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Introduction: Colorectal cancer is associated with a generally poor prognosis,

primarily due to its often late diagnosis and the high propensity for liver

metastasis. Current treatment strategies emphasize personalized approaches,

integrating advanced targeted therapies based on specific molecular profiles

to enhance outcomes. Continued research into molecular targets and

innovative treatments is crucial for improving survival rates and managing

disease progression.

Methods: We retrieved single-cell transcriptomic and bulk RNA-seq data from

colorectal cancer samples in the GEO and TCGA databases. The analysis focused

on changes in pathway and gene expression in epithelial cells during the

metastatic progression. A prognostic risk model was developed based on

differentially expressed genes, and experimental validation confirmed the

differential expression of prognostic-related genes in colorectal cancer tissues.

Results: During the process of liver metastasis in colorectal cancer, the

interaction between MIF and its receptors, CD74 and CXCR4, is markedly

intensified, promoting tumor cell invasion and migration. The expression levels

of TPM2, RPS17, and TNNT1 were significantly elevated, while SPINK4 expression

was reduced in the epithelial cells of colorectal cancer with liver metastasis.

These findings were further validated experimentally. A prognostic model based

on these genes predicted patients’ overall survival at 1, 3, and 5 years.

Discussion: During liver metastasis in colorectal cancer, the expression levels of

TPM2, RPS17, and TNNT1 were significantly elevated, SPINK4 expression was

reduced in the epithelial cells. Furthermore, the interaction between the MIF

pathway and its ligands, CD74/CXCR4, may play a important role in promoting

tumor metastasis.
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1 Introduction

Colorectal cancer is a significant cause of both morbidity and

mortality worldwide. By 2040, projections estimate that the

incidence and mortality rates will rise to 3.2 million and 1.6

million cases, respectively (1). Liver metastasis is an important

clinical feature of colorectal cancer and leads to an inferior

prognosis. The five-year survival rate for patients with non-

metastatic colorectal cancer is around 60%. In contrast, for

metastatic colorectal cancer, particularly in stage IV cases with

liver metastasis, the five-year survival rate drastically decreases to

about 12% (2).Treatment for liver-metastatic colorectal cancer

typically involves a combination of surgery, systemic therapies,

and targeted liver treatments. Unfortunately, around 40%-50% of

these patients are inoperable at the time of diagnosis, leaving

palliative chemotherapy as the only treatment option. Introducing

innovative targeted therapies has become crucial in the

personalized, comprehensive management of colorectal cancer (3).

According to a meta-analysis, for patients with unresectable liver-

metastatic colorectal cancer, combining chemotherapy with targeted

therapies increases the overall response rate to 68%, compared to 43%

with chemotherapy alone (4). In current clinical practice, primary

treatments for these patients include anti-epidermal growth factor

receptor (anti-EGFR) antibodies and anti-vascular endothelial

growth factor (anti-VEGF) antibodies, such as cetuximab and

panitumumab, which are known to provide additional survival

benefits (5–7). Research by Modest and colleagues has

demonstrated that KRAS-targeted therapies can lead to early tumor

shrinkage rates exceeding 20%, significantly improving disease-free

and overall survival (8). Targeting the CLDN1 gene has been shown

to reduce colorectal cancer cell growth and survival, effectively

inhibiting cell proliferation and migration (9). Moreover, Yuan-

Hong Xie’s research indicates that overexpression of the MET and

HGF genes is associated with poor prognosis in colorectal cancer

patients. Additionally, interactions between MET and EGFR can

result in compensatory activation of one receptor when the other is

inhibited, suggesting that MET may play a role in resistance to EGFR

inhibitors (10). Identifying additional critical pathways and genes,

along with developing therapeutics targeting these areas, is essential

for improving the prognosis of colorectal cancer patients and

reducing the incidence of metastases.

In recent years, the advancement of single-cell sequencing

technologies has led to a growing number of studies integrating

scRNA-seq and bulk RNA-seq data to develop prognostic models

for colorectal cancer (11). These studies have substantially propelled

progress in translational research within this domain. The

progression of colorectal cancer typically follows a continuous

trajectory, moving from normal tissue to malignancy and

eventually to metastasis. This document highlights research into

the essential biological processes involved in tumor development,

starting with single-cell transcriptomic analyses, focusing on

examining and comparing the significant changes in genes,

pathways, and metabolic processes in primary colorectal cancer
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tissues with or without liver metastasis. Additionally, it explores

prognosis-associated genes in epithelial tissues. It constructs a

prognostic model, offering valuable insights into the malignant

evolution of colorectal cancer and helping to inform clinical

treatment strategies.
2 Materials and methods

2.1 Clustering and marker gene
identification in single-cell data

The single-cell transcriptomic data was sourced from the GEO

database hosted by the NCBI website. This research specifically

utilized data from GSE161277 and GSE178318, following the

clinical information provided for each patient cohort (12, 13).

