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Application value of dual-
sequence MRI based nomogram 
of radiomics and morphologic 
features in predicting tumor 
differentiation degree and lymph 
node metastasis of Oral 
squamous cell carcinoma 
Bozhong Zheng, Baoting Yu, Xuewei Zheng, Xiaolong Qu, 
Tong Li, Yun Zhang and Jun Ding* 

Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China 
Background: Oral squamous cell carcinoma is a highly invasive tumor. The 
degree of histological differentiation and lymph node metastasis are important 
factors in the treatment and prognosis of patients. There is a lack of non-invasive 
and accurate preoperative risk prediction model in the existing clinical work. 

Objective: This study sought to develop and validate a combined model 
including MRI radiomics and morphological analysis to predict lymph node 
metastasis and degree of tumor differentiation prior to surgical intervention for 
oral squamous cell carcinoma (OSCC). 

Methods: This study retrospectively included 119 patients which were divided 
into a training cohort (n=83) and a validation cohort (n=36). To predict lymph 
node metastasis (LNM) and degree of tumor differentiation, both univariate and 
multivariate analyses were performed to identify significant features and develop 
morphological prediction models. Radiomics features were extracted from T2­
FS and DWI sequences, followed by feature selection and the establishment of 
Rad-scores using the LASSO method. Two nomograms was constructed by 
integrating MRI morphological features with radiomics features. The 
performance of the models was assessed using the AUC and the Delong test. 
Calibration curves and DCA were employed to further evaluate the models’ 
practical applicability. 

Results: Nine radiomics features were selected to develop the Rad-scores. The 
morphological features for predicting LNM are depth of invasion and tumor 
thickness. The morphological features for predicting the degree of tumor 
differentiation are ADC value and intratumoral necrosis.In the validation cohort, 
the nomogram for predicting LNM achieved an area under the curve (AUC) of 
0.90 (95% CI: 0.84, 0.97), while the nomogram for tumor grade prediction 
achieved an AUC of 0.87 (95% CI: 0.76, 0.98), demonstrating excellent 
diagnostic performance. Calibration curve and decision curve further 
confirmed the accuracy of nomograms prediction. 
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Conclusion: Nomograms derived from MRI radiomics and morphological 
characteristics offer a noninvasive and precise method for predicting degree of 
tumor differentiation and LNM in OSCC preoperatively. The combined model is 
an  accurate  risk  prediction  model with good clinical benefits  and  
prediction accuracy. 
KEYWORDS 

OSCC (oral squamous cell carcinoma), MRI, nomogram, radiomics, LNM 
1 Introduction 

Oral cancer ranks as the eighth most prevalent malignancy 
globally (1), with oral squamous cell carcinoma (OSCC) 
representing the predominant subtype (2). The extensive lymphatic 
and vascular networks associated with OSCC, coupled with the 
absence of an effective barrier to impede tumor dissemination, 
facilitate early metastasis of tumor cells. Consequently, this 
contributes to an unfavorable long-term prognosis for affected 
patients (3). 

The degree of tumor differentiation and lymph node metastasis 
(LNM) are critical factors influencing the prognosis of patients with 
oral squamous cell carcinoma (OSCC). The histopathological 
differentiation of tumor cells serves as an indicator of the tumor’s 
malignancy (4), with a lower degree of differentiation correlating 
with a higher propensity for metastasis and a poorer prognosis (5). 
Currently, there is a lack of non-invasive methods for the 
preoperative grading of primary lesions in OSCC. The most 
commonly employed technique is fine needle aspiration (FNA) 
pathology. However, this method is invasive, and when tumors are 
located in deeper tissues, the extended puncture distance may 
facilitate cancer cell implantation and dissemination along the 
needle tract. Furthermore, studies have indicated that FNA may 
not adequately assess the tumor’s characteristics due to the limited 
sample size obtained (6). 

The lymphatic system serves as the primary pathway for 
metastasis in oral cancer, with positive lymph node metastasis 
indicating a poor prognosis for patients (7). Approximately 40% 
of patients present with lymph node metastasis at the time of initial 
consultation (8), and such metastasis can decrease the five-year 
survival rate by 50% (9). The standard treatment protocol for oral 
squamous cell carcinoma involves surgical intervention which may 
be complemented by radiotherapy and chemotherapy based on a 
comprehensive evaluation of the patient’s specific condition (10). 
Consequently, an accurate preoperative assessment of lymph node 
status and tumor histopathological grade is essential to devise 
appropriate management strategies for patients with oral 
squamous cell carcinoma. 
02 
Radiomics facilitates the extraction of imaging features that are 
beyond the capacity of human visual assessment, employing high-
throughput techniques to reflect tumor heterogeneity at the cellular 
level (11). Concurrently, magnetic resonance imaging (MRI), with 
its superior soft tissue resolution, offers enhanced precision in 
evaluating submucosal spread, infiltration into adjacent tissues, 
and the status of lymph nodes (12, 13). By utilizing quantitative 
imaging features such as texture, intensity, heterogeneity, and 
morphological information derived from MRI scans, radiomics 
provides a noninvasive approach for the preoperative evaluation 
of  oral  squamous  cell  carcinoma  (OSCC),  enabling  a  
comprehensive analysis of tumor phenotypes. 

