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Predictive model of malignancy
probability in pulmonary nodules
based on multicenter data
Yuyan Huang †, Yong Chen †, Fang He and Li Jiang*

Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of North Sichuan
Medical College, Nanchong, Sichuan, China
Objectives: To study the characteristic factors associated with the occurrence of

malignant nodules in patients presenting with pulmonary nodules, develop a

predictive model, and evaluate its diagnostic performance.

Methods: This study analyzed the clinical and imaging data of 830 patients with

pulmonary nodules from the Affiliated Hospital of North Sichuan Medical

College. The Least Absolute Shrinkage and Selection Operator (LASSO) and

multivariate logistic regression analysis were utilized to identify characteristic

predictors. Multiple machine learning classification models were employed for

analysis, with the optimal model ultimately selected. A Shapley Additive

Explanations (SHAP) framework was developed for personalized risk

assessment. Finally, external testing was performed using data from 330

pulmonary nodule patients at Guang’an People’s Hospital.

Results: The predictive factors for malignant pulmonary nodules included: age,

gender, nodule diameter, spiculation, lobulation, calcification, vacuole, vascular

convergence sign, air bronchogram sign, pleural traction, and density of the

nodule. The Gradient Boosting Decision Tree (GBDT) classification model

demonstrated optimal performance, with an area under the curve (AUC) of

0.873 (95% confidence interval [CI]: 0.840–0.906) on the internal test set and

0.726 (95% CI: 0.668–0.784) on the external test set. Both the calibration curve

and clinical decision curve analysis (DCA) indicated excellent model calibration

and substantial clinical benefits.

Conclusions: We developed a GBDT model that provides a basis for

differentiating malignant pulmonary nodules, which may assist in the diagnosis

and treatment of patients with pulmonary nodules.
KEYWORDS

pulmonary nodules, malignancy, machine learning, prediction model, external test
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2025.1588147/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1588147/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1588147/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2025.1588147&domain=pdf&date_stamp=2025-05-28
mailto:lanqilily@163.com
https://doi.org/10.3389/fonc.2025.1588147
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2025.1588147
https://www.frontiersin.org/journals/oncology


Huang et al. 10.3389/fonc.2025.1588147
1 Introduction

A pulmonary nodule refers to a round or oval-shaped, focal,

increased-density shadow in the lung observed on imaging, with a

diameter of ≤3 cm. With the widespread use of CT scans, the

detection rate of pulmonary nodules has continued to rise

(1).Pulmonary nodules can be classified into benign and malignant

types. Benign nodules are often associated with inflammatory

diseases such as tuberculosis and granulomas, while malignant

nodules are typically indicative of early-stage lung cancer. Lung

cancer remains the most common type of cancer globally, the

leading cause of cancer-related deaths, and the disease with the

highest global economic burden (2, 3). Prognostic outcomes

demonstrate dramatic variation across disease stages, with 5-year

survival rates plummeting from 82% in stage IA tomerely 7% in stage

IVB (4).Early diagnosis and treatment of lung cancer are crucial for

improving patient prognosis. Although low-dose spiral CT screening

can enhance the detection rate of pulmonary nodules, a significant

proportion of nodules initially suspected to be malignant prior to

biopsy are ultimately confirmed as benign after pathological

examination, which imposes additional clinical risks and financial

burdens on patients (5). Therefore, early identification of risk factors

and the development of predictive models are of critical significance

for improving the early diagnosis, treatment, and prognosis of

malignant pulmonary nodules, as well as avoiding unnecessary

invasive procedures. Machine learning constitutes a suite of
Frontiers in Oncology 02
powerful algorithms capable of analyzing, learning from, adapting

to, representing, and predicting data. It efficiently addresses

multicollinearity among independent variables. Machine learning is

widely regarded as the future of computer-aided diagnosis and

medical research (6). Therefore, this study collected and organized

imaging and clinical data from patients with pulmonary nodules,

employed several machine learning classification models to analyze

risk factors for malignant nodules, developed a predictive model, and

established an evidence-based framework to optimize clinical

decision-making in early-stage lung cancer management.
2 Materials and methods

2.1 Materials

2.1.1 Subjects
A retrospective cohort study was conducted involving 1,160

patients with pulmonary nodules who underwent evaluation at two

medical centers: the Affiliated Hospital of North Sichuan Medical

College and Guang’an People’s Hospital between January 2019 and

November 2021. The patient selection process is shown in Figure 1.