The GSE161277 dataset includes samples of normal and non-

metastatic colorectal cancer tissues, while the GSE178318 dataset

contains samples from metastatic colorectal cancer and liver

metastases. We analyzed a total of 19 samples, including 3

Normal, 4 Colorectal Cancer, 6 Colorectal Cancer with Metastasis

to the Liver, and 6 Liver Metastasis, with 9,000 cells randomly

selected from each sample for downstream analyses. Data

integration across different disease states was achieved using the

Read 10x and CreatSeuratObject packages, with genes showing low

expression levels (defined as expression in at least three cells with a

count exceeding 200) excluded (14).

The raw data quality was controlled using R software version

4.2.3, which excluded cells where mitochondrial gene ratios

exceeded 20% and erythrocyte gene ratios exceeded 3%. After

normalization, the filtered data were analyzed to identify highly

variable genes. The Harmony package eliminated batch effects and

performed principal component analysis (PCA) (15). The elbow

plot function was used to select the top 20 principal components for

analysis, with a resolution of 0.5 set for clustering. Differentially

expressed genes (DEGs) among different cell types were identified

using the Wilcoxon rank sum test via the “FindMarkers” function.

Statistically significant genes were defined as those with a

Bonferroni-corrected p-value below 0.05. Genes with a log-fold

change (logFC) greater than one were selected, indicating that their

average expression level within the cluster was more than double

that of other clusters. Cell types within each cluster were annotated

using established marker genes (16–21).
2.2 Gene ontologyand kyoto encyclopedia
of genes and genomes functional
enrichment analysis

The cluster profile package in R was used for GO and KEGG

pathway enrichment analyses (22). These analyses were performed

with a log-fold change (logFC) threshold of 1, focusing on pathways

with P-values below 0.05.
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2.3 Prognostic model construction based
on TCGA and GEO cohorts

RNA-seq count data from colorectal cancer patients were

downloaded from the official TCGA site. These counts were

converted into transcripts per million (TPM) to normalize

marker gene expression levels across patients. The Cox

proportional hazards model was applied to assess the relationship

between key genes and overall survival, considering age, sex, tumor

staging, and risk scores (23). After removing duplicate entries and

excluding cases with incomplete clinical information, prior

radiotherapy or chemotherapy, concurrent malignancies, or

missing survival data, a total of 515 patients were included in the

analysis and designated as the training cohort for prognostic model

development. In parallel, transcriptomic and clinical data from the

GSE12945 and GSE29623 datasets in the Gene Expression Omnibus

(GEO) database were retrieved. Applying the same inclusion and

exclusion criteria, 127 samples were included as the

validation cohort.
2.4 Analysis of single-cell trajectories

Single-cell trajectories were constructed using the Monocle2 R

package, with the orderCells function used to sequence the cells

(24). This approach provided insights into the continuity of cellular

state transitions, resulting in a time-oriented dendrogram.

Generally, the progression from the dendrogram’s root to its

branches represents the flow of time, with cells along this timeline

exhibiting distinct states, possibly including various subgroups.
2.5 Cell-cell communication analysis

CellChat was employed to infer cellular communications from

single-cell RNA data. This analysis identified the signaling

molecules and receptors involved, quantified the interaction

strengths between cells, and highlighted key nodes and pathways

within the communication network (25).
2.6 Human tumor specimens

The Shandong University Qilu Hospital system procured tumor

specimens from ten patients diagnosed with colorectal cancer, five

of whom also had liver metastases. Importantly, none of these

individuals had undergone any pre-surgical treatments, including

radiotherapy, chemotherapy, or immunotherapy. After collection,

each tumor specimen was carefully preserved at -80 °C. Diagnostic

evaluations were conducted by two pathologists, both highly

experienced in their field. Comprehensive clinical data were

gathered for all enrolled patients, and informed consent was
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obtained from each participant. The ethical integrity of this study

was approved by the Ethics Committee of Qilu Hospital of

Shandong University, ensuring that all procedures strictly

followed the principles outlined in the