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Background: Current management of ductal carcinoma in situ lacks robust risk

stratification tools, leading to universal surgical and radiotherapy interventions

despite heterogeneous progression risks. Optimizing therapeutic balance

remains a critical unmet clinical need.

Materials and methods: We retrospectively analyzed two patient cohorts. The

first included 173 cases with BI-RADS category 3 or higher findings, used to

compare the diagnostic accuracy of four abbreviated MRI protocols against the

full diagnostic MRI. The second cohort involved 210 patients who had both

mammography and abbreviated MRI. We developed two separate predictive

models—one for pure ductal carcinoma in situ and another for invasive ductal

carcinoma with associated ductal carcinoma in situ—by integrating clinical,

imaging, and pathological features. Deep learning and natural language

processing techniques were used to extract relevant features, and model

performance was assessed using bootstrap validation.

Results: Abbreviated Magnetic Resonance Imaging protocols demonstrated

similar diagnostic accuracy to the full protocol (P > 0.05), offering a faster yet

effective imaging option. The pure group incorporated features like nuclear

grade, calcification morphology, and lesion size, achieving an Area Under the

Curve of 0.905, with 86.8% accuracy and an F1 score of 0.853. The model for

invasive cases incorporated features Ki-67 status, lymph vascular invasion, and

enhancement patterns, achieved an Area Under the Curve of 0.880, with 86.2%

accuracy and an F1 score of 0.834. Both models showed good calibration and

clinical utility, as confirmed by bootstrap resampling and decision curve analysis.
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Conclusion: Deep Learning-driven multimodal models enable precise ductal

carcinoma in situ risk stratification, addressing overtreatment challenges.

abbreviated Magnetic Resonance Imaging achieves diagnostic parity with full

diagnostic protocol, positioning Magnetic Resonance Imaging as a viable ductal

carcinoma in situ screening modality.
KEYWORDS

abbreviatedmagnetic resonance imaging, deep learning, prognosis, ductal carcinoma in
situ, mammography
1 Introduction

Ductal carcinoma in situ (DCIS) is an early non-invasive lesion

of breast cancer, accounting for approximately 18.6% of all newly

diagnosed breast cancers (1). DCIS is generally considered a direct

precursor to invasive ductal carcinoma (IDC), with approximately

25%-60% of untreated DCIS cases progressing to IDC over a follow-

up period of 9–24 years (2). Due to the difficulty in distinguishing

high-risk from low-risk DCIS, nearly all DCIS patients undergo

either mastectomy or breast-conserving surgery, followed by

radiotherapy or endocrine treatment (3). However, treatment of

DCIS has not significantly reduced the incidence of invasive breast

cancer, suggesting that some DCIS cases may not progress to

invasive cancer (4, 5). Therefore, balancing overtreatment and

undertreatment of DCIS has become a key clinical concern (6).

Mammography is the conventional method for diagnosing DCIS

(7), but its diagnostic efficacy is significantly affected by glandular

density and tissue overlap (8, 9). Therefore, MRI, which is not

influenced by glandular density and has higher sensitivity, is

gradually being used as an adjunctive imaging tool for DCIS

(10–13).

Artificial intelligence (AI), particularly deep learning (DL)

technology, has shown great potential in the detection, diagnosis,

and risk assessment of DCIS (14–18). AI algorithms based on

mammography have been used to automatically identify calcified
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lesions, increasing the detection rate of DCIS and reducing the

workload of radiologists (16, 19, 20). Furthermore, combining

magnetic resonance imaging (MRI) with AI analysis can

effectively overcome the limitations of traditional imaging caused

by breast density, improving the sensitivity and diagnostic

consistency of DCIS (21). However, due to the high time cost of

MRI, it is not suitable for routine screening. Therefore, abbreviated

breast MRI (Ab-MRI), which significantly reduces examination

time, has gradually gained clinical acceptance (22). Nevertheless,

current research on Ab-MRI mainly focuses on high-risk breast

cancer populations and breast cancer screening, with limited studies

using AI to analyze mammography and Ab-MRI image features

for DCIS.

