materials and methods: This retrospective study included 411 female patients
with breast lesions from four hospitals. DLR models were constructed using their
contrast-enhanced ultrasound (CEUS) images. The intratumoral region of
interest (ROI) was gradually expanded to generate peritumoral regions of
varying thicknesses. Six groups of fusion models were constructed using
different key parameter combinations, including pseudo-color (PC) vs.
grayscale (GRAY) images, original precise (OP) ROI vs. bounding box (BB) ROI,
and direct extension (DE) strategy vs. feature-level fusion (FLF) strategy.
Additionally, a reader study was conducted, comparing the diagnostic
performance of the best fusion model with that of six radiologists. The
performance of the models was evaluated using the area under the curve (AUC).
Results: Incorporating the peritumoral region significantly enhanced the
diagnostic performance of the DLR models. The PC-OP-DE-Peri (4mm) model
achieved the highest performance in the testing cohort, with an AUC of 0.837.
The performance surpassed both the intratumoral models and all radiologists.
The effects of different key parameter selections on fusion model
performance varied.
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Conclusion: This study suggests that the selection of PC images, OP ROls, and
the DE strategy effectively improves the performance of intratumoral-
peritumoral region fusion models for predicting BC.

deep learning radiomics, multicenter, breast cancer, peritumoral region, contrast-

enhanced ultrasound

Introduction

Deep learning radiomics (DLR), an emerging field, has garnered
considerable attention in the medical community in recent years. By
extracting high-throughput image features, DLR provides non-
invasive biomarkers for clinical outcomes. Unlike traditional
radiomics, DLR can learn directly from raw images and
automatically extract appropriate, undefined features (1, 2). DLR
plays a significant role in lesion detection and cancer diagnosis (3).
In the context of personalized medicine, DLR holds promise for
significant improvements in disease diagnosis, prognosis
evaluation, and treatment response prediction.

Breast cancer (BC) is the most common malignancy in women
worldwide, with 2.31 million new cases reported in 2022 (4). The
development of advanced imaging techniques, such as DLR, has
been pivotal in improving the diagnosis and treatment of BC (5).
Recent studies have demonstrated that DLR based on ultrasound
images can effectively predict various critical clinical outcomes in
BC, such as response to neoadjuvant chemotherapy (6, 7), sentinel
lymph node metastasis (8), axillary lymph node metastasis (9),
tumor benignity or malignancy (10, 11), disease-free survival (12),
molecular subtypes (13), and recurrence (14). Furthermore,
contrast-enhanced ultrasound (CEUS) provides significant
advantages in assessing tumor blood flow and microvascular
status. These benefits enhanced the accuracy of BC diagnosis (15).
Recent imaging advances, like hyperspectral imaging-based
computer-aided detection (16), have improved lesion detection
but face challenges in clinical use due to high costs and
complexity. Socioeconomic disparities limit screening, with family
support and economic status as key factors for early diagnosis (17).
These challenges highlight the need for diagnostic methods that are
accurate, affordable, interpretable, and widely usable. Thus,
developing a CEUS-based DLR model to classify breast tumors as
benign or malignant is highly promising.

Although many existing DLR studies focus on the intratumoral
region (18, 19), increasing evidence indicates that the peritumoral
region can also offer valuable supplementary information (20, 21).
Recent studies have shown that changes in the tissue surrounding
the tumor, including angiogenic factors (22), lymphangiogenesis
(23), peritumoral lymphocytic infiltration (24), peripheral edema
(25), and stromal response (26), are important indicators of clinical
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outcomes. Thus, the peritumoral region may provide valuable
information for tumor diagnosis and prognosis. Recent studies
have extensively utilized the characteristics of the peritumoral
region. Sun et al. (20) utilized peritumoral features to predict
axillary lymph node metastasis in BC. Liu et al. (27) evaluated
lymphatic vessel invasion in BC using peritumoral features. These
studies further validate the feasibility of constructing a DLR
intratumoral-peritumoral region fusion model to predict the
benignity or malignancy of breast tumors.

Despite numerous studies attempting to integrate peritumoral
region features, significant discrepancies remain in the key
parameters for constructing intratumoral-peritumoral region fusion
models. In terms of image color selection, some studies retain the
pseudo-color (PC) of the image (28), while others convert the image
to grayscale (GRAY) (29). Regarding region of interest (ROI) shape
selection, some studies directly use the original precise (OP) ROI for
image analysis (30). In contrast, others employ bounding box (BB)
ROIs, which expand outward from the OP ROI to form the smallest
enclosing rectangle (31). Concerning the fusion strategy of
intratumoral and peritumoral regions, some studies adopt a direct
extension (DE) strategy. In this approach, the intratumoral region is
directly expanded to obtain the peritumoral region, and features are
extracted from the entire region (32). In contrast, other studies
employ a feature-level fusion (FLF) strategy. In the FLF approach,
features are separately extracted from the intratumoral and
peritumoral regions and then fused to construct the model (33).
Although these strategies have achieved some success, there is
currently a lack of systematic research exploring how to determine
the optimal parameters. This uncertainty hinders the widespread
clinical application of these advancements.

This study aims to identify the optimal parameters for
constructing an intratumoral-peritumoral fusion model using
DLR and CEUS images. Specifically, we focus on evaluating how
different combinations of these parameters affect diagnostic
performance. The goal is to enhance the ability of DLR models to
predict the benign or malignant nature of breast tumors.
Specifically, this study will address the following three core issues:
(1) Comparison of CEUS image color selection (PC vs. GRAY); (2)
Selection of ROI shape (OP ROI vs. BB ROI); (3) Selection of fusion
strategy for intratumoral and peritumoral regions (DE strategy vs.
FLF strategy).
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Materials and methods

Patients

This study is a retrospective multicenter study that included 411
female patients with breast lesions. The study was conducted at four
hospitals in different regions of China, with data collected between
January 2018 and May 2024. A total of 307 patients were from
People’s Hospital of Guangxi Zhuang Autonomous Region
(Hospital 1), 30 from Guilin Municipal Hospital of Traditional
Chinese Medicine (Hospital 2), 28 from Fangchenggang First
People’s Hospital (Hospital 3), and 46 from Minda Hospital of
Hubei Minzu University (Hospital 4). To minimize selection bias,
we enrolled consecutive patients from four hospitals with diverse
imaging protocols and settings. Only non-diagnostic images were
excluded. No manual balancing by lesion type was done to preserve
real-world diversity. The study was conducted in accordance with
the Declaration of Helsinki and approved by the ethics committees
of all participating hospitals. Due to the retrospective design, patient
consent was not required for the study.