This study was approved by the Medical Ethics Committee of North

Sichuan Medical College Affiliated Hospital (File Number:

2022ER234-1). Since this was a retrospective analysis, the

requirement for informed consent from patients was waived.
FIGURE 1

Flowchart of the studied subjects.
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2.1.2 Inclusion criteria
Inclusion criteria (1): Presence of pulmonary nodules

measuring 5–30 mm in diameter on chest CT scan; (2)

Availability of definitive pathological diagnosis; (3) Completion of

chest CT imaging prior to pathological confirmation.

2.1.3 Exclusion standards
Exclusion criteria: (1) Pulmonary nodules were completely

calcified; (2)Patients were with incomplete clinical data; (3)

Patients were with previous history of primary lung cancer.
2.2 Methods

2.2.1 Study Indicators
There were 23 variables:(1) General Information, including

gender, smoking, annual smoking volume, dust exposure history,

concomitant disease(Chronic Obstructive Pulmonary Disease,

Diffuse Pulmonary Fibrosis, Previous Pulmonary Tuberculosis,

Pneumoconiosis), tumor history, family history of tumor, family

history of lung cancer, family history of non-lung malignancies, and

age. (2) imaging features, including nodule diameter, pleural

traction, air bronchogram sign, vascular convergence sign,

vacuole, cavity, calcification, shape, lobulation, spiculation, edges

(Smooth or rough), location(Left Upper Lobe, Left Lower Lobe,

Right Upper Lobe, Right Middle Lobe, Right Lower Lobe), and

nodule density (solid/part-solid/pure ground-glass).

2.2.2 Construction and evaluation of predictive
models

(a) Screening of characteristic factors: First, least absolute

shrinkage and selection operator (LASSO) regression analysis was

performed using R software (glmnet 4.1.8) for variable screening

and complexity adjustment. Subsequently, the results from LASSO

regression analysis were subjected to multivariable logistic

regression analysis. Finally, characteristic factors with p < 0.05

were identified. (b) Data splitting: Using Python (version 3.11.4)

random module, patients from Affiliated Hospital of North Sichuan

Medical College with pulmonary nodules were randomly divided

into a training set and a test set in a 7:3 ratio, with 581 cases in the

training set and 249 cases in the test set. (c) Analysis of multiple

machine learning methods: eXtreme Gradient Boosting (XGBoost),

Logistic regression, RandomForest, Gradient Boosting Decision

Tree(GBDT), support vector machine (SVM), K-Nearest-

Neighbors (KNN) were built by using python (version 3.11.4).

Subsequently, we trained and validated the aforementioned

parametric models, analyzed the significance of training and

validation set metrics across different models, and ultimately

selected the optimal model. Python (version 3.11.4) was used to

calculate the Area under the Receiver Operating Characteristic

(ROC) curve, which is commonly employed to evaluate the

discriminative ability of predictive models (7). R software (version

4.2.3) implemented decision curve analysis (DCA) to generate

clinical utility plots, thereby enabling the evaluation of both

clinical significance and applicability of predictive models (8).
Frontiers in Oncology 03
Plot a calibration curve using Python to evaluate the model’s