This study will combine clinical information with mammography

and Ab-MRI image features to develop a prognostic risk prediction

model for breast DCIS based on deep learning and multimodal

imaging. It will also explore the value of Ab-MRI in the diagnosis

and risk stratification of breast DCIS.
2 Materials and methods

2.1 Data set

In Dataset One, We retrospectively collected data on 173

patients who underwent breast MRI examinations at our

institution between January 2019 and December 2021 and were

diagnosed as BI-RADS category 3 or higher. Among them, 72 cases

were pure DCIS, and 101 cases were benign lesions. All patients

were female, aged 23 to 77 years, with a median age of 46.4 ± 9.3

years. Inclusion criteria (1): Patients with pure DCIS who

underwent breast-conserving surgery or total mastectomy after

MRI examination (2). Patients with benign lesions who

underwent at least core needle biopsy after MRI and had

complete postoperative pathological data. Exclusion criteria (1):

Malignant lesions containing components other than pure DCIS

(2). Benign lesions associated with intraductal papilloma, borderline

phyllodes tumor, or atypical ductal hyperplasia (3). Patients who

underwent biopsy or other treatments on the affected breast before

imaging examination (Figure 1A).
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In Dataset Two, we collected data from 210 patients who

underwent both mammography and breast MRI examinations at

our institution between January 2021 and November 2023 and were

pathologically confirmed to have breast cancer. Among them, 37

cases were pure DCIS, 31 cases were DCIS with microinvasion

(DCIS-MI), and 142 cases were invasive ductal carcinoma with

DCIS (IDC-DCIS). All patients were female, aged 29 to 71 years,

with a median age of 49.0 ± 9.8 years. Given the similarity in clinical

presentation and management strategies between pure DCIS and

DCIS-MI, these two groups were combined for analysis. IDC-DCIS

cases were characterized by predominant DCIS lesions with

accompanying invasive components. Inclusion criteria (1):

Pathologically confirmed DCIS-containing lesions (2); Underwent

breast-conserving surgery or total mastectomy after mammography

(3); Had complete clinical, imaging, pathological, and

immunohistochemistry (IHC) data. Exclusion criteria (1): Lesions

containing components other than DCIS, DCIS-MI, or IDC-DCIS

(2); Bilateral breast cancer (3); Recurrent or metastatic breast cancer

(4); Poor imaging quality or missing complete craniocaudal (CC)

and mediolateral oblique (MLO) mammographic views for both

breasts (5); Prior biopsy or other treatments on the affected breast

before imaging examination (Figure 1B).
2.2 Examination methods

Breast mammography examinations were performed the

following equipment: Siemens Mammomat Inspiration digital

mammography system, GIOTTO IMAGE MD dual flat-panel

digital mammography system, GE Senographe Pristina digital

mammography system, and Hologic Selenia Dimensions

mammography system. Standard CC and MLO views were

acquired using a fully automatic compression system and

automatic exposure control mode to optimize image quality

(Figures 2A, B).

MRI exams were conducted on Siemens Skyra 3.0T and Avanto

1.5T scanners with a dedicated breast coil, with patients positioned

prone and both breasts naturally hanging. Unenhanced sequences

included: T2-weighted imaging with fat suppression (T2WI-FS):

Axial imaging with repetition time (TR) 3400/5000ms, echo time
Frontiers in Oncology 03
(TE) 54/58ms, slice thickness 4 mm, and slice gap 0.8/0.4 mm.

Diffusion-weighted imaging (DWI): TR 5700/6400ms, TE 59/97

ms, slice thickness 4 mm, and slice gap 0.8/2 mm. Contrast-

enhanced imaging was done 90 seconds after unenhanced

imaging, with the first postcontrast phase using the following

parameters: TR: 4.66/5.16ms. TE: 1.68/2.39ms. Slice thickness:

1.6/1.1 mm. Slice gap: 0.32/0.22 mm Contrast agent: Gadobenate

dimeglumine, administered at 2.0 ml/s with a dose of 0.2 mmol/kg.

Post-processing included maximum intensity projection (MIP) and

first postcontrast subtracted (FAST) image reconstruction

(Figures 2C, D).
2.3 Abbreviated breast MRI program
screening

Given the unique biological characteristics of malignant tumors,

this study incorporated DWI and early post-contrast images into

the dynamic imaging protocol, with four imaging combinations

designed as follows (1): T2WI-FS + DWI (2), T2WI-FS + MIP (3),

DWI + MIP + FAST, and (4) T2WI-FS + DWI + MIP + FAST (12).

A blinded reading approach was employed, where two radiologists

with over five years of experience in breast MRI diagnosis

independently evaluated cases from Dataset One using the four

Ab-MRI protocols alongside the full diagnostic protocol (FDP).