Breast examination retrospectively collected from January
2018 to May 2024

10.3389/fonc.2025.1587879

All lesions were confirmed by pathology based on ultrasound-
guided core-needle biopsy or surgical excision. Pathological
diagnoses were made following the WHO Classification of Breast
Tumors (5th edition) and institutional protocols, performed by
board-certified breast pathologists.

Inclusion criteria were: (1) pathologically confirmed breast
lesions; (2) standard and complete CEUS examination performed;
(3) imaging examinations met quality standards. Exclusion criteria
were: (1) incomplete imaging or clinical data; (2) patients who had
received chemotherapy, radiotherapy, or targeted therapy; (3)
pregnant or lactating patients at the time of imaging examination.

To reduce overfitting and potential bias, a center-split cohort
strategy was adopted. Data from Hospital 1, the largest patient
group (n = 307), were used as the training cohort, while data from
Hospitals 2, 3, and 4 (n = 104) formed the testing cohort. The
testing data were obtained from independent external centers to
mimic real-world generalization. This approach also helps
minimize center-specific bias and is consistent with previous
multicenter radiomics studies (34-36). Detailed information on
the patient selection process is shown in Figure 1, and clinical
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(ID)Standard and complete CEUS examination performed
(IlI)Imaging examinations met quality standards
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FIGURE 1

'@ns divided into testing cohort

The patient recruitment flowchart for the present study. CEUS, contrast-enhanced ultrasound.
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baseline characteristics were extracted from the databases of
each hospital.

Acquisition of CEUS images

Ultrasound examinations were performed using equipment
including Aplio 500, Aplio i800, Aplio i900, Mindray R7,
Mindray R9, GE LOGIQ E9, and GE LOGIQ E10, all equipped
with high-frequency linear array probes. To reduce inter-machine
variability, all CEUS scans were performed by radiologists from the
same department (=5 years’ experience) using a standardized
protocol. Device settings including gain, depth, mechanical index,
and focal length were unified before scanning. All images were
reviewed by a senior breast imaging specialist (>20 years’
experience) to ensure quality, as recommended by prior multi-
device imaging studies (29). During the examination, patients were
placed in the supine position with both arms raised to ensure
optimal exposure for breast imaging. Suspicious lesions were
scanned in multiple transverse views to assess their size, location,
and other morphological characteristics. The slice showing the
largest lesion was then selected for CEUS imaging. In CEUS
mode, 4.8 mL of contrast agent (SonoVue) was injected via the
median cubital vein, followed by a flush with 5 mL of saline. The
time storage functions were activated, and dynamic images were
recorded for a minimum of 2 minutes. All ultrasound images were
stored in DICOM format on the workstation for further analysis.

10.3389/fonc.2025.1587879

ROI segmentation and processing

In CEUS imaging, the peak phase with the highest enhancement
intensity was determined using the time-intensity curve (TIC),
based on the largest tumor section. The single frame
corresponding to the peak enhancement moment was selected as
the representative. This method relies on the significant difference
in peak enhancement between benign and malignant tumor masses
(37). CEUS images were exported from the workstation in JPG
format and processed using ITK-SNAP software (http://
www.itksnap.org). A radiologist with over ten years of experience
in breast ultrasound examination independently identified the ROI.
The ROI was then reviewed and optimized by another radiologist
with 20 years of diagnostic experience to ensure consistency
and accuracy.

Using the mask padding toolkit from the OnekeyAl platform
(https://github.com/onekeyai-platform/onekey), we gradually
expanded the intratumoral ROI The expansion was performed in
2mm increments in each direction up to 10mm. This approach
followed the strategy of Ding et al. (38), who showed that stepwise
peritumoral region expansion is feasible and useful in radiomics
analysis for BC. The toolkit is implemented using the “Simpleltk”
package in Python version 3.7. Ultimately, five peritumoral regions
were obtained: 2mm, 4mm, 6mm, 8mm, and 10mm. Both the
intratumoral and peritumoral regions were used for further
analysis. Figure 2 illustrates the process of expanding the
intratumoral region.

Intratumoral ROI Peritumoral size = 2mm Peritumoral size = 4mm Peritumoral size = 6mm Peritumoral size = Smm Peritumoral size = 10mm
B
BB ROI PC-BB-DE-Peri (2mm) PC-BB-DE-Peri (4dmm) PC-BB-DE-Peri (6mm) PC-BB-DE-Peri (Smm) PC-BB-DE-Peri (10mm)
(o)
OP ROI PC-OP-DE-Peri (2mm) PC-OP-DE-Peri (4mm) PC-OP-DE-Peri (6mm) PC-OP-DE-Peri (Smm) PC-OP-DE-Peri (10mm)
PC CEUS image
D
Intratumoral ROI  Peritumoral ROl Intratumoral ROI  Peritumoral ROU Intratumoral ROl Peritumoral ROl Intratumoral ROI  Peritumoral ROL Intratumoral ROL  Peritumoral ROI
PC-OP-FLF-Peri (2mm) PC-OP-FLF-Peri (4mm) PC-OP-FLF-Peri (6mm) PC-OP-FLF-Peri (Smm) PC-OP-FLF-Peri (10mm)
E
BB ROI GRAY-BB-DE-Peri (2mm) GRAY-BB-DE-Peri (4mm) GRAY-BB-DE-Peri (6mm) GRAY-BB-DE-Peri (§mm) GRAY-BB-DE-Peri (10mm)
F
OP ROI GRAY-OP-DE-Peri (2mm) GRAY-OP-DE-Peri (4mm) GRAY-OP-DE-Peri (6mm) GRAY-OP-DE-Peri (Smm) GRAY-OP-DE-Peri (10mm)
GRAY CEUS
image
G
Intratumoral ROT Peritumoral ROT Intratumoral ROT Peritumoral ROT Intratumoral ROI Peritumoral ROT Intratumoral ROT Peritumoral ROI Intratumoral ROT Peritumoral ROT
GRAY-OP-FLF-Peri 2mm) GRAY-OP-FLF-Peri (4mm) GRAY-OP-FLF-Peri (6mm) GRAY-OP-FLF-Peri (8mm) GRAY-OP-FLF-Peri (10mm)
FIGURE 2