In the eighth edition of the Staging Manual by the American Joint 
Committee on Cancer (AJCC), the depth of invasion (DOI) was 
introduced as a critical determinant due to its strong correlation with 
lymph node metastasis (14). DOI is defined as the distance from the 
deepest point of tumor invasion to the hypothetical healthy mucosal 
line (15), and it is crucial for achieving an adequate cancer-free 
margin during surgical resection. Moreover, DOI serves as a 
significant independent prognostic factor influencing lymph node 
metastasis and survival outcomes in patients with oral cancer (16). 
Additionally, researchers (17, 18) have indicated that MRI 
morphological parameters, such as tumor thickness, lingual 
distance, and focal apparent diffusion coefficient (ADC) values, are 
also associated with lymph node metastasis and patient prognosis. 

Recently, the integration of Rad-score and clinical indicators 
within radiomics-based models has gained traction in the 
investigation of various diseases. Compared to standalone clinical 
or radiomics models, these combined models demonstrate superior 
predictive capabilities (19, 20). Nevertheless, there remains a 
paucity of research concerning the assessment of preoperative 
tumor characteristics and biological behavior in oral squamous 
cell carcinoma (OSCC). This study aims to identify clinical, 
morphological, and radiometric indicators that can predict lymph 
node metastasis (LNM) and tumor grade in OSCC. Furthermore, it 
seeks to develop and validate a comprehensive model utilizing 
magnetic resonance imaging (MRI) to enhance the holistic 
evaluation of tumors. 
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2 Materials and methods 

2.1 Patients 

From February 1, 2019 to October 1, 2023, a total of 143 OSCC 
patients undergoing radical tumor resection were admitted to the 
China-Japan Union Hospital of Jilin University. Figure 1 illustrates 
the methodology for the selection and categorization of study 
subjects. The inclusion criteria are as follows: (1) the primary 
tumor resection specimens pathology confirmed OSCC and neck 
dissection (ND) was performed; (2) patients who underwent 
preoperative magnetic resonance imaging at the China-Japan 
Union Hospital of Jilin University. The exclusion criteria for 
patients in this study were as follows: (1) patients undergoing 
preoperative chemoradiotherapy; (2) patients with pathological 
diagnoses of other tumor types; (3) patients experiencing tumor 
recurrence or metastasis; (4) patients with suboptimal MRI quality 
due to image distortion from motion artifacts or oral implants such 
as dentures; (5) patients with a minimum tumor diameter of less 
than 5 mm, rendering them unsuitable for defining the region of 
interest (ROI). These participants were randomly allocated into 
training and validation sets at an approximate ratio of 7:3. The 
median interval from the MRI scan to the complete excision of the 
tumor was 15 days, with an interquartile range of 8 to 22 days. 
Postoperative pathological analysis was conducted on all patients to 
collect tumor and lymph node specimens, facilitating the evaluation 
of lymph node metastasis and tumor differentiation. 
Frontiers in Oncology 03 
2.2 Histopathologic analysis 

Pathological examination results were documented in 
accordance with hospital clinical records. Postoperative 
pathological sections of oral squamous cell carcinoma (OSCC) 
were stained using hematoxylin and eosin (H&E). Lymph node 
metastasis was characterized by the presence of heterogeneous 
tumor cells within the lymph node tissue. The histological degree 
of tumor differentiation of OSCC is divided into three categories: 
well differentiated, moderately differentiated, and poorly 
differentiated (21). In our study, in order to facilitate grouping 
while considering that tumors with moderate histological 
differentiation still have high invasiveness, we referred to samples 
with tumor histopathology classified as moderately differentiated 
and poorly differentiated as “low differentiation”, and  defined 
samples with tumor cells classified as highly differentiated as 
“high differentiation”. 
2.3 MRI protocols 

Magnetic Resonance Imaging (MRI) examinations were 
conducted utilizing a Siemens Healthineers 1.5 Tesla Avanto 
scanner, manufactured in Erlangen, Germany, and equipped with 
an 8-channel phased array neck coil. A relaxation pad was 
employed to stabilize the patient’s head, ensuring that the 
shoulder was in contact with the base of the coil. The MRI 
FIGURE 1 

Flowchart depicting the process of patient selection along with inclusion and exclusion criteria. OSCC, oral squamous cell carcinoma; MRI, magnetic 
resonance imaging; LNM, lymph node metastasis. 
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protocol included axial T1-weighted imaging (T1WI), axial T2­
weighted imaging (T2WI), coronal T2WI, as well as axial diffusion-
weighted imaging (DWI) and apparent diffusion coefficient (ADC) 
images. The imaging parameters were as follows: repetition time/ 
echo time (TR/TE) of 5080/87 milliseconds, slice thickness/inter­
slice gap of 4.0/0.4 millimeters, comprising 20 slices, with a matrix 
size of 256 × 256. Finally, we decided to include images of T2FS and 
DWI sequences for radiomic analysis. The corresponding imaging 
parameters are shown in Supplementary Material 1. 
2.4 Clinical baseline data and 
morphological data collecting 