Each case was classified according to the BI-RADS system,

categorizing them as BI-RADS 1, 2, 3 or BI-RADS 4, 5, without

access to clinical data or other examination results. In cases of

disagreement, a final classification was determined through

consensus discussion. To minimize bias from repeated readings, a

one-month interval was maintained between assessments for each

protocol. Finally, the diagnostic performance of the four Ab-MRI

protocols was compared with FDP, and the most effective Ab-MRI

protocol was selected for further study.
2.4 Radiological feature extraction

In the mammographic image feature analysis, 273 patients were

randomly divided into a training set of 162 cases (simple group: 66
FIGURE 1

Data collection.
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cases, invasive group: 96 cases) and a validation set (simple group: 44

cases, invasive group: 67 cases). This study adopted the AI model

framework from the research team’s previous work (23) to analyze

and extract both imaging and textual features, including breast tissue

density, BI-RADS classification, and mammographic features.

Building upon this, the MommiNet-v2 model was employed as a

multi-view breast mass detection and classification system that

simulates the radiologist’s clinical practice of comparing ipsilateral

and contralateral views. It takes three-view mammograms along with

clinical information (BI-RADS scores and biopsy results) as input.

Structural and symmetry features are extracted through IpsiDualNet-

v2 and BiDualNet-v2, then fused in an integrated network to generate

final predictions. The training process incorporates nipple-based

alignment, Focal Loss, and Distance-IoU Loss to enhance detection

and classification accuracy. MommiNet-v2 has demonstrated strong

performance on both public and real-world datasets, indicating its

potential value for clinical implementation. According to the ACR

BI-RADS guidelines (24), suspicious calcification shapes in

mammography include amorphous, coarse heterogeneous, fine

pleomorphic, and linear branching calcifications, while associated

signs include skin retraction, nipple inversion, skin thickening,

trabecular thickening, and axillary lymphadenopathy.

In the MRI image feature analysis, two radiologists with over five

years of experience in breast MRI diagnosis evaluated Dataset Two

using the selected optimal Ab-MRI protocol, with prior knowledge of

patient clinical information, and recorded the degree of breast

parenchymal enhancement, type of lesion enhancement, maximum

lesion diameter, apparent diffusion coefficient (ADC) at high b-

values, and the presence or absence of clustered ring enhancement
Frontiers in Oncology 04
within the lesion. If there was any discrepancy between the two

radiologists, a final interpretation was reached through discussion.

Figure 3 shows the flow chart of the study.
2.5 Pathological feature extraction

In the pathological analysis, the DCIS nuclear grade (low-

intermediate/high) and pathological subtype (non-comedo/

comedo) were recorded. Additionally, for the pure DCIS group,

the presence or absence of microinvasion was noted, while for the

invasive group, the proliferation index (Ki67), DCIS component

proportion (using 25% as the threshold based on the concept of

extensive intraductal component, EIC), and the presence or absence

of neural/vascular invasion were also assessed. All specimens

underwent IHC staining to evaluate the expression of Estrogen

Receptor(ER), Progesterone Receptor(PR), Human Epidermal

Growth Factor Receptor 2 (HER2), and Ki67. For patients in the

invasive group, if discrepancies in IHC expression levels were

observed between IDC and DCIS, the DCIS results were used as

the reference. ER and PR positivity were defined as ≥1% nuclear

staining. HER2 positivity was defined as 3+ (strong and complete

membrane staining in >10% of tumor cells), while HER2 1+/0 was

considered negative. For HER2 2+ cases, fluorescence in situ

hybridization (FISH) was performed to confirm HER2 status,

with HER2 gene amplification or FISH positivity indicating HER2

positivity. Ki67-positive cells ≤14% were classified as low

proliferative activity, while >14% indicated high proliferative

activity (25). All pathological results were independently reviewed
FIGURE 2

Illustrations of Mammography and Abbreviated Breast MRI. (A, B) present the mammographic images of a patient with non-mass enhancement and
the corresponding calcification location. (C, D) depict the non-mass enhancement characteristics observed in the Abbreviated Breast MRI images.
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by two attending pathologists with over 10 years of experience in

breast pathology diagnosis. In cases of discrepancies, a panel of

expert pathologists conducted a consensus review to determine the

final interpretation.
2.6 Prediction model construction

In the pure DCIS group prediction model, a total of eight

features were extracted, including Ab-MRI image features,

mammography image features, and non-imaging clinical features.