The representative images for DLR model construction. (A) Intratumoral ROIs (red) and peritumoral ROIs of different sizes (green). (B) The schematic
images of PC-BB-DE strategy. (C) The schematic images of PC-OP-DE strategy; (D) The schematic images of PC-OP-FLF; (E) The schematic
images of GRAY-BB-FLF strategy; (F) The schematic images of GRAY-OP-DE strategy; (G) The schematic images of GRAY-OP-FLF strategy. PC,
pseudo-color; BB, bounding box; Intra, intratumoral regions; OP, original precise; GRAY, grayscale; DE, direct extension; Peri, peritumoral regions;
FLF, feature-level fusion; DLR, deep learning radiomics; CEUS, contrast-enhanced ultrasound; ROI, region of interest
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Different parameters for constructing
intratumoral-peritumoral region fusion
models

Three factors were considered to determine the optimal
parameters: (1) CEUS image color selection: the images were
divided into two groups, the PC image group (retaining color)
and the GRAY image group (converted to grayscale). (2) ROI shape
selection: the images were categorized into the OP ROI group and
the BB ROI group based on the shape of the ROI. The OP ROI
retains only the delineated ROI area, with background pixels
outside the ROI removed. In contrast, the BB ROI retains the
smallest enclosing rectangle containing the OP ROL (3) Fusion
strategy selection: regarding the fusion strategy for intratumoral
and peritumoral regions, the images were categorized into the FLF
group and the DE group. FLF involves feature-level fusion, where
features are first extracted from the intratumoral and peritumoral
ROIs and then combined. DE involves expanding the intratumoral
ROI to create a new ROI that includes both intratumoral and
peritumoral regions. Features are then directly extracted from this
combined ROI. Based on the above strategies, this study
constructed six groups of different model combinations to
evaluate the impact of each parameter on model performance: (1)
PC-BB-DE; (2) GRAY-BB-DE; (3) PC-OP-DE; (4) GRAY-OP-DE;
(5) PC-OP-FLF; and (6) GRAY-OP-FLF. The combinations ‘PC-
BB-FLF and ‘GRAY-BB-FLF were excluded due to the partial
overlap between the intratumoral BB ROI and peritumoral ROI,
which could affect model accuracy. Figure 2 illustrates the entire
process of constructing the intratumoral-peritumoral region fusion
model. To enhance clarity, Table 1 provides clear definitions of
abbreviations used in the model names, along with

representative examples.

DLR feature extraction and model
construction

All DLR analyses were performed using the OnekeyAlI platform
(version 4.9.1). This Python-based system includes popular libraries
such as PyTorch (1.11.0), CUDA (11.3.1), cuDNN (8.2.1), and
Scikit-learn (1.0.2). All input images were resized to a uniform size
of 224 x 224 pixels. First, the widely used DLR model VGG16 was
pre-trained on the ImageNet dataset, and transfer learning was
applied to the training cohort. After training the VGG16 model,
deep features were extracted from the fifth-to-last pooling layer
(block1_pool). This layer preserves more low-level spatial details. A
total of 100,352 features (112 x 112 x 8) were obtained. This layer
was chosen instead of the final average pooling layer because it
performed better on our dataset. Principal Component Analysis
(PCA) was applied to reduce the dimensionality of the DLR features
to 32, enhancing the model’s generalizability and reducing the risk
of overfitting. Feature selection was performed using the Mann-
Whitney U test, retaining features with a p-value less than 0.05.
Next, Pearson correlation coefficients were calculated to assess
feature redundancy, and redundant features with an absolute
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correlation coefficient of 0.9 or greater were removed. Feature
selection was performed using Least Absolute Shrinkage and
Selection Operator (LASSO) regression, and the most
representative features were selected via ten-fold cross-validation.

To select the optimal classifier for downstream prediction, we
used the built-in Scikit-learn (version 1.0.2) module in the Onekey
AT platform (version 4.9.1). This platform includes several
commonly used machine learning algorithms, such as Support
Vector Machine (SVM), Random Forest (RF), XGBoost, and
Logistic Regression (LR). We compared the classification
performance of these algorithms during model selection. LR
model showed the highest and most consistent performance
across multiple metrics, including area under the curve (AUC),
accuracy, specificity, and sensitivity. Therefore, we selected LR
model as the final classifier for all reported results. Although LR

TABLE 1 Abbreviations and descriptions of model naming components.
Full

term/
Interpretation

Abbreviation .
Description

or example

PC Pseudo-Color CEUS. image p'reserving original
color information.

CEUS image converted

GRAY
to grayscale

Grayscale

Precisely delineates the tumor
ion, retai ly ROI pixels,
oP Original Precise region, retains only pixels.
and removes

background interference.

Minimum enclosing rectangle of
BB Bounding Box the tumor, focusing on the lesion’s

core area.

Expands the intratumoral ROI
outward to include the
peritumoral region; features are
extracted from the entire
expanded area.

DE Direct Extension

Intratumoral and peritumoral
Feature-
FLF features are separately extracted

Level Fusi
evel Fusion and then fused at the feature level.

. . Region defined by radial
Peritumoral Region .
expansion from the tumor

Peri (X mm) with X
. boundary (e.g., 2mm,
mm Extension
4mm, 6mm).
Pseudo-Color Example of a fusion model that
Image + Original preserves CEUS color information,
PC-OP-DE- Precise ROI + keeps only ROI pixels, expands
Peri (4mm) Direct Extension 4mm radially around the tumor,
Strategy + 4mm and directly extracts features from
Peritumoral Region | the expanded image.
Example of a fusion model that
Grayscale Image + converts CEUS images to
GRAY-BB-FLE- Bounding Box ROI | grayscale, uses the bounding box
. + Feature-Level of the OP ROJ, expands 6mm
Peri (6mm)

Fusion + 6mm
Peritumoral Region

radially, extracts intratumoral and
peritumoral features separately,
and fuses them at the feature level.

PC, pseudo-color; CEUS, contrast-enhanced ultrasound; GRAY, grayscale; OP, original
precise; BB, bounding box; DE, direct extension; FLF, feature-level fusion; Peri, peritumoral
regions; ROI, region of interest.
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is a linear model, we believe that the deep convolutional layers in the
feature extraction network captured enough nonlinear and abstract
patterns. This allowed the linear classifier to perform well without
increasing the risk of overfitting. This approach also improves
model transparency and reproducibility, which are essential for
clinical decision support.