The preoperative details comprised 11 elements, which were 
categorized as follows: (I) standard demographic data of patients, 
including sex and age; (II) six MRI-based morphological features and 
three ADC features, which included maximum tumor diameter, 
tumor thickness, tumor volume, depth of invasion(DOI), 
intratumor necrosis, tumor margin, focal ADC value(ADC), 
peripheral normal tissue ADC value (ADCNorm), and relative ADC 
value (rADC). Considering that ADC features can be directly 
Frontiers in Oncology 04
measured in MRI images like morphological features, and for the 
convenience of grouping, three ADC features will be included in the 
category of morphological features in the following text. Table 1 shows 
the statistics of each variable in the training set. Detailed definitions for 
each morphological feature are provided in Table 2. Two senior 
radiologists, with 9 and 7 years of experience in neck MRI imaging 
diagnosis, independently evaluated all MRI morphological features 
using the PACS system. In cases where the two measurements were 
similar, the average of both measurements was recorded. In instances 
of disagreement, a third radiologist (with 11 years of experience in 
neck MRI imaging diagnosis) intervened, and all three radiologists 
independently measured the morphological data. The average of the 
two closest measurements was then recorded. 
2.5 Interobserver agreements 

The proportion of MRI morphological features identified by 
two radiologists was assessed for each imaging characteristic, along 
with the inter-observer agreement. The kappa (k) value for MRI 
morphological features indicated a good to excellent level of 
agreement, ranging from 0.675 to 0.842. 
TABLE 1 Clinical and morphological characteristics in the training cohorts. 

Variables Lymph node status c2/ 
t/z p The degree of 

tumor differentiation 
c2/ 
t/z p 

Negative Positive high 
-differentiation 

(n=29) 

low-
differentiation 

(n=54)(n=49) (n=34) 

gender 
female 11(22.45) 8(23.53) 

0.013 0.908 
8(27.59) 11(20.37) 

0.557 0.456 
male 38(77.55) 26(76.47) 21(72.41) 43(79.63) 

age (year) 58.98±8.30 57.91±10.30 0.522 0.603 58.48±8.85 58.57±9.35 -0.043 0.966 

rADC -0.35(-0.45,-0.27) -0.37(-0.4,-0.16) -0.982 0.326 -0.19(-0.34,-0.06) -0.37(-0.45,-0.21) -3.751 <0.001 

ADCNorm 1.33±0.16 1.29±0.13 1.33±0.18 1.31±0.13 0.801 0.426 

ADC 0.93±0.24 0.96±0.18 1.227 0.223 1.08±0.21 0.87±0.19 4.744 <0.001 

tumor margin 
smooth 44(89.80) 23(67.65) 

6.328 0.012 
24(82.76) 43(79.63) 

0.119 0.73 
infiltrative 5(10.20) 11(32.35) 5(17.24) 11(20.37) 

intratumor 
necrosis 

no 40(81.63) 22(64.71) 
3.043 0.081 

27(93.10) 35(64.81) 
7.989 0.005 

yes 9(18.37) 12(35.29) 2(6.90) 19(35.19) 

tumor volume 19.94±12.03 21.29±12.87 -0.49 0.625 19.23±13.59 21.17±11.66 -0.679 0.499 

L-max 27.81(20.00,33.36) 32.99(25.03,37.02) -1.889 0.059 28.21(23.87,35.62) 29.02(23.64,34.18) -0.043 0.966 

Tumor thickness 13.6±6.82 19.1±8.43 -3.283 0.002 15.24±6.26 16.18±8.76 -0.514 0.609 

DOI 9.17±3.40 11.8±3.16 -3.568 0.001 10.36±4.02 10.18±3.28 0.223 0.824 
 
frontie
Description of the statistical methods involved in Table 1: Age, rADC, e.g. as continuity variables: if normal distribution, the standard deviation of all addition and subtraction are represented by 
standard deviations. The comparison between the two groups of data groups is represented by pairwise independent sample t tests. The continuity data of non-normal distribution is represented 
by median, 25 quartiles and 75 quartiles. The comparison between the two groups of data groups is represented by Mann-Whitney Test; the comparison between the gender, tumor margin, and 
intratumor necrosis is represented by chi-square test; the counting data is represented by the number of cases (%). On the two-sided test, a=0.05, that is, p<0.05 has a statistically 
significant difference. 
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2.6 Analysis of clinical and morphological 
factors 

Eleven clinical baseline and morphological characteristics were 
examined utilizing both univariate and multivariate analytical 
techniques. The results derived from the training dataset are 
detailed in Table 1 and Table 3. Factors identified as significant 
through multivariate analysis (P<0.05) were integrated into the 
model, facilitating the construction of logistic regression models for 
predicting lymph node metastasis and tumor grade in oral 
squamous cell carcinoma (OSCC). 
Frontiers in Oncology 05 
2.7 Radiomics analysis 

2.7.1 Image segmentation 
Figure 2 illustrates the workflow of radiomics. Radiomics features 

were extracted from the T2-weighted imaging with fat suppression 
(T2WI-FS) and diffusion-weighted imaging (DWI) sequences with a 
b-value of 800 s/mm². These sequences were obtained using the 3D­
Slicer software (http://www.slicer.org). Radiologist 1 manually 
delineated the tumor volume of interest (VOI) on a transverse 
slice to encompass the entire tumor tissue volume, including the 
cystic necrotic regions, which have been associated with tumor 
TABLE 2 Definition of morphological variables. 