These specific features were DCIS nuclear grade, DCIS pathological

subtype, Mammographic features of calcifications, Presence of

microinvasion, Degree of background parenchymal enhancement,

Lesion enhancement pattern (derived from DCE-MRI), Maximum

lesion diameter, Apparent diffusion coefficient value of the lesion. In

the invasive group prediction model, nine features were extracted

across the same three categories. These features included: Nerve/

vascular invasion, Ki-67 proliferation index, Mammographic

associated findings, Proportion of DCIS component, Degree of

background parenchymal enhancement, Lesion enhancement

pattern, Maximum lesion diameter, Apparent diffusion coefficient

value, Clustered ring-like enhancement within the lesion.

All extracted features were initially subjected to univariate

analysis, and those with statistical significance (P < 0.05) were

subsequently included in multivariate logistic regression analysis.

Features that remained significant in the multivariate analysis (P <

0.05) were identified as independent predictors of prognosis in both

the pure DCIS and invasive cohorts.

To assess the performance of different model construction

strategies, we used the Akaike Information Criterion (AIC) to

evaluate model fit. The final models—the pure DCIS + DCIS-MI

prediction model and the IDC-DCIS prediction model—were

selected based on achieving the lowest AIC values, ensuring

optimal balance between goodness-of-fit and model complexity.
Frontiers in Oncology 05
2.7 Prognostic evaluation criteria

ER-negative or HER2-positive was selected as the reference

standard for poor prognosis in the pure DCIS group (26–28). For

the invasive group, the Nottingham Prognosis Index (NPI) (29) was

used as the reference standard for poor prognosis, with NPI < 4.4

defined as good prognosis and NPI ≥ 4.4 as poor prognosis.
2.8 Statistical analysis

In the Ab-MRI protocol selection, SPSS 26.0 was used for

statistical analysis to calculate diagnostic metrics for each MRI

protocol, including positive predictive value (PPV), negative

predictive value (NPV), sensitivity (SEN), specificity (SPE), and

accuracy (ACC). The McNemar test was applied to compare the

diagnostic performance of the Ab-MRI protocol with the full

diagnostic protocol (FDP), with P < 0.05 indicating statistical

significance. For predictive model establishment, R 4.1.2 was used

for data organization and statistical analysis. Categorical data were

presented as counts (percentages), and Pearson c² test or Fisher’s

exact test was used to compare differences between groups. For

continuous data, if normally distributed, mean value was used, and

independent t-test was applied for between-group comparisons; if not

normally distributed, median value was used, and Mann-Whitney U

test was employed for group comparisons. Univariate analysis was

used to identify variables with P < 0.05, which were then included in

multivariate logistic regression to establish the prediction model. The

R “pROC” package was used to plot the ROC curve, and the “rms”

package was used to create a nomogram for model visualization,

along with calibration curves to assess model calibration.

Additionally, the “dcurves” package was used to plot decision

curves, and DCA was applied to assess the clinical net benefit of

the model. To further investigate the stability of the model and ensure

its fit, Bootstrap resampling (1000 iterations) was performed. P < 0.05

indicates statistical significance.
FIGURE 3

Shows the flow chart of the study.
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3 Results

3.1 Cohort characteristics and abbreviated
breast MRI protocol

In Dataset One, this study selected 72 cases of pure DCIS and

101 cases of mixed benign lesions to evaluate the diagnostic

performance of the Ab-MRI protocol. Among the benign lesions,

there were 19 cases of fibroadenoma, 14 cases of fibrocystic breast

disease, 3 cases of benign phyllodes tumor, 1 case of ductal

adenoma, 1 case of hamartoma, and 1 case of breast tuberculosis,

as well as 62 cases with no pathological result but no disease

progression after 2 years of follow-up. The diagnostic

performance and comparison of the four Ab-MRI protocols with

FDP are shown in Tables 1, 2. In terms of scanning time, T2WI-FS

was not affected by the device model, with scanning times exceeding

3 minutes; however, its diagnostic value was limited. In contrast,

Protocol 3 (DWI, MIP, FAST) had a shorter scanning time and

showed higher PPV, NPV, SEN and ACC. When comparing the

four Ab-MRI protocols with the FDP, only Protocol 1 showed a

significant difference in SEN compared to the FDP (P = 0.020),

while no significant differences were found in sensitivity, specificity,

or accuracy for the other protocols (P > 0.05). Therefore, the “DWI,

MIP, FAST” protocol was selected for further study.