The selected features were input into an LR model to build the
radiomics model. Five-fold cross-validation was performed to
validate the reliability of the selected features. After training, the
model’s predictive performance was evaluated on both the training
and testing cohorts. Evaluation metrics included the receiver
operating characteristic (ROC) curve, AUC, accuracy, sensitivity,
and specificity. The model construction process is illustrated
in Figure 3.

To enhance model interpretability, Gradient-weighted Class
Activation Mapping (Grad-CAM) was applied to produce
heatmaps showing image areas that most influence classification.

A reader study

A reader study was conducted to compare the diagnostic
performance of DLR models and radiologists. Six radiologists
participated, including two junior radiologists with less than five
years of experience, two intermediate radiologists with five to ten
years of experience, and two senior radiologists with more than ten
years of experience. The testing cohort consisted of 104 breast
tumor cases, which were presented to the radiologists in a random
order. Throughout the study, radiologists were blinded to the
original diagnostic reports, peer opinions, and final pathological
results to ensure an unbiased evaluation process.

10.3389/fonc.2025.1587879

Statistics

All data analyses were conducted on the OnekeyAl platform
(version 4.9.1) using Python 3.7.12. Statistical analyses were
performed using Statsmodels (version 0.13.2). The LR model was
implemented using Scikit-learn (version 1.0.2). The DLR
framework was developed using PyTorch (version 1.11.0) and
optimized with CUDA (version 11.3.1) and cuDNN (version
8.2.1). In clinical data analysis, continuous variables were assessed
with the Mann-Whitney U test or independent t-test, while
categorical variables were analyzed using the chi-square test or
Fisher’s exact test. A result was considered statistically significant if
the two-sided p-value was less than 0.05.

Results
Clinical characteristics

This study included 411 female patients with breast lesions from
four different hospitals. Of these, 227 were diagnosed as malignant
and 184 as benign based on pathological evaluations. The clinical
characteristics of the patients are summarized in Table 2.

Intratumoral region models performance
analysis

In the testing cohort, the AUC of the PC-BB-Intra model was
0.801, while that of the GRAY-BB-Intra model was 0.792. The AUC
of the PC-OP-Intra model was 0.807, while that of the GRAY-OP-

Image acquisition

Crop images

Original CEUS images

=

Intratumoral ROI

Peri (2mm)
PC-OP-FLF-Peri (2mm)

Intra

Peri 2mm)
‘GRAY-OP-FLF-Peri (2mm)

Intra

Peritumoral ROI

A

Features extraction

ImageNet data

Pretrain VGG-16

Modal construction

Features selection

Lasso

AUC

MSE

Features weights

D E

FIGURE 3

Workflow of ROI extraction and DLR modal construction. (A) Illustrating the image segmentation process, where the red area denotes the
intratumoral ROI and the green area represents the peritumoral ROI. (B) An illustration of obtaining different ROI crops. (C) The process of DLR
feature extraction. (D) The feature selection processing. (E) The model performance evaluation. AUC, the area under the curve; PC, pseudo-color;
BB, bounding box; Intra, intratumoral regions; OP, original precise; GRAY, grayscale; DE, direct extension; Peri, peritumoral regions; ROI, region of
interest; DLR, deep learning radiomics; CEUS, contrast-enhanced ultrasound
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TABLE 2 Characteristics of patients in the training and testing cohort.

Training cohort (n = 307) Testing cohort (n = 104)

Characteristics

Benign Malignancy Benign Malignancy
Age (years) 43.11 £ 11.61 51.86 + 11.42 <0.001 4345 + 11.50 48.82 + 9.66 0.005
Size (mm) 18.02 + 11.23 25,51 £ 11.31 <0.001 13.26 + 8.60 17.21 + 12.24 0.014
BI-RADS-category <0.001 <0.001
3 31(26.05) 2(1.06) 11(16.92) 1(2.56)
4A 49(41.18) 3(1.60) 45(69.23) 15(38.46)
4B 27(22.69) 19(10.11) 8(12.31) 9(23.08)
4C 12(10.08) 60(31.91) 1(1.54) 9(23.08)
5 null 104(55.32) null 5(12.82)
Location 0.082 0.847
UoQ 50(42.02) 107(56.91) 34(52.31) 18(46.15)
LOQ 27(22.69) 29(15.43) 11(16.92) 6(15.38)
LIQ 12(10.08) 14(7.45) 8(12.31) 7(17.95)
UIQ 30(25.21) 38(20.21) 12(18.46) 8(20.51)
Orientation 0.008 1.0
Parallel 114(95.80) 161(85.64) 57(87.69) 34(87.18)
Not parallel 5(4.20) 27(14.36) 8(12.31) 5(12.82)
Enhancement intensity <0.001 <0.001
Tso or hypo 77(64.71) 22(11.70) 42(64.62) 7(17.95)
Hyper 42(35.29) 166(88.30) 23(35.38) 32(82.05)
E:&Z‘;Z’:f;t <0.001 0.002
Homogenous 80(67.23) 46(24.47) 42(64.62) 12(30.77)
Heterogeneous 39(32.77) 142(75.53) 23(35.38) 27(69.23)
Enhancement scope <0.001 <0.001
Not enlarged 99(83.19) 51(27.13) 52(80.00) 12(30.77)
Enlarged 20(16.81) 137(72.87) 13(20.00) 27(69.23)
CEUS margin <0.001 <0.001
Clear 94(78.99) 40(21.28) 48(73.85) 13(33.33)
Obscure 25(21.01) 148(78.72) 17(26.15) 26(66.67)
Perfusion defect <0.001 0.037
Absent 106(89.08) 132(70.21) 52(80.00) 23(58.97)
Present 13(10.92) 56(29.79) 13(20.00) 16(41.03)
Crab claw-like sign <0.001 0.005
Absent 116(97.48) 158(84.04) 62(95.38) 29(74.36)
Present 3(2.52) 30(15.96) 3(4.62) 10(25.64)

UOQ, upper outer quadrant; LOQ, lower outer quadrant; UIQ, upper inner quadrant; LIQ, lower inner quadrant; CEUS, contrast-enhanced ultrasound.
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Intra model was 0.802. The intratumoral model using PC images
and the OP ROI demonstrated the best diagnostic performance in
the testing cohort. Retaining the PC images or choosing the OP ROI
improved model performance under otherwise identical
conditions (Table 3).