predictive capability and assess the consistency between the

model’s predicted results and actual outcomes (9). Python was

used to plot the precision-recall (PR) curves. PR and the area under

the PR curve (AP) can provide complementary information to

model evaluation methods (10). (d) Optimal model training,

validation, and testing pipeline: Perform 10-fold cross-validation

on the training set, and evaluate the model on the test set. Python

was used to plot learning curves to assess model fitting and stability

for both the training set and validation set (11). (e) We plotted the

SHapley Additive exPlanations (SHAP) using Python. SHAP is a

method for interpreting the predictions of machine learning

models. It is based on the concept of Shapley values, which is an

impartial method used in game theory to distribute the benefits of

cooperation. The computation of Shapley values takes into account

all possible combinations of features and evaluates the marginal

contribution of each feature to the output of the model. SHAP can

interpret the model’s results and calculate its predictive

performance (12). (f) External testing of the model: The cohort of

330 pulmonary nodule patients from Guang’an People’s Hospital

served as an external test set. Python (version 3.11.4) was used to

plot the ROC curve and a calibration curve. R software (version

4.2.3) was used to construct the DCA.

2.2.3 Statistical analysis
Categorical variables were presented as numbers and

percentages and compared using the Chi-square test. Continuous

variables were expressed as median and interquartile range (IQR)

and compared using the Mann-Whitney U test. Bilateral P-value

less than 0.05 indicates statistical significance.
3 Results

3.1 Baseline data

In this study, we enrolled a total of 1,160 cases, comprising 830

patients from the Affiliated Hospital of North Sichuan Medical

College (dataset 1) and 330 patients from Guang’an City People’s

Hospital. In Dataset 1, the cohort comprised 388 males (46.7%) and

442 females (53.3%). Among the 243 subjects with benign nodules,

150 were male (61.7%) and 93 were female (38.3%). Of the 587

patients diagnosed with malignant nodules, 238 were male (40.5%)

and 349 were female (59.5%). The specific baseline data of the final

Dataset 1 is presented in Table 1.
3.2 Screening of characteristic factors for
lung cancer risk in patients with pulmonary
nodules

Perform LASSO regression analysis on the independent

variables, with malignant nodules as the dependent variable

(Figure 2). The results showed that 16 independent variables

were selected (with lambda = 0.008 corresponding to the
frontiersin.org
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TABLE 1 Baseline characteristics in dataset 1.

Variable All (n=830) Benignancy (n=243) Malignancy (n=587) p

Gender, n (%) Male 388 (46.7) 150 (61.7) 238 (40.5) <0.001

Female 442 (53.3) 93 (38.3) 349 (59.5)

Smoking, n (%) No 597 (71.9) 155 (63.8) 442 (75.3) <0.001

Yes 233 (28.1) 88 (36.2) 145 (24.7)

Annual smoking volume, n (%) <400 598 (72.0) 155 (63.8) 443 (75.5) <0.001

>=400 232 (28.0) 88 (36.2) 144 (24.5)

Dust exposure history, n (%) No 826 (99.5) 242 (99.6) 584 (99.5) 0.851

Yes 4 (0.5) 1 (0.4) 3 (0.5)

Concomitant disease, n (%) No 770 (92.8) 225 (92.6) 545 (92.9) 0.898

Yes 60 (7.2) 18 (7.4) 42 (7.2)

Tumor history, n (%) No 813 (98.0) 239 (98.4) 574 (97.8) 0.599

Yes 17 (2.0) 4 (1.6) 13 (2.2)

Family history of tumor, n (%) No 818 (98.6) 238 (97.9) 580 (98.8) 0.342

Yes 12 (1.4) 5 (2.1) 7 (1.2)

Family history of lung cancer, n (%) No 820 (98.9) 240 (98.8) 580 (98.8) 0.960

Yes 10 (1.2) 3 (1.2) 7 (1.2)

Family history of non-lung malignancies,
n (%)

No 825 (99.4) 240 (98.8) 585 (99.7) 0.130

Yes 5 (0.6) 3 (1.2) 2 (0.3)