In Dataset Two, a total of 210 breast cancer patients were

included in this study, with 68 patients in the pure DCIS group, of

which 32 had poor prognosis and 36 had good prognosis. Among

the 37 pure DCIS patients, 12 had poor prognosis and 25 had good

prognosis; among the 31 DCIS-MI patients, 20 had poor prognosis

and 11 had good prognosis. The invasive group included 142

patients, with 78 having poor prognosis and 64 having good

prognosis. The baseline characteristics of patients in both the

pure DCIS and invasive groups, as well as the results of univariate

analysis, are presented in Tables 3, 4.
3.2 Development of predictive models

Through univariate comparisons between groups, factors with

P < 0.05 were selected to construct the predictive models. In the
Frontiers in Oncology 06
pure DCIS group, 5 features, including DCIS nuclear grade, DCIS

pathological subtype, mammographic calcification morphology,

microinvasion, and maximum lesion diameter, were used to

construct the predictive model, with an AIC value of 68. In the

invasive group, 6 features, including neural/vascular invasion, Ki67

status, DCIS component proportion, mammographic associated

findings, lesion enhancement type, and clustered ring

enhancement within the lesion, were used to construct the

predictive model, with an AIC value of 139.

The multivariate analysis results for the pure DCIS group are

shown in Table 5. DCIS nuclear grade, DCIS pathological subtype,

mammographic calcification morphology, microinvasion, and

maximum lesion diameter were identified as independent

predictive factors for poor prognosis in the pure DCIS group. The

nomogram for this predictive model is shown in Figure 4. The

multivariate analysis results for the invasive group are shown in

Table 6. Neural/vascular invasion, Ki67 status, mammographic

associated findings, DCIS component proportion, lesion

enhancement type, and clustered ring enhancement within the

lesion were identified as independent predictive factors for poor

prognosis in the invasive group. Among these, neural/vascular

invasion, Ki67 status, mammographic associated findings, and

lesion enhancement type had Odds Ratio(OR) values greater than

1, indicating these are risk factors, while DCIS component

proportion and clustered ring enhancement had OR values less

than 1, indicating these are protective factors. The nomogram for

this predictive model is shown in Figure 5.
3.3 Evaluation of predictive model
performance

ROC curve analysis (Figures 6A, B) showed that the pure DCIS

group model for predicting the prognosis of pure DCIS + DCIS-MI

had an AUC of 0.905 (95% CI 0.833–0.978). When the cutoff value

was T = 0.642, the Youden index was maximized at 0.729, with a

specificity of 91.7%(95%CI 82.4–97.5) and a sensitivity of 81.3%

(95%CI 70.2–89.8). The corresponding prediction model achieved

an accuracy of 86.76%(95%CI 82.1–90.8) and an F1 score of 0.853.

The invasive group model for predicting the prognosis of IDC-
TABLE 1 Examination time and diagnostic performance of different MRI protocols.

Protocol Scan time3.0T/
1.5T

PPV NPV SEN SPE ACC

T2WI-FS、DWI 8 min 03 s/5 min 59 s 0.527
(42.1%–63.3%)

0.667
(55.2%–77.1%)

54.2%
(43.7%–64.3%)

65.3%
(55.1%–74.4%)

60.7%
(53.2%–67.8%)

T2WI-FS、MIP 5 min 39 s/4 min 49 s 0.666
(54.8%–76.5%)

0.890
(82.3%–93.1%)

86.1%
(77.2%–92.0%)

73.2%
(64.1%–80.8%)

75.7%
(69.0%–81.5%)

DWI、MIP、FAST 5 min 42 s/4 min22 s 0.716
(62.4%–80.0%)

0.894
(83.5%–93.2%)

87.5%
(79.3%–92.9%)

73.9%
(65.0%–81.3%)

80.3%
(74.1%–85.5%)

T2WI-FS、DWI
MIP、FAST

9 min 33 s/7 min 29 s 0.702
(60.1%–79.1%)

0.924
(87.6%–95.5%)

91.7%
(84.5%–96.0%)

75.3%
(67.1%–82.1%)

80.3%
(74.1%–85.5%)

FDP 23min 45 s/24 min 17 s 0.831
(72.3%–89.4%)

0.967
(93.1%–98.9%)

95.8%
(89.6%–98.5%)

86.1%
(78.2%–91.6%)

90.2%
(85.0%–93.9%)
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DCIS had an AUC of 0.880 (95% CI 0.825–0.935). When the cutoff

value was T = 0.573, the Youden index was maximized at 0.651,

with a specificity of 84.4%(95%CI 75.9–91.2) and a sensitivity of

80.8%(95%CI 71.6–88.3). This model achieved an accuracy of

86.2%(95%CI 81.5–90.1) and an F1 score of 0.834.