Intratumoral-peritumoral region fusion
models performance analysis

This study constructed six groups of intratumoral-peritumoral
region fusion models. The performance metrics, including AUC,
accuracy, sensitivity, and specificity for all models in training and
testing cohorts, are summarized in Table 3. Incorporating
peritumoral information significantly enhanced model
performance. Extending a certain peritumoral region enhanced the
model’s diagnostic capability among the six model construction
strategies. Compared to the best-performing intratumoral region
model (AUC=0.807), most intratumoral-peritumoral region fusion
models with 2mm and 4mm extensions showed improved diagnostic
performance. These results suggest that the inclusion of peritumoral
regions enhances model performance. However, models extending
6mm, 8mm, and 10mm generally exhibited lower diagnostic
performance than the intratumoral region model. These results
suggest that the over-expansion of the peritumoral region leads to a
decline in performance. Table 4 summarizes the differences in AUC,
sensitivity, specificity, and accuracy between the fusion models and
the best intratumoral model. Figure 4 shows the AUC of all models in
the testing cohort.

Color selection for CEUS images (PC
images vs. GRAY images)

Models retaining PC images outperformed their corresponding
GRAY image models under the same ROI shape and intratumoral
and peritumoral region fusion strategy. In the OP-DE-Peri (4mm)
model, the AUC of PC images (0.837) surpassed that of GRAY
images (0.834) in the testing cohort. Similarly, in the BB-DE-Peri
(2mm) model, the AUC of the PC images (0.826) was higher than
that of the GRAY images (0.814) in the testing cohort. These results
suggest that retaining PC information can enhance the diagnostic
performance of DLR models.

ROI shape selection (OP ROI vs. BB ROI)

Models using the OP ROI outperformed those using the BB ROI
when the image color and intratumoral and peritumoral region
fusion strategies were identical. In the PC-DE-Peri (4mm) model,
the AUC of the OP ROI was 0.837, higher than that of the BB ROI
(0.814) in the testing cohort. Similarly, in the GRAY-DE-Peri
(4mm) model, the AUC of the OP ROI was 0.834, surpassing the
BB ROI (0.804) in the testing cohort. These results suggest that the
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OP ROI can capture lesion features more effectively, thereby
enhancing the diagnostic efficiency of the model.

Intratumoral and peritumoral region fusion
strategy (DE strategy vs. FLF strategy)

The DE strategy outperformed the FLF strategy under identical
image color and ROI shape conditions. In the PC-OP-Peri (4mm)
model, the AUC of the DE model was 0.837, higher than that of the
FLF model (0.817) in the testing cohort. Similarly, in the GRAY-
OP-Peri (4mm) model, the AUC of the DE model was 0.834,
surpassing the FLF model (0.808) in the testing cohort. These
results suggest that the DE strategy can enhance the diagnostic
performance of the model more effectively.

Model interpretation

To explore DLR model interpretability, we used Grad-CAM to
generate localization heatmaps highlighting key classification
regions. We observed that both tumor boundaries and interiors
are important for predicting benign versus malignant breast masses
(Figure 5). This finding supports the value of our intratumoral-
peritumoral region fusion models.

Comparison of the best fusion model with
radiologists

A reader study was performed on the testing cohort. The best
intratumoral-peritumoral region fusion model, namely the PC-OP-
DE-Peri (4mm) model, achieved an AUC of 0.837 in the testing
cohort. To further assess the clinical applicability of the model, we
compared its diagnostic performance with that of six radiologists
(Figure 6). The results showed that the AUC of the best fusion
model was significantly superior to that of two junior radiologists (P
< 0.05), and surpassed that of intermediate and senior radiologists
(P> 0.05). The AUCs of the six radiologists were as follows: Junior
Radiologist 1 (0.718), Junior Radiologist 2 (0.721), Intermediate
Radiologist 1 (0.779), Intermediate Radiologist 2 (0.772), Senior
Radiologist 1 (0.813), and Senior Radiologist 2 (0.810). Table 5
summarizes the AUC, accuracy, sensitivity, and specificity of the
best fusion model and the six radiologists in the testing cohort.

Discussion

This is the first study to systematically analyze the impact of
different combinations of key parameters on the diagnostic
performance of intratumoral-peritumoral region fusion models.
We evaluated the influence of CEUS image color, ROI shape, and
the fusion strategy of intratumoral and peritumoral regions on the
diagnostic efficacy of DLR models. The results revealed the optimal
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TABLE 3 The comparison of the diagnostic performance between different intratumoral and intratumoral-peritumoral region fusion models.

Cohort Accuracy Sensitivity Specificity Cohort Accuracy Sensitivity Specificity

PC-BB-Intra Training 0.941 0.863 0.856 0.874 Testing 0.801 0.740 0.821 0.692
PC-OP-Intra Training 0.908 0.837 0.846 0.824 Testing 0.807 0.740 0.744 0.738
GRAY-BB-Intra Training 0.920 0.857 0.846 0.874 Testing 0.792 0.760 0.769 0.754
GRAY-OP-Intra Training 0.871 0.805 0.803 0.807 Testing 0.802 0.750 0.692 0.785
PC-BB-DE- L. .

. Training 0.942 0.863 0.814 0.941 Testing 0.826 0.798 0.641 0.892
Peri (2mm)
PC-OP-DE- L. .

. Training 0.908 0.821 0.814 0.832 Testing 0.827 0.808 0.641 0.908
Peri (2mm)
PC-OP-FLF- L. .

. Training 0.947 0.879 0.899 0.849 Testing 0.813 0.769 0.718 0.800
Peri (2mm)
GRAY-BB-DE- . .

. Training 0.893 0.834 0.856 0.798 Testing 0.814 0.788 0.692 0.846
Peri (2mm)
GRAY-OP-DE-

. Training 0.874 0.811 0.761 0.891 Testing 0.826 0.769 0.769 0.769
Peri (2mm)
GRAY-OP-FLF- L. .

. Training 0.921 0.827 0.777 0.908 Testing 0.807 0.769 0.564 0.892
Peri (2mm)
PC-BB-DE- L. .