Density of the nodule, n (%) pure ground-glass 81 (9.8) 10 (4.1) 71 (12.1) <0.001

part-solid 208 (25.1) 16 (6.6) 192 (32.7)

solid 541 (65.2) 217 (89.3) 324 (55.2)

Location, n (%) Right Upper Lobe 266 (32.0) 77 (31.7) 189 (32.2) 0.274

Right Middle Lobe 69 (8.3) 22 (9.1) 47 (8.0)

Right Lower Lobe 170 (20.5) 60 (24.7) 110 (18.7)

Left Upper Lobe 190 (22.9) 48 (19.8) 142 (24.2)

Left Lower Lobe 135 (16.3) 36 (14.8) 99 (16.9)

Spiculation, n (%) No 558 (67.2) 177 (72.8) 381 (64.9) 0.027

Yes 272 (32.8) 66 (27.2) 206 (35.1)

Edge, n (%) Rough 742 (89.4) 207 (85.2) 535 (91.1) 0.011

Smooth 88 (10.6) 36 (14.8) 52 (8.9)

Lobulation, n (%) No 142 (17.1) 49 (20.2) 93 (15.8) 0.132

Yes 688 (82.9) 194 (79.8) 494 (84.2)

Shape, n (%) Irregular 788 (94.9) 224 (92.2) 564 (96.1) 0.020

Regular 42 (5.1) 19 (7.8) 23 (3.9)

Calcification, n (%) No 810 (97.6) 226 (93.0) 584 (99.5) <0.001

Yes 20 (2.4) 17 (7.0) 3 (0.5)

Cavity, n (%) No 808 (97.3) 239 (98.4) 569 (96.9) 0.246

Yes 22 (2.7) 4 (1.6) 18 (3.1)

(Continued)
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minimum mean squared error), including spiculation, lobulation,

calcification, cavity, vacuole, vascular convergence sign, air

bronchogram sign, pleural traction, dust exposure history,

tumor history, family history of tumor, family history of non-

lung malignancies, density of the nodule, gender, age, and nodule

diameter. Then, multivariable logistic regression analysis was used

to analyze the aforementioned 16 independent variables. We

identified 11 characteristic factors, including age, gender, nodule

diameter, spiculation, lobulation, calcification, vacuole, vascular

convergence sign, air bronchogram sign, pleural traction, density

of the nodule (p < 0.05), as Table 2.
Frontiers in Oncology 05
3.3 Analysis of multiple machine learning
methods

XGBoost, Logistic regression, RandomForest, GBDT, SVM, and

KNN were trained and repeated 10 times. The evaluation using

Area Under the Curve (AUC) values showed that XGBoost and

RandomForest achieved the highest scores in the training set, while

GBDT attained the highest performance in the validation set

(Figures 3A, B). The DCA evaluated GBDT with better clinical

applicability (Figure 3C). The calibration curve indicates better

agreement between the predicted probabilities and actual
TABLE 1 Continued

Variable All (n=830) Benignancy (n=243) Malignancy (n=587) p

Vacuole, n (%) No 726 (87.5) 229 (94.2) 497 (84.7) <0.001

Yes 104 (12.5) 14 (5.8) 90 (15.3)

Vascular convergence, n (%) No 192 (23.1) 113 (46.5) 79 (13.5) <0.001

Yes 638 (76.9) 130 (53.5) 508 (86.5)

Air bronchogram sign, n (%) No 634 (76.4) 226 (93.0) 408 (69.5) <0.001

Yes 196 (23.6) 17 (7.0) 179 (30.5)

Pleural traction, n (%) No 324 (39.0) 110 (45.3) 214 (36.5) 0.018

Yes 506 (61.0) 133 (54.7) 373 (63.5)

Age, median[IQR] 57[50.000,66.000] 55[48.000,62.000] 57[51.000,67.000] <0.001

Nodule diameter, median[IQR] 13[10.000,18.000] 11[8.000,16.000] 13[10.000,19.000] <0.001
fron
FIGURE 2