Morphological terms Definition 

depth of invasion 
The distance between the deepest point of tumor tissue infiltration and the theoretical normal basement membrane, regardless of the 
external part of the tumor(measured in millimeters) 

tumor thickness 
Taking the maximum tumor diameter as the baseline, the longest distance of tumor infiltration to both sides was measured 
respectively and the sum of the two was taken(measured in millimeters) 

tumor volume The size of the tumor(measured in cubic millimeters) 

L-max Long wheelbase deviations were measured on the maximum axial images of the lesions (measured in millimeters) 

intratumor necrosis 
The cystic fluid signal shadow appears inside the tumor, usually presenting as a cystic structure with smooth edges and clearly 
demarcated from the surrounding solid tumor tissue 

tumor margin 
If the tumor has blurred edges and does not clearly infiltrate the surrounding normal tissue in MR images, it is considered as 
“infiltrative”;on the contrary, it is “smooth”. 

ADC 
A circular area slightly smaller than the lesion was drawn in the area with uniform signal in the largest lesion layer, and three 
measurements were made and the average value was taken. 

ADCNorm 
Three ROIs were placed in the normal glands around the lesion, and the ADC value of each ROI was measured and the average value 
was taken 

rADC rADC=(ADC-ADCNorm)/ADCNorm 
TABLE 3 Multivariable logistic regression analyses for selecting morphological features. 

B S.E. Waldc2 p OR (95%CI) 

Lymph node status 

DOI 0.204 0.079 6.634 0.010 1.23 (1.05,1.43) 

tumor thickness 0.077 0.037 4.351 0.037 1.08 (1.01,1.16) 

tumor 
margin 

infiltrative 0.964 0.668 2.082 0.149 2.62 (0.71,9.70) 

smooth – – – – 1 

constant term -3.935 1.035 14.444 <0.001 

Degree of tumor differentiation 

rADC -0.228 2.046 0.012 0.911 0.80 (0.01,43.89) 

ADC -4.773 2.195 4.726 0.030 0.01 (0.00,0.63) 

Intra 
tumor necrosis 

yes 1.683 0.829 4.119 0.042 5.38 (1.06,27.34) 

no – – – – 1 

constant term 4.892 2.586 3.578 0.059 
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biological behavior in previous studies (22). To assess the 
repeatability and reliability of the extracted features, a random 
sample of 30 patients, representing approximately 25% of the total 
cohort, was selected. The radiologist repeated the segmentation 
process 45 days after the initial mapping to mitigate recall bias. 

2.7.2 Extraction and selection of radiomics 
features 

The Volume of Interest (VOI) is stored as a label map, and the 
image is resampled using a trilinear interpolation algorithm. To mitigate 
the effects of uneven spatial resolution, the new image resolution is 
standardized to 1x1x1 mm. The processed data were subsequently 
extracted using the open-source Python package Pyradiomics (version 
2.1.0). In total, 851 radiomics features were extracted from both the 
original and modified images of the T2-weighted imaging (T2WI) and 
diffusion-weighted imaging (DWI) sequences. These features include 
176 first-order statistical features, 11 shape features, 214 features derived 
from the GrayLevelCo-occurrenceMat-rix(GLCM),157 features from 
the GrayLevelRunLengthMatrix (GLRLM), 157 features from the 
GrayLevelSize-ZoneMatrix (GLSZM), and 136 features from 
the GrayLevelDependenceMatrix (GLDM). Z-score normalization 
was applied to the eigenvalues from the training set to ensure 
comparability of features across different dimensions. The mean and 
Frontiers in Oncology 06
standard deviation from the training set were subsequently used to 
normalize the values in the validation set. Subsequently, a three-step 
process was implemented for the selection of radiological features. 
Initially, the Intraclass Correlation Coefficient (ICC) was utilized to 
assess the consistency of radiomics features. Features exhibiting an ICC 
of 0.8 or greater were deemed highly repeatable and were retained for 
further analysis, whereas features demonstrating low repeatability were 
excluded. In the second step, the correlations between radiomics 
features within a single sequence (either T2WI-FS or DWI) were 
assessed using Spearman’s rank correlation analysis. Features with an 
absolute correlation coefficient (|r|) of 0.9 or higher were considered 
highly correlated. In instances of strong correlation, a single feature was 
randomly selected for further analysis, while the others were discarded. 
Finally, the Least Absolute Shrinkage and Selection Operator (LASSO) 
regression method was applied to the training set to identify optimized 
features with non-zero coefficients, employing 10-fold cross-validation. 
Figure 3 illustrates the screening process for radiomics features 
using LASSO. 