. Training 0.943 0.870 0.862 0.882 Testing 0.814 0.817 0.692 0.892
Peri (4mm)
PC-OP-DE- . .

. Training 0.900 0.831 0.867 0.773 Testing 0.837 0.808 0.667 0.892
Peri (4mm)
PC-OP-FLE- . .

. Training 0.943 0.870 0.856 0.891 Testing 0.817 0.750 0.795 0.723
Peri (4mm)
GRAY-BB-DE- . .

. Training 0.919 0.863 0.856 0.874 Testing 0.804 0.760 0.846 0.708
Peri (4mm)
GRAY-OP-DE- L. .

. Training 0.876 0.814 0.856 0.748 Testing 0.834 0.731 0.872 0.646
Peri (4mm)
GRAY-OP-FLF- . .

. Training 0913 0.834 0.824 0.849 Testing 0.808 0.750 0.615 0.831
Peri (4mm)
PC-BB-DE- L. .

. Training 0.938 0.873 0.867 0.882 Testing 0.777 0.779 0.692 0.831
Peri (6mm)
PC-OP-DE- L. .

i Training 0.859 0.782 0.755 0.824 Testing 0.826 0.760 0.718 0.785
Peri (6mm)
PC-OP-FLF- . .

. Training 0.967 0.906 0.904 0.908 Testing 0.806 0.731 0.821 0.677
Peri (6mm)
GRAY-BB-DE- .. .

. Training 0.914 0.821 0.755 0.924 Testing 0.757 0.731 0.615 0.800
Peri (6mm)
GRAY-OP-DE-

. Training 0.879 0.821 0.830 0.807 Testing 0.815 0.750 0.821 0.708
Peri (6mm)
GRAY-OP-FLF- L. .

. Training 0.920 0.860 0.878 0.832 Testing 0.786 0.702 0.718 0.692
Peri (6mm)
PC-BB-DE- L. .

. Training 0.940 0.876 0.899 0.840 Testing 0.765 0.683 0.846 0.585
Peri (8mm)
PC-OP-DE- . .

. Training 0.863 0.811 0.840 0.765 Testing 0.781 0.683 0.795 0.615
Peri (8mm)
PC-OP-FLE- . .

. Training 0.961 0.889 0.872 0.916 Testing 0.770 0.712 0.897 0.600
Peri (8mm)
GRAY-BB-DE- . .

K Training 0.905 0.824 0.771 0.908 Testing 0.763 0.712 0.769 0.677
Peri (8mm)
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Model Cohort AUC Accuracy Sensitivity Specificity Cohort AUC Accuracy Sensitivity Specificity
GRAY-OP-DE- . .

i Training 0.873 0.811 0.771 0.874 Testing 0.766 0.702 0.769 0.662
Peri (8mm)
GRAY-OP-FLE- . .

K Training 0.910 0.844 0.819 0.882 Testing 0.760 0.663 0.769 0.600
Peri (8mm)
PC-BB-DE- . .

. Training 0.945 0.893 0.883 0.908 Testing 0.795 0.731 0.872 0.646
Peri (10mm)
PC-OP-DE- . .

. Training 0.903 0.821 0.819 0.824 Testing 0.804 0.769 0.641 0.846
Peri (10mm)
PC-OP-FLE- . .

. Training 0.968 0.912 0.920 0.899 Testing 0.781 0.692 0.949 0.538
Peri (10mm)
GRAY-BB-DE- . .

. Training 0.914 0.847 0.824 0.882 Testing 0.774 0.740 0.769 0.723
Peri (10mm)
GRAY-OP-DE- . .

X Training 0.894 0.837 0.899 0.739 Testing 0.780 0.731 0.795 0.692
Peri (10mm)
GRAY-OP-FLE- L. .

. Training 0.909 0.824 0.830 0.815 Testing 0.777 0.692 0.744 0.662
Peri (10mm)

AUC, the area under the curve; PC, pseudo-color; BB, bounding box; Intra, intratumoral regions; OP, original precise; GRAY, grayscale; DE, direct extension; Peri, peritumoral regions; FLF,

feature-level fusion.

combination of these parameters, thus providing a novel
methodological basis for optimizing DLR for BC diagnosis.

In this study, the peritumoral regions were obtained by
expanding the intratumoral ROI outward by increments of 2mm,
4mm, 6mm, 8mm, and 10mm. The diagnostic performance varied
significantly when different peritumoral regions were combined with
the intratumoral regions to construct fusion models. The study
demonstrated that the AUC of most fusion models improved
compared to the intratumoral model when the peritumoral region
was expanded by 2mm or 4mm. However, models with expansions of
6mm, 8mm, or 10mm generally exhibited lower AUC values. These
result highlights the importance of the peritumoral region in tumor
diagnosis and suggests that the size of the peritumoral region affects
the predictive ability of the models. The tumor microenvironment
contains various critical biological factors from a biological
perspective, such as angiogenesis, lymphatic invasion, and immune
cell infiltration. These factors significantly impact tumor
aggressiveness, metastasis, and recurrence risk. Compared to the
intratumoral region, the peritumoral region provides more valuable
insights into the interaction between the tumor and surrounding
tissues. Therefore, fusing the intratumoral and peritumoral regions
allows for a more comprehensive capture of the tumor’s clinical
features. This, in turn, enhances the diagnostic capability of the
models. This conclusion aligns with previous research. Multiple
studies have demonstrated that information from the peritumoral
region plays a crucial role in tumor prediction (22-24).

Although the 4mm peritumoral margin was chosen based on
empirical model performance, no biological or pathological
rationale currently supports its universal application. Previous
radiomics studies have shown diagnostic benefits from including
peritumoral features but lacked histopathological justification for
specific margins. For example, Xu et al. and Yu et al. reported
improved prediction of lymphovascular invasion and promoter
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methylation status by including peritumoral regions, though they
did not correlate imaging features with tissue characteristics (39,
40). These findings, together with our results, suggest the
peritumoral zone carries complementary diagnostic information.
However, further studies linking histopathologic markers are
needed. These markers include stromal composition, microvessel
density, and immune cell infiltration. Such research will help clarify
the biological basis for the optimal peritumoral margin.

The improvement in fusion model performance is not only
influenced by the size of the peritumoral region but also by the
selection of key parameters. In this study, six groups of fusion
models were constructed with different parameter settings. The
results indicated that the degree of performance improvement
varied depending on the choice of these parameters.