LASSO regression analysis was used to select characteristic factors. (A) The use of 10‐fold cross-validation to draw vertical lines at selected values,
where the optimal lambda produces eleven nonzero coefficients. (B) In the LASSO model, the coefficient profiles of 23 texture features were
extracted from logarithmic (l) sequences. The vertical dashed line is plotted with the minimum mean square error (l = 0.008) and the error of the
minimum distance (l = 0.025).
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probabilities for both the GBDT and Logistic regression models

(Figure 3D). The GBDT model demonstrated the best performance

in both the training and validation sets, while achieving the highest

AP value in the validation set (Figures 3E, F). The comprehensive

analysis indicated that GBDT could be the optimal model.
3.4 Optimal model construction and
evaluation

The training set was subjected to GBDT analysis with 10-fold

cross-validation. The results show that the validation set had an

average AUC of 0.8157 (0.604-0.9789), and the test set achieved an

AUC of 0.8727 (0.840-0.906) (Figures 4A–C). The model could be

deemed successfully fitted as the validation set’s performance under

the AUCmetric does not exceed that of the test set, or the margin of

exceedance was less than 10%. The learning curve indicated

that both the training set and validation set demonstrated good

stability and fitting (Figure 4D). These results indicated that the

GBDT model can be applied to our dataset for classification

modeling tasks.
3.5 Interpretation of the model by SHAP

Figure 5A displays the 11 characteristic factors in our model,

which are associated with the malignant risk in patients with

pulmonary nodules. Each line corresponding to a feature factor is
Frontiers in Oncology 06
plotted with dots of different colors; blue dots indicate low risk,

while red dots represent high risk. Figure 5B shows the ranking of

11 feature factors assessed by the mean absolute SHAP values,

where the x-axis SHAP values indicate the importance of the feature

factors in the model. We also provide two examples to illustrate the

interpretability of the model: one patient with benign pulmonary

nodules received a low SHAP prediction score (0.07)(Figure 5C),

while another patient with malignant pulmonary nodules obtained

a significantly higher SHAP score (0.94)(Figure 5D).
3.6 External testing of the model

The GBDT analysis conducted on the external test set

demonstrated an AUC of 0.726 (Figure 6A). The decision curve

analysis (DCA) (Figure 6C) performed on the external test set

demonstrated that implementing interventions within a reasonable

range of threshold probabilities might offer greater clinical benefits

compared to intervening in all patients or none. The calibration

curve of the developed model was evaluated in an external testing

cohort, and the results demonstrated a good model fit (Figure 6B).
4 Discussion

In this study, we included patients with pulmonary nodules

measuring 5–30 mm in diameter, and excluded patients with

completely calcified nodules. It is very low of the prevalence of
TABLE 2 Multivariate logistic regression analysis.

Predictor Estimate SE Z p Odds Ratio Lower Upper

(Intercept) -3.546 0.709 -5.003 0.0 0.029 0.007 0.115

Age 0.035 0.01 3.522 0.0 1.036 1.016 1.057

Nodule diameter 0.05 0.019 2.605 0.009 1.051 1.013 1.093

Spiculation 0.507 0.237 2.137 0.033 1.66 1.046 2.653

Lobulation 1.105 0.34 3.252 0.001 3.02 1.568 5.968

Calcification -2.941 0.905 -3.251 0.001 0.053 0.007 0.256

Cavity 0.816 0.681 1.198 0.231 2.261 0.654 9.897

Vacuole 1.604 0.384 4.176 0.0 4.973 2.417 10.968

Vascular convergence 2.056 0.247 8.309 0.0 7.815 4.861 12.851

Bronchiole 2.145 0.328 6.534 0.0 8.541 4.611 16.781

Pleural traction 0.852 0.255 3.343 0.001 2.344 1.43 3.891

Dust exposure history 2.578 1.518 1.699 0.089 13.167 0.766 399.888

Tumor history 1.072 0.852 1.259 0.208 2.922 0.609 17.661

Family history of tumor -0.459 0.907 -0.505 0.613 0.632 0.112 4.372

Family history of non-lung malignancies -1.853 1.377 -1.345 0.178 0.157 0.009 2.245