To further validate the stability of the model, an internal

validation using the Bootstrap resampling method was performed

with 1000 repetitions, and the mean AUC and 95% CI of the ROC

curve were calculated. The results showed that the mean AUC for

the pure DCIS group model was 0.906 (95% CI 0.801–0.957), and

the mean AUC for the invasive group model was 0.879 (95% CI

0.817–0.927).
Frontiers in Oncology 07
In the calibration curve analysis (Figures 7A, B), the X-axis

represents the predicted risk probability, and the Y-axis represents

the actual risk probability. The deviation correction curves of both

prediction models fit well with the 45° ideal curve, indicating that

the predicted malignant risk probability closely matches the actual

malignant risk probability. According to the Hosmer and

Lemeshow test, the P value for the pure DCIS model was 0.523,

and the P value for the invasive group model was 0.127, both greater

than 0.05, suggesting that the model fit is good. Decision curve

analysis (Figures 8A, B) showed that the prediction model curves

for both the pure DCIS group and the invasive group were

significantly better than the two extreme lines. When the risk
TABLE 2 Comparison of diagnostic performance between different Ab-MRI protocols and FDP.

Indicators Subgroup T2WI-FS、DWI T2WI-FS、MIP DWI、MIP、FAST T2WI-FS、DWI、MIP、FAST

SEN x2 value 7.838 0.309 0.337 0.004

P value 0.020 0.069 0.561 0.949

SPE x2 value 0.144 0.773 0.046 0.243

P value 0.704 0.183 0.830 0.622

ACC x2 value 0.043 0.119 0.290 0.015

P value 0.385 0.730 0.590 0.903
TABLE 3 Baseline characteristics and univariate analysis of the pure DCIS group.

Characteristics Subgroup Poor
prognosis

Good
prognosis

X2/
t value

P value

Number 32 36

DCIS nuclear grade Low to intermediate grade 10(31.2%) 22(61.1%) 6.063 0.014

high grade 22(68.8%) 14(38.9%)

DCIS pathological subtype Non-comedo type 9(28.1%) 21(58.3%) 6.271 0.012

Comedo type 23(71.9%) 15(41.7%)

Mammographic features of calcifications No calcification or
benign calcification

5(15.6%) 21(58.3%) 13.654 0.001

Coarse heterogeneous
calcifications or
amorphous calcifications

11(34.4%) 8(22.2%)

Fine pleomorphic calcification or
linear branching calcifications

16(50.0%) 7(19.4%)

With microinvasion 20(62.5%) 11(30.6%) 6.969 0.008

Degree of background parenchymal enhancement of
the breast

Low enhancement 20(62.5%) 21(58.3%) 0.123 0.726

High enhancement 12(37.5%) 15(41.7%)

Lesion enhancement pattern Mass-like enhancement 9(28.1%) 10(27.8%) 0.340 0.844

Non-mass-like enhancement 16(50.0%) 20(55.6%)

Mass with non-mass-
like enhancement

7(21.9%) 6(16.7%)

Maximum lesion diameter 5.69(1.58) 4.66(1.42) -2.843 0.006

Lesion ADC value 0.86(0.20) 0.87(0.16) 0.271 0.787
ADC, Apparent Diffusion Coefficient.
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threshold was greater than 0.15 for the pure DCIS group and greater

than 0.10 for the invasive group, net benefit was achieved, indicating

that the model is beneficial for clinical decision-making.

This study compared the diagnostic performance of four Ab-

MRI protocols with the full MRI protocol for DCIS. The DWI, MIP,

and FAST protocols were selected for image feature extraction. In

the pure DCIS group, the maximum lesion diameter was included,

while in the invasive group, the lesion enhancement type and

clustered ring enhancement within the lesion were incorporated.

The first section’s predictive factors were combined to establish a

multimodal prediction model. The results showed that the

diagnostic performance of the Ab-MRI protocol for DCIS was not

significantly different from the full MRI protocol, and the

examination time was notably shorter. Additionally, the Ab-MRI
Frontiers in Oncology 08
protocol effectively performed risk stratification for DCIS at

different pathological stages, with the established prediction

model demonstrating good performance in ROC curve analysis,

calibration curve analysis, and decision curve analysis.
4 Discussion

The extent and distribution of DCIS lesions are difficult to

assess, posing a significant challenge for clinicians and patients in

determining the appropriate surgical treatment. In the context of

approximately 20% of DCIS cases developing invasive breast cancer

in the same breast after treatment (30, 31). Therefore, accurate risk

stratification can help guide the precise extent of surgery for
TABLE 5 Multivariate logistic regression analysis to predict the prognosis of the pure DCIS group.