In CEUS image color selection, we found that models using PC
images outperformed those using GRAY images. PC images
enhance contrast and visibility by encoding varying signal
intensities with colors. This is particularly beneficial in low-
contrast regions, where they better highlight the differences
between the tumor and surrounding tissues. In contrast, GRAY
images may lose these details, especially in areas with weaker
signals, leading to an insufficient representation of lesion
characteristics. Overall, PC images offer more detailed
information, particularly regarding subtle changes in the tumor
area, giving them an advantage over GRAY images.

In the selection of ROI shape, we found that models using the
OP ROI outperformed those using the BB ROIL The OP ROI
minimizes interference from background noise and non-tumor
regions by accurately delineating the tumor boundaries. This
enables the model to focus on the tumor region and extract more
precise tumor features. In contrast, the BB ROI includes both the
tumor and surrounding background areas within the smallest
enclosing rectangle. The background potentially introduces
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TABLE 4 Relative performance (A) of intratumoral—peritumoral fusion models compared with the best intratumoral model (PC-OP-Intra) in the
testing cohort.

AAUC ASensitivity ASpecificity AAccuracy
(vs. PC-OP-Intra) (vs. PC-OP-Intra) (vs. PC-OP-Intra) (vs. PC-OP-Intra)

PC-OP-Intra 0 0 0 0

PC-BB-DE-Peri (2mm) +0.019 -0.102 +0.154 +0.058
PC-OP-DE-Peri (2mm) +0.020 -0.102 +0.170 +0.067
PC-OP-FLF-Peri (2mm) +0.006 -0.025 +0.062 +0.029
GRAY-BB-DE-Peri (2mm) +0.007 -0.051 +0.108 +0.048
GRAY-OP-DE-Peri (2mm) +0.019 +0.026 +0.031 +0.029
GRAY-OP-FLF-Peri (2mm) 0 -0.179 +0.154 +0.029
PC-BB-DE-Peri (4mm) +0.007 -0.051 +0.154 +0.077
PC-OP-DE-Peri (4mm) +0.030 -0.077 +0.154 +0.067
PC-OP-FLF-Peri (4mm) +0.010 +0.052 -0.015 +0.010
GRAY-BB-DE-Peri (4mm) -0.003 +0.103 -0.030 +0.019
GRAY-OP-DE-Peri (4mm) +0.027 +0.128 -0.092 -0.010
GRAY-OP-FLF-Peri (4mm) +0.001 -0.128 +0.093 +0.010
PC-BB-DE-Peri (6mm) -0.030 -0.051 +0.093 +0.038
PC-OP-DE-Peri (6mm) +0.019 -0.025 +0.047 +0.019
PC-OP-FLE-Peri (6mm) -0.001 +0.077 -0.061 -0.010
GRAY-BB-DE-Peri (6mm) -0.050 -0.128 +0.062 -0.010
GRAY-OP-DE-Peri (6mm) +0.008 +0.077 -0.030 +0.010
GRAY-OP-FLF-Peri (6mm) -0.021 -0.025 -0.046 -0.038
PC-BB-DE-Peri ($mm) -0.042 +0.103 -0.153 -0.058
PC-OP-DE-Peri (8mm) -0.026 +0.052 -0.123 -0.058
PC-OP-FLF-Peri (8mm) -0.037 +0.154 -0.138 -0.029
GRAY-BB-DE-Peri (8mm) -0.044 +0.026 -0.061 -0.029
GRAY-OP-DE-Peri (8mm) -0.041 +0.026 -0.076 -0.038
GRAY-OP-FLF-Peri (8mm) -0.047 +0.026 0138 -0.077
PC-BB-DE-Peri (10mm) -0.012 +0.128 -0.092 -0.010
PC-OP-DE-Peri (10mm) -0.003 -0.102 +0.108 +0.029
PC-OP-FLE-Peri (10mm) -0.026 +0.205 -0.200 -0.048
GRAY-BB-DE-Peri (10mm) -0.033 +0.026 -0.015 0

GRAY-OP-DE-Peri (10mm) -0.027 +0.052 -0.046 -0.010
GRAY-OP-FLF-Peri (10mm) -0.030 0 -0.076 -0.048

AUCG, area under the curve; AAUC, ASensitivity, ASpecificity, and AAccuracy represent the differences in AUG, sensitivity, specificity, and accuracy, respectively, relative to the best intratumoral
model (PC-OP-Intra). PC, pseudo-color; BB, bounding box; OP, original precise; GRAY, grayscale; DE, direct extension; Peri, peritumoral; FLF, feature-level fusion.

irrelevant regions, distracting the model during the learning process In the selection of the intratumoral and peritumoral region
and hindering the capture of key tumor features. Moreover, the BB fusion strategy, we found that the DE strategy outperforms the FLF
ROI may not align well with the complex boundaries of irregularly  strategy. This suggests that the DE strategy more effectively fuses
shaped tumors, leading to a loss of critical boundary details. The OP  information from the intratumoral and peritumoral regions. By
ROL on the other hand, maximizes the retention of tumor  combining these regions at the image level, the spatial relationship
boundary features, thereby improving diagnostic accuracy. between the tumor and its surrounding microenvironment is
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The ROC curves of different models in the testing cohort. (A) The ROC curve of the intratumoral model. (B—F) Display the ROC curves of fusion
models with peritumoral regions extended to 2mm, 4mm, 6mm, 8mm, and 10mm, respectively. (G) The ROC curves of the optimal intratumoral
model and the optimal extending different peritumoral sizes fusion models. AUC, the area under the curve; ROC, receiver operating characteristic;
PC, pseudo-color; BB, bounding box; Intra, intratumoral regions; OP, original precise; GRAY, grayscale; DE, direct extension; Peri, peritumoral

regions; DLR, deep learning radiomics.

preserved. This is particularly advantageous when tumor
morphology is irregular or boundaries are unclear. In contrast,
the FLF strategy first extracts features separately from the
intratumoral and peritumoral regions. These features are then
fused, which may lead to information redundancy, particularly
when complex relationships exist between these regions.
Moreover, the DE strategy operates at the pixel level, directly
capturing dynamic changes and spatial information of both the
tumor and surrounding tissues. DE strategy enhances the modal’s
predictive ability and stability, particularly in cases with irregular
tumor characteristics.