Density of the nodule -3.168 0.504 -6.29 0.0 0.042 0.015 0.108

Gender 1.038 0.222 4.677 0.0 2.824 1.837 4.391
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malignant pulmonary nodules measuring <5 mm (13). In the

NELSON study, malignancy risk in patients with pulmonary

nodules measuring <5 mm was similar to subjects without the

nodules (14). In addition, the nodule diameter threshold for the

need of follow-up has been decided as 5 mm for BTS guidelines (15).

So we included nodules of the diameter ≥5 mm for our research

objects. Unlike partially calcified nodule is unclear benign or

malignant, completely calcified nodule is benign lesion. Research

by Zhou Y et al. (16) showing that 0.90% of partially calcified

nodules were diagnosed as malignant and two cases of calcified

nodules were benign. Calcification is usually relate to the healing of

old lesions and represents stable, benign lesions (17). In particular,

diffuse calcifications is highly indicate benign lesions (18).

Our results show that eleven characteristic variables (age,

gender, nodule diameter, spiculation, lobulation, calcification,

vacuole, vascular convergence, bronchiole, pleural traction,

density of the nodule) were screened by LASSO and multivariate

logistic regression analysis from 23 clinical and CT variables to

assess the risk of lung cancer in patients. These findings align with

existing literature on malignant pulmonary nodule assessment. For

example, in a large retrospective study, development, and external
Frontiers in Oncology 07
and internal validation of the model to predict the risk of lung

cancer, using data from 19.67 million people has shown that the

predictors included age and sex (19).Han DH et al. reported

increased age was associated with participants who developed

lung cancer (20). A nationwide, prospective cohort, multicenter

study have demonstrated that female sex and age older than 60

years were related to an increased risk of invasive lung cancer (21).

A recent study reported that the size of pulmonary nodule is the key

factor to assess malignancy. The probability of malignant nodules

was positively correlated with their diameter (22). Spiculation

occurs as tumor cell infiltrate into the adjacent bronchial vascular

sheath or local lymphatic vessels, or as tumor-associated fibrous

bands stimulate connective tissue formation (23).A new scoring

system for predicting malignant pulmonary nodules suggested that

spiculation was an independent risk factor. A recent study indicated

that features such as spiculation, lobulation had significant

predictive value for the malignant nodule (24). Research by Liu

et al. (25) supports our finding, showing that lobulation was the

Imaging characteristics suggesting malignancy.

The calcification, particularly central and layered calcifications

are highly indicative of benign lesions (26, 27). Our study also
FIGURE 3

Analysis of multiple machine learning methods. (A, B) Training set and validation set ROC and AUC. (C) In the validation set DCA, the black dashed
line indicates the hypothesis that all patients have pulmonary malignant nodules, while the red dashed line represents the alternative hypothesis that
none of the patients have malignant nodules. The solid lines correspond to different predictive models. (D) For the calibration curve of the validation
set, the horizontal axis represents the average predicted probability, the vertical axis denotes the actual probability of the event. The dashed diagonal
line serves as a reference, while other smoothed solid lines correspond to the fitting curves of different models. The closer a fitted line is to the
reference line (with smaller value in parentheses), the more accurate the model’s prediction is. (E, F) Training set and validation set PR curve and AP.
The y-axis is precision and the x-axis is recall. The higher the AP value, the better the model performance. Different colors in the image represent
corresponding models.
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identified calcification as a protective factor. Vacuoles are areas of