Characteristics Coefficient St. error Z value P value OR 95%CI

DCIS nuclear grade 1.817 0.763 2.382 0.017 6.156 1.380~27.473

DCIS pathological subtype 1.811 0.734 2.465 0.014 6.114 1.449~25.793

Mammographic features of calcifications

Coarse heterogeneous. calcifications or
amorphous calcifications

1.976 0.905 2.183 0.029 7.215 1.224~42.535

Fine pleomorphic. calcification or linear
branching calcifications

3.112 0.975 3.191 0.001 22.463 3.322~151.907

With microinvasion 1.573 0.726 2.165 0.030 4.819 1.161~20.005

Maximum lesion diameter 0.508 0.248 2.046 0.041 1.662 1.021~2.705
St. Error, Standard Error; OR, odds ratio; CI, confidence Interval.
TABLE 4 Baseline characteristics and univariate analysis of the invasive group.

Characteristics Poor
prognosis

Good
prognosis

Z/t/X2 value P value

Number 78 64

Nerve/vascular invasion 41(52.6%) 16(25.0%) 11.116 0.001

Ki67 status Low proliferation index
High proliferation index

19(24.4%) 31(48.4%) 8.934 0.003

59(75.6%) 33(51.6%)

Mammographic associated findings 16(20.5%) 34(53.1%) 16.389 <0.001

Proportion of DCIS component >25% 19(24.4%) 43(67.2%) 26.215 <0.001

≤25% 59(75.6%) 21(32.8%)

Degree of background parenchymal enhancement
of the breast

Low enhancement 54(69.2%) 48(75.0%) 0.578 0.447

High enhancement 24(30.8%) 16(25.0%)

Lesion enhancement pattern Mass-like enhancement 30(38.5%) 44(68.8%) 14.665 0.001

Non-mass-like enhancement 22(28.2%) 13(20.3%)

Mass with non-mass-
like enhancement

26(33.3%) 7(10.9%)

Maximum lesion diameter 2.20[1.60,3.10] 2.00[1.30,3.02] -0.872 0.383

Lesion ADC value 0.73(0.18) 0.73(0.15) -0.180 0.857

Clustered ring-like enhancement within the lesion 28(35.9%) 40(62.5%) 9.969 0.002
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patients who wish to preserve their breast (32, 33). We evaluated the

diagnostic performance of different imaging features by two

datasets, employing Ab-MRI protocols including DWI, MIP, and

FAST. Our results demonstrate that the model effectively stratifies

the risk of DCIS at different pathological stages and shows good

performance in ROC, calibration, and decision curve analyses,

providing accurate prognostic predictions for clinical use.

DCIS is a localized lesion, it exhibits considerable biological

heterogeneity across patients, and some cases may progress to

invasive breast cancer. Therefore, accurate diagnosis is essential

for guiding appropriate treatment decisions. Mammography

remains the primary screening tool for DCIS due to its ability to

detect microcalcifications. However, its diagnostic performance is

limited by breast density, which can lead to underdiagnosis or

misclassification, particularly in non-calcified lesions (34, 35).This
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limitation may result in incomplete excision during breast-

conserving surgery, thereby increasing the risk of recurrence and

sometimes necessitating wider surgical resection. In contrast, MRI

offers superior spatial resolution and contrast-enhanced imaging

capabilities, enabling earlier and more accurate detection of DCIS

and holding promise for improved long-term patient outcomes (36,

37). Furthermore, MRI has demonstrated higher sensitivity in

detecting additional malignancies, with a detection rate of 87.9%

compared to 63.6% for mammography, providing a more

comprehensive assessment of disease burden (38).

However, despite its superior diagnostic capabilities in DCIS

detection, MRI is not suitable for routine screening due to its high

cost and lengthy examination time. As a potential alternative, Ab-

MRI has emerged as a promising technique that significantly

reduces scan time while maintaining diagnostic accuracy. Several
FIGURE 4

Nomogram of the predictive model for the pure DCIS group.
TABLE 6 Multivariate logistic regression analysis to predict the prognosis of the invasive group.