Identify the most predictive radiomics features through a 
feature selection process, develop a logistic regression model, and 
calculate the radiomics score (rad-score) using the model’s intercept 
and coefficients. Subsequently, utilize logistic regression machine 
learning algorithms to develop comprehensive radiomics models. 
FIGURE 2 

Radiomics analysis flow chart. From left to right, manual segmentation was performed to obtain voxel-based ROIs in 3D slices, radiomics features 
were extracted using pyradiomics software, features were selected using LASSO regression, and then models were developed, and diagnostic 
performance was evaluated using ROC analysis at the thickest. The pathological pictures of the results are: above is a light microscopic picture of 
highly differentiated tongue squamous cell carcinoma, and below is a light microscopic picture of poor-differentiated tongue squamous cell 
carcinoma. The staining method is HE staining, 40X. 
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2.8 Statistical analysis 

Statistical analyses were conducted utilizing IBM SPSS Statistics 
version 25.0, Python version 3.8, and R version 4.2.2. Continuous 
data following a normal distribution were summarized as the mean 
± standard deviation, with comparisons between two groups 
performed using the independent samples t-test. For continuous 
data not adhering to a normal distribution, the median along with 
the interquartile range (25th and 75th percentiles) was reported, 
and the Mann-Whitney U test was applied for group comparisons. 
Categorical data were expressed as frequencies and percentages, and 
group comparisons were conducted using the Chi-square test. In 
two-tailed tests with a significance level of a=0.05, a p-value of less 
than 0.05 was considered indicative of a statistically significant 
difference. The performance of each model was evaluated using an 
independent test set, with the area under the receiver operating 
characteristic curve (AUC) serving as the metric for assessment. 
Calibration and validation of the models were visualized using the 
“ggplot” package (version 4.1.2) in R, employing the Hosmer-

Lemeshow test for goodness-of-fit. 
3 Results 

3.1 Statistical analysis of clinical baseline 
and morphological variables 

Ultimately, a cohort of 119 eligible patients (median age: 57 years; 
age range: 58.98 ± 9.57 years; comprising 91 males and 28 females) 
Frontiers in Oncology 07 
was included in our study. Table 1 presents the clinical baseline data 
and statistical results of morphological variables of the cases in the 
training set(n=83). The training set consisted of 83 patients, with 34 
positive and 49 negative for lymph node metastasis, and included 29 
cases of high differentiation, 37 cases of moderate differentiation, and 
17 cases of poor differentiation. The validation set comprised 36 
patients, with 13 positive and 23 negative for lymph node metastasis, 
and included 12 cases of high differentiation, 16 cases of moderate 
differentiation, and 8 cases of poor differentiation. The results of 
single factor analysis of included variables are as follows: There were 
significant differences in depth of invasion (p < 0.001), tumor margin 
(p=0.012) and tumor thickness(p=0.002) between positive and 
negative groups. There is significant difference in rADC (p < 
0.001), ADC (p < 0.001), and intra tumor necrosis (p=0.005) 
between high-grade and low-level tumors in histopathology, while 
there is no significant difference in other clinical and MRI variables. 
3.2 Establishment of morphological model 

A multivariate logistic regression analysis was conducted on 
variables that showed significant differences in the single factor 
analysis to identify morphological predictors. The results of multi-

factor logistic regression analysis are shown in Table 3: In predicting 
tumor grade, focal ADC and intra tumor necrosis are independent 
risk factors. In predicting lymph node status, independent risk 
factors were tumor thickness and depth of invasion. The above 
variables were used to construct morphological models for 
predicting tumor grade and lymph node metastasis. 
FIGURE 3 

(A) LASSO regression was used to select the predictors of T2FS. (B) LASSO regression was used to select the predictors of DWI. Radiomics feature 
selection using LASSO regression algorithm. (A) Plot multiple deviations for log (l). The red dot represents the average deviation value of each model 
with a given l, and the vertical line is drawn using the minimum standard at the optimal value, where 12 features have non-zero coefficients. (B) 
LASSO coefficient distribution map of radiomics features. Each colored line represents the coefficient of each feature. LASSO, Minimum absolute 
shrinkage and selection operator. 
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3.3 Establishment of Rad-scores and 
radiomics models 

Following the radiomics analyses, the significant predictors of 
radiological effectiveness identified are: LargeDependenceLowGray 
LevelEmphasis,RunVariance,ClusterTendency,SumEntropy, 
Kurtosis,MajorAxisLength,SmallAreaEmphasis,LongRunLow 
GrayLevelEmphasis,and Entropy. These selected features are 
utilized in the computation of the  Rad-score,  with  the
corresponding Rad-score formula detailed as follows: 

3.3.1 T2FS radiomics features of predicting LNM 
The minimum LAM=0.000022, if we take 1 standard error, the 

coefficient of non-zero mod-el =0.1382144;Rad-score=­
2.690716859+LargeDependenceLowGrayLevelEmphasis*  
0.000534526+RunVariance*1.613346439 

3.3.2 T2FS radiomics features of predicting tumor 
differentiation degree 

The minimum LAM =0.000384, if 1 standard error is taken, the 
coefficient of non-zero model =0.03041584;Rad-score=11.5820663­
Clus te rTendency*4 .1606080  -8 .4650260*SumEntropy­

0.1002329*Kurtosis 

3.3.3 DWI radiomics features of predicting LNM 
The minimum LAM=0.00017, Rad-score=-1.78041927­

MajorAxisLength*0.01596566+ SmallAreaEmphasis* 0.22523289+ 
LongRunLowGrayLevelEmphasis* 0.10875230 

3.3.4 DWI radiomics features of predicting 
differentiation degree 

The minimum LAM =0.000029,if 1 standard error is taken,the 
coefficient of the model is not zero=0.2011348;Rad-score=-0.8379462 
+Entropy*0.9363819 + 0.2464287*LongRunLowGrayLe-velEmphasis 