low attenuation due to small air within the nodule containing the

bronchi. The appearance of vacuole has also been reported to be

associated with malignant lung nodules (28). Vascular signs are

important indicators of malignant tumors, and tumor growth and

metastasis depend on new blood vessels. consistent with previous

studies (29), vascular convergence was also identified as

independent risk factor for lung nodule in our study. Our study

showed that the density of pulmonary nodules is associated with

their risk of malignancy. Previous study has demonstrated that,

compared to solid nodules, part-solid nodules carry a higher risk of

malignancy, while pure ground-glass nodules have the lowest

malignant potential (30). Their corresponding malignancy rates

were 7%, 63%, and 18%, respectively (31). Pleural traction is

typically caused by the traction force exerted on the pleura due to

tumor growth around a pulmonary nodule. This traction force may

result from tumor cells invading surrounding tissues and extending

to the pleural membrane. Bronchiolar signs refers to the presence of

lucent shadows resembling bronchial structures within pulmonary
Frontiers in Oncology 08
nodules on CT scans. This phenomenon is typically caused by either

the preservation of partial airway structures within the tumor or the

compression of surrounding airways by the tumor. Our findings

also indicated that pleural traction and bronchiolar signs were

characteristic manifestations of malignant pulmonary nodules,

which aligns with previous research findings (32, 33).

In our study, we employed multiple machine learning

classification models to construct predictive models. The analysis

revealed that the Gradient Boosting Decision Tree (GBDT) model

outperformed other models. We applied the SHAP method to the

GBDT model, which provided both a more comprehensive

interpretation of the predictive model and a more intuitive

visualization of prediction outcomes. The results demonstrate that

features including lobulation, calcification, vacuole, spiculation,

bronchiole, nodule diameter, gender, age, density of the nodule,

pleural traction and vascular convergence exhibit a progressively

increasing contribution to the model, indicating their gradually

enhanced diagnostic value in assessing the malignancy risk of

pulmonary nodules. The data for this research were sourced from
FIGURE 4

GBDT model training, validation, and testing. (A, B) Training sets and validation sets ROC and AUC. Different-colored solid lines represent 10 distinct
results. (C) Test set ROC and AUC. (D) Learning curves. The red dashed line represent the training set, and the blue dashed line represent the
validation set.
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FIGURE 5

SHAP interprets the model. (A) Feature contributions in SHAP. Each line represents a feature, with the x-axis indicating SHAP values. Red dots denote
higher feature values, while blue dots indicate lower feature values. (B) SHAP-indicated feature importance ranking. The matrix plot illustrates the
importance of each covariate in the development of the final predictive model. (C, D) SHAP Scores in Patients with Benign and Malignant Pulmonary
Nodules. SHAP values indicate the contribution of individual patients’ predictive features to the predicted probability. Red features indicate increased
risk, while blue features represent reduced risk. The length of the arrows helps visualize the extent to which the prediction is influenced. A longer
arrow corresponds to a more significant effect.
FIGURE 6

The predictive value and clinical application of the GBDT model in the external test set. (A) The ROC curve and AUC of external test set. (B)
Calibration of the external test set. (C) Decision curve analysis of the external test set.
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two independent research centers, and our study incorporated both

internal validation, testing and independent external testing

components, which has enhanced the generalizability of our

research findings.

Our study has several limitations. First, this is a retrospective

study, and future prospective studies are needed to further validate its

performance. Second, external testing of the model in this research

was conducted only at a single medical center; additional data from

multiple centers are still required for external testing. Furthermore,

due to the extremely low probability of malignancy in nodules smaller

than 5 mm in diameter, such cases were not included in our dataset.

Future studies are necessary to verify the applicability of our model to

nodules with diameters less than 5 mm.
5 Conclusions

This study constructed a predictive model based on multiple

machine learning classification models, among which the GBDT

model demonstrated superior performance. External testing further

supported the robustness of our model. We provided personalized

risk assessment for early-stage lung cancer development in patients

with pulmonary nodules, interpreted through the SHAP method.

This computer-aided approach exhibits potential value in the

management of pulmonary nodules.
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