Characteristics Coefficient St. error Z value P value OR 95%CI

Nerve/vascular invasion 0.962 0.483 1.991 0.047 2.617 1.015~6.751

Ki67 status 1.831 0.522 3.506 0.000 6.241 2.242~17.374

Mammographic associated findings 1.753 0.485 3.611 0.000 5.770 2.229~14.940

Proportion of DCIS component -1.308 0.478 -2.738 0.006 0.270 0.106~0.690

Lesion enhancement pattern

Non-mass-like enhancement 0.539 0.543 0.992 0.321 1.714 0.591~4.969

Mass with non-mass-like enhancement 1.635 0.632 2.588 0.010 5.130 1.487~17.698

Clustered ring-like enhancement within
the lesion

-1.676 0.500 -3.353 0.001 0.187 0.070~0.498
St. Error, Standard Error; OR, odds ratio; CI, confidence Interval.
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studies comparing the diagnostic performance of Ab-MRI with that

of standard MRI have demonstrated that, despite improving

examination efficiency, Ab-MRI shows no significant differences

in key diagnostic metrics, including recall rate, cancer detection
Frontiers in Oncology 10
rate, false-positive biopsy recommendation rate, PPV, SEN and SPE

(13, 22). Our study further confirms that Ab-MRI provides

comparable diagnostic performance to full-protocol MRI while

significantly reducing scan time. However, compared with the
FIGURE 5

Nomogram of the predictive model for the invasive group.
FIGURE 6

Receiver operating characteristic curves of the predictive models for the pure DCIS group (A) and the invasive group (B).
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reference FDP, the Ab−MRI acquisition protocol exhibits wider

confidence intervals, likely due to three inherent limitations. First,

the accelerated acquisition reduces temporal resolution, amplifying

biological noise arising from intertumoral heterogeneity—especially

in DCIS cases with variable necrosis patterns. Second, the lack of a

compensation mechanism for dynamic contrast–enhanced phases

prevent effective correction of motion artifacts, thereby increasing

measurement uncertainty. Third, many low− and intermediate

−grade DCIS lesions appear isointense on DWI sequences, which
Frontiers in Oncology 11
diminishes lesion–to–background contrast and further exacerbates

data variability. Although FDP remains the diagnostic gold

standard, in a screening context our Ab−MRI protocol—with a

clinically acceptable specificity of 85%—demonstrates sufficient

reliability and practical value.

By integrating mammographic imaging, MRI features, and

pathological data, Ab-MRI allows for accurate prognostic risk

assessment in DCIS patients. In addition to offering higher

sensitivity and accuracy in imaging evaluation, Ab-MRI enhances
FIGURE 7

Calibration curves of the predictive models for the pure DCIS group (A) and the invasive group (B).
FIGURE 8

Decision curves of the predictive models for the pure DCIS group (A) and the invasive group (B).
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diagnostic efficiency, making it a valuable tool for early breast

cancer screening and diagnosis.

The novelty of this study lies in the first-ever integration of the

Ab-MRI protocol with mammography to stratify the risk of DCIS at

different pathological progression stages and explore the potential

applications of this technology in breast precancerous lesions. By

optimizing MRI sequences, Ab-MRI not only enhances diagnostic

efficiency but also provides critical support for precise risk

stratification and personalized treatment of DCIS. Despite its

clinical value, this study has certain limitations. First, biopsy

pathology results indicating intraductal papilloma, borderline

phyllodes tumor, or atypical ductal hyperplasia often led to surgical

excision in clinical practice. Since final surgical pathology may

upgrade these lesions to DCIS or invasive carcinoma, we did not

categorize them as benign lesions in our study, which may introduce

selection bias. Second, as a single-center retrospective study with a

relatively small sample size, the generalizability of our findings may

be limited. Furthermore, considering the generally favorable

prognosis and long survival of breast cancer patients, this study did

not include disease-free survival or overall survival as prognostic

endpoints. Lastly, as our study retrospectively analyzed imaging using

the Ab-MRI protocol rather than simulating a real-world abbreviated

MRI examination, potential bias in the results cannot be excluded.

In conclusion, this study explored the potential of Ab-MRI in the

diagnosis of DCIS and utilized the Nottingham grading system for

prognostic stratification. By integrating deep learning and natural

language processing techniques, along with mammographic and Ab-

MRI imaging features, we developed a DCIS prognostic risk

prediction model to guide clinical decision-making and support

precision medicine.
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