Following the acquisition of the Rad-scores, radiomics models, 
as well as combined models, were developed to predict tumor grade 
and lymph node metastasis. 
3.4 Establishment and verification of 
combined model 

Upon completing the aforementioned steps, we integrated 
morphological predictors with Rad-scores to develop two 
nomogram models using multifactor logistic regression. This 
model aims to furnish clinicians with personalized quantitative 
prediction tools (Figure 4). Simultaneously, a pairwise comparison 
was conducted to assess the predictive efficacy among the combined 
model, the radiomics model, and the morphological model 
(Table 4). In addition to calculating the Area Under the Curve 
(AUC), calibration and Hosmer-Lemeshow tests were also 
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performed in this study (Figures 5, 6). Ultimately, Decision Curve 
Analysis (DCA) was employed to evaluate the net benefits across 
various threshold probabilities, thereby determining the clinical 
relevance of the nomogram (Figure 7). 
3.5 Performance evaluation of the models 

The accuracy, sensitivity, specificity, positive predictive value 
(PPV), and negative predictive value (NPV) of each model are 
presented in Table 5. Regarding tumor grade prediction, the area 
under the curve (AUC) for the radiomics models (comprising the 
DWI radiomics model and the T2FS radiomics model) ranged from 
0.81 to 0.82 in the training set and from 0.69 to 0.78 in the 
validation set. In contrast, the morphological model exhibited an 
AUC of 0.78 in the training set. The combined model demonstrated 
AUCs (95% CI: 0.90, 0.99) in the training set and 0.87 (95% CI: 0.76, 
0.98) in the validation set. The results of the AUC DeLong test, 
indicate that in the training set, the differences between the 
combined model and the other models were statistically 
significant (p = 0.001-0.005). In the verification set, the combined 
model was significantly different from the T2FS radiomics model 
(0.87 vs 0.77, p=0.041) and Morphological model (0.87 vs 0.62, 
p=0.027) showed statistically significant differences in AUC. In 
terms of predicting lymph node status, the AUC of the radiomics 
model was 0.81 in the training set and 0.74-0.79 in the validation 
set, the AUC of the morphological model was 0.77 in the training 
set and 0.74 in the validation set, and the AUC of the combined 
model was 0.92 in the training set and the validation set, 
respectively (95 CI: 0.87,0.98), 0.90(95 CI: 0.84,0.97); AUC Delong 
test among models showed that in the training set, the difference 
between the combined model and other models was statistically 
significant (p=0.001-0.013). In the verification set, the combined 
model was significantly different from the T2FS radiomics model 
(0.90 vs 0.74, p=0.048) and Morphological model (0.90 vs 0.74, 
p=0.026) showed statistically significant differences in AUC. ROC 
curves of each prediction model in the training set and verification 
set are shown in Figure 6. 
3.6 Clinical benefit analysis of nomogram 

Decision curve analysis (DCA) of nomograms used to predict 
lymph node status and degree of tumor differentiation was 
performed to demonstrate the practicability of these models in 
clinical practice by testing them in training sets (23). As shown in 
Figure 7, within a certain threshold range, the use of combined 
model, radiomics model and clinical model for prediction has a 
higher benefit than the all-treatment strategy or no-treatment 
strategy that is more common in clinical work, among which the 
combined model has the highest benefit. 
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4 Discussion 

This study comprehensively investigated the role of MRI-based 
morphological factors in predicting the degree of tumor 
differentiation and lymph node metastasis in OSCC, and developed 
and validated three non-surgical evaluation models. Among them, 
the combined model combining rad-scores and morphological 
features has the best effect. In addition, calibration curves showed a 
high degree of agreement between predicted outcomes and actual 
outcomes, and decision curve analysis (DCA) showed greater clinical 
benefit in assessing the risk of these outcomes using a combined 
model compared to universal treatment or no treatment. Since all the 
information required in the nomogram can be obtained from 
preoperative magnetic resonance images, compared with other 
combined models, this study greatly improves convenience while 
ensuring diagnostic accuracy. It is believed that in future cancer 
diagnosis and treatment, this study can provide clinicians with more 
options for preoperative non-invasive assessment of OSCC. 
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The degree of tumor differentiation and lymph node status 
correspond to different treatment methods in patients (24, 25). 
Kademani et al. (26) even pointed out that tumor histological 
grading is an independent factor in predicting prognostic survival 
in patients with OSCC. Each grade reduction in survival rate is 
about 44%. Compared with highly differentiated tumors, low to 
medium differentiated tumors were more likely to invade peripheral 
nerve vessels (27), and the overall survival rate in the low to medium 
differentiated group was significantly lower than that in the high 
differentiated group. Therefore, some researchers advocate that in 
radical OSCC surgery, the resection range of hypodifferentiated 
tumors should be expanded within the range allowed by head and 
neck reconstruction surgery (28, 29). Fine needle-aspiration 
cytology (FNA) is the most commonly used evaluation tool 
before surgery for head and neck tumors (30, 31). However, in 
clinical practice, FNA also has defects such as diagnostic effects 
being affected by operator technology, as well as poor evaluation of 
overall heterogeneity of tumors due to small sampling volume of 
FIGURE 4 

Based on the predictors, nomograms were developed to estimate LNM and tumor grading within the training cohort. (A) the nomogram of 
predicting tumor differentiation degree (B) the nomogram of predicting LNM. 
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TABLE 4 Diagnostic performance of different models. 