heatmap overlap

FIGURE 5
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Although variations in key parameter settings among models in
this study led to differences in diagnostic performance, these model
construction strategies remain effective. Multiple studies have
demonstrated the validity of different paraments. Xu et al. (10)
constructed a DLR model using CEUS PC images for BC diagnosis.
Tong et al. (29) successfully differentiated pancreatic cancer from
chronic pancreatitis using GRAY CEUS images. Han et al. (30)
predicted occult lymph node metastasis in tongue cancer using OP
ROIs. Jiang et al. (7) predicted pathological response after
neoadjuvant chemotherapy for BC using BB ROIs. Wei et al. (32)
predicted the risk of microvascular invasion in hepatocellular

Visualized examples from different patients (labeled A—F). Each example includes heatmaps corresponding to CEUS images. The red regions
represent a larger weight, as decoded by the color bar on the right. As shown in the figure, both the intratumoral and peritumoral regions of the
tumor exhibit highlighted areas. This indicates that both the intratumoral and peritumoral regions are of significant value in the diagnosis of benign
and malignant tumors. Labels (A—F) denote different patients and are shown for illustrative purposes only. CEUS, contrast-enhanced ultrasound; ROI,

region of interest.
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The ROC curves of six radiologists and the best intratumoral-peritumoral region fusion model in the testing cohort. AUC, the area under the curve;
ROC, receiver operating characteristic; PC, pseudo-color; OP, original precise; DE, direct extension; Peri, peritumoral regions.

carcinoma using a DE strategy. Can et al. (33) predicted KRAS gene
mutations in rectal cancer using an FLF strategy. Diagnostic
performance is still influenced by the choice of key parameters
while the effectiveness of these models has been established.
Therefore, optimizing the combination of these parameters is
expected to further enhance model performance. This study not
only contributes to refining image processing strategies but also
provides valuable guidance on selecting the most appropriate
imaging parameters for clinical practice. Though focused on CEUS,
the dual-region fusion framework can extend to multimodal imaging.
BC diagnosis often uses various imaging methods. Future studies
should integrate B-mode ultrasound, mammography, or MRI. This
could improve diagnostic accuracy and generalizability.

The interpretation of ultrasound images is inherently subjective,
and diagnostic outcomes are often significantly influenced by the
radiologist’s experience (41). This subjectivity arises from the
limitations of visual information recognition. It is particularly
evident in cases where imaging appearances resemble one
another, yet the underlying pathological mechanisms differ. For
instance, the CEUS image features of inflammatory breast diseases
and malignant tumors can appear similar, potentially leading to the
misdiagnosis of BC (42). The reader study results of this research
further support this observation. The AUC values for the six
radiologists ranged from 0.718 to 0.813, indicating that greater
experience tends to improve diagnostic performance, though
discrepancies still exist. In contrast, the PC-OP-DE-Peri (4mm)

TABLE 5 The comparison of diagnostic performance between the best fusion model and six radiologists.

Accuracy Sensitivity Specificity
PC-OP-DE-Peri (4mm) Testing 0.837 (95%CI 0.759-0.916) 0.702 0.897 0.585
Junior Radiologist 1 Testing 0.718 (95%CI 0.628-0.808) 0.750 0.590 0.846
Junior Radiologist 2 Testing 0.721 (95%CI 0.632-0.809) 0.760 0.564 0.877
Intermediate Radiologist 1 Testing 0.779 (95%CI 0.695-0.864) 0.808 0.667 0.892
Intermediate Radiologist 2 Testing 0.772 (95%CI 0.687-0.857) 0.798 0.667 0.877
Senior Radiologist 1 Testing 0.813 (95%CI 0.733-0.893) 0.837 0.718 0.908
Senior Radiologist 2 Testing 0.810 (95%CI 0.730-0.891) 0.827 0.744 0.877

AUG, area under the curve; 95%CI, 95% confidence interval; PC, pseudo-color; BB, bounding box; OP, original precise; GRAY, grayscale; DE, direct extension; Peri, peritumoral; FLF, feature-
level fusion.
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model (AUC=0.837) demonstrated higher diagnostic performance.
The result highlights the potential of DLR models in minimizing the
impact of human subjectivity.

From the perspective of the characteristics of DLR models, DLR
offers significant advantages in multiple areas. First, DLR models
can automatically extract subtle lesions from large datasets and
image features, identifying details that are often difficult for the
human eye to detect. This enables DLR models to outperform
human radiologists at the level of detail in diagnostic performance.
Second, DLR models maintain a high degree of consistency,
reducing diagnostic variability. This consistency helps mitigate
factors such as workload, emotional fluctuations, or fatigue,
which may affect radiologists handling large numbers of cases. As
aresult, DLR models provide efficient, stable, and reliable diagnostic
support. This study demonstrates that the intratumoral-
peritumoral region fusion model effectively addresses the
limitations of radiologists in visual recognition, offering robust
support for the precise diagnosis of breast tumors. Although the
proposed model showed promising results, it was developed
without stratified training by tumor size or BI-RADS categories.
Lesion size may affect the importance of the peritumoral region.
Therefore, the current fixed 4mm expansion may not apply well to
all clinical cases. Future studies should include subgroup analyses.
These should focus on tumor size categories: small (<10mm),
medium (10-20 mm), and large (>20mm). This will help improve
the model’s clinical relevance. At the same time, real-time
interpretability and processing time were not formally evaluated.
However, the model’s lightweight design suggests it could be
deployed in real time. Future studies will focus on optimizing
efficiency and adding interpretability tools to aid clinical translation.

This study has several limitations. First, due to the retrospective
design, selection bias may be present. Second, the “black box”
nature of DLR models presents interpretability challenges, which
may hinder their clinical application in the medical field.
Additionally, the external sample size was limited. Larger,
multicenter studies are needed to validate the model’s
generalizability. Future prospective research should aim to
improve model transparency, interpretability, and optimize
experimental design to strengthen validation.

In summary, this study developed intratumoral-peritumoral
region fusion models based on DLR and CEUS images for the
non-invasive identification of benign and malignant breast lesions.
The study systematically evaluated the selection of key parameters
in intratumoral-peritumoral region fusion modal construction.
These included the preference for PC images over GRAY images,
the superiority of OP ROIs over BB ROIs, and the advantage of the
DE strategy over the FLF strategy.
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