Model AUC (95%CI) Sensitivity,% Specificity,% PPV,% NPV,% Accuracy,% 

Tumor grading 

DWI radiomics model 
Training cohort 0.81(0.69-0.93) 0.944 0.586 0.810 0.850 0.819 

Validation cohort 0.69(0.50-0.88) 0.905 0.533 0.731 0.800 0.750 

T2FS radiomics model 
Training cohort 0.82(0.74,0.91) 0.815 0.586 0.786 0.630 0.735 

Validation cohort 0.77(0.62,0.92) 0.571 0.800 0.800 0.571 0.667 

Morphological model 
Training cohort 0.78(0.67,0.88) 0.852 0.552 0.780 0.667 0.747 

Validation cohort 0.62(0.42,0.82) 0.857 0.457 0.692 0.700 0.694 

Nomogram model 
Training cohort 0.95(0.90,0.99) 0.963 0.793 0.897 0.920 0.904 

Validation cohort 0.87(0.76,0.98) 0.762 0.667 0.762 0.667 0.722 

Lymph node status 

DWI radiomics model 
Training cohort 0.81(0.72,0.90) 0.559 0.857 0.731 0.737 0.735 

Validation cohort 0.79(0.64,0.94) 0.789 0.647 0.714 0.733 0.720 

T2FS radiomics model 
Training cohort 0.81(0.72,0.90) 0.647 0.735 0.629 0.750 0.699 

Validation cohort 0.74(0.58,0.91) 0.789 0.588 0.682 0.714 0.694 

Morphological model 
Training cohort 0.77(0.67,0.88) 0.618 0.796 0.677 0.750 0.723 

Validation cohort 0.74(0.58,0.91) 0.684 0.706 0.722 0.667 0.694 

Nomogram model 
Training cohort 0.92(0.87,0.98) 0.765 0.878 0.812 0.843 0.831 

Validation cohort 0.90(0.84,0.97) 0.842 0.765 0.800 0.812 0.806 
F
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FIGURE 5 

(A) The nomogram of predicting tumor differentiation degree. (B) The nomogram of predicting LNM. The calibration curve of the prediction model 
in the training (a) and validation (b) sets; the horizontal axis represents the predicted probability, and the vertical axis represents the actual 
probability. 
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tumor tissues (28, 30). The emergence of radiomics analysis 
provides new ideas for solving this problem. 

After 2019, the value of radiomics in predicting the degree of 
tumor differentiation has been increasingly verified: Yu et al. (32) 
achieved the prediction of the degree of tumor differentiation of 
tongue cancer through texture analysis of T2FS images, and the 
AUC for predicting highly differentiated tumors (G1) in the 
verification set is as high as 0.81, and the diagnostic performance 
is good. Ren J et al. (33) performed radiomic analysis of T2 and T1 
enhanced images of 80 OSCC patients. In this study, Ren discussed 
the impact of different classifiers on the diagnostic performance of 
radiomics models. Due to their small research samples (n=80), they 
used synthetic minority oversampling technology (SMOTE) for 
sample expansion, the AUC of LR reached 0.90. In addition to the 
study of MRI, Li Z et al. (34) also used a nomogram method based 
on dual energy CT images to predict the degree of tumor 
Frontiers in Oncology 11 
differentiation of squamous cell carcinoma (HNSCC) in head and 
neck. The AUCs of the training set and the validation set are >0.9, 
further confirming that the joint multifactor model is a reliable tool 
for predicting tumor information. 

Lymph node metastasis is one of the factors that affect the 
prognosis of head and neck tumors, and is also an important 
indicator that reflects the degree of tumor spread and invasion 
(7). In the early stages of the disease, occult lymph node metastasis 
is a key issue in lymph node management strategies, and its missed 
diagnosis will cause patients to miss the optimal treatment period 
and reduce life expectancy (35). When the T phase progressed, a 
multicenter study (35) found that the regional/distant control rate, 
tumor-free survival (DFS), and overall survival (OS) of pN0 patients 
were significantly better than that of the positive group. However, 
lymph node conditions are difficult to detect through clinical 
palpation and traditional imaging examinations, and their 
FIGURE 6 

the AUC-ROC curves of predictive nomograms in the training set and the validation set. 
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diagnosis depends on pathological examinations. Imaging omics 
can extract biomarkers in medical images at high throughput and 
can effectively predict the status of preoperative lymph nodes (36– 
40). Romeo V et al. (41) demonstrated that imagingomic analysis 
based on primary tumor lesions can predict tumor grade and lymph 
node status of oropharyngeal and oral squamous cell carcinoma 
based on enhanced CT images. They further discussed the 
performance of different classifiers, and finally determined that 
NB, KNN and J48 had good performance: the model predicted 
tumor grading accuracy to 0.92, and the prediction of lymph node 
state accuracy to exceed 0.90. However, the sample size of Romeo V 
et al. is small. This study is small in size (n=40) and more samples 
are needed to improve feasibility. On the other hand, although the 
application of various algorithms in prediction was discussed, the 
optimal model was not determined. In 2022, Wang et al. (42) 
combined extended pathological information in different peritum 
ranges (3mm, 5mm, 10mm, 15mm) with radiomics to establish a 
joint clinical pathological model. The final CRprim+10 predicted the 
best results (AUC = 0.995). In the lymph node-negative subgroup, 
Frontiers in Oncology 12 
CRprim+10 predicted an AUC of 0.883, indicating that DOI and t2fs­
based radiomics predicted OSCC and even occult lymph node 
status with good performance. 

Compared with CT, MRI has the characteristics of multi-

sequence imaging, and its combination with radiomics gives 
greater preoperative prediction potential (43). The patient’s x-ray 
damage is avoided while achieving accurate predictions. The 
conventional MRI sequence ensures the availability of basic 
information such as tumor profile and texture characteristics, 
while functional sequences such as DWI further supplement 
other information inside the lesion. For example, tumors with 
high malignancy are limited by rapid growth rate and dense cell 
arrangement, thus showing significant differences in DWI 
compared with low malignant tumors. T2WI can better reflect 
the detailed characteristics of signal changes, textures and other 
aspects of different parts of the tumor, and thus perform well in 
predicting internal heterogeneity of the tumor (44). Tumors of 
different malignant degrees will show significant differences when 
undergoing radiomic analysis. For example, the histogram features 
FIGURE 7 

Decision curve analysis for evaluating predictive models. (a) the nomogram of predicting LNM (b) the nomogram of predicting degree of tumor 
differentiation. 
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describe the overall distribution of grayscale in the ROI (45), texture 
analysis further describes the differences in the distribution of 
grayscale values in the image (46). Morphological characteristics, 
first-order characteristics, texture characteristics and higher-level 
characteristics can fully reflect the differences between different 
pathological information and achieve prediction results. Our results 
confirm this: nomograms have excellent results for both lymph 
node metastasis and tumor differentiation AUCs >0.9. 

As people’s understanding of OSCC continues to deepen, 
researchers have found that morphological factors are important 
basis for predicting adverse outcomes in patients (18, 47, 48). 
Moreover, the morphological data obtained based on MRI image 
measurement has a good numerical correlation with histopathology 
(49), although its numerical value is slightly larger than the 
numerical value measured by histopathology, because formalin 
causes oral tissue to contract (50). The study by Jangir NK et al. 
(47) suggests that as DOI increases, the probability of lymph node 
metastasis gradually increases. In our study, the T2FS-based DOI 
was higher than other histopathological studies and slightly higher 
than the DOI measured by e-THRIVE in the Jangir NK study 
because the T2FS sequence is more susceptible to peritum edema, 
causing the measurement to exceed the actual tumor boundary. 
Mourad  M  et  al.  (35)found  that  tongue  distance  and  
tumor thickness were related to local lymph node metastasis 
of tongue cancer, but were not related to the ADC value of 
the lesion itself (p=0.518) or tumor volume size; the results of this 
study were similar. Morphological factors based on image images 
have the advantages of being convenient and easy to measure. 
Frontiers in Oncology 13 
We hope that more meaningful features will be discovered in 
future research to further improve the performance of the 
diagnostic model. 

This study has some limitations. Firstly, it is a single-center 
retrospective study with a relatively small sample size, which poses a 
risk of overfitting. In future studies, we will include image data from 
other hospitals to further verify the reliability and generalization of 
the nomogram. The second is the heterogeneity caused by the 
location of the lesions: what are the most meaningful morphological 
features corresponding to each subspecies of OSCCs, which needs 
further study. In future cohort studies, we will seek to answer this 
question further if we include sufficient sample sizes of cancers at all 
four sites. Finally, due to the limitations of our institutional research 
conditions, we only conducted a binary discussion on pathological 
differentiation information without conducting more detailed 
studies. When the relevant research conditions in our campus are 
complete in the future, we will dig deeper into the pathological 
information inside the tumor. 
5 Conclusion 

In this study, we proposed a nomogram based on various 
morphological features and radiomics of magnetic resonance 
tumor images to noninvasively predict the lymph node metastasis 
and tumor grade of oral squamous cell carcinoma before surgery. 
Both nomogram models were predicted to have good diagnostic 
performance (AUC values of 0.90 and 0.87, respectively, in the 
TABLE 5 Delong test of different models’ AUC. 

Model Nomogram model DWI Radiomics 
model 

T2FS Radiomics 
model 

Tumor differentiation degree 

Training cohort 

DWI radiomics model 0.005 

T2FS radiomics model 0.003 0.869 

Morphological model 0.001 0.636 0.515 

Validation cohort 

DWI radiomics model 0.093 

T2FS radiomics model 0.041 0.535 

Morphological model 0.027 0.639 0.261 

Lymph node status 

Training cohort 

DWI radiomics model 0.013 

T2FS radiomics model 0.004 0.976 

Morphological model <0.001 0.597 0.523 

Validation cohort 

DWI radiomics model 0.077 

T2FS radiomics model 0.048 0.713 

Morphological model 0.026 0.611 0.990 
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validation cohort). The results show that the combined model 
proposed in this study can help clinicians accurately evaluate the 
patient’s condition before surgery, select the best surgical strategy, 
and thus improve the patient’s prognosis. 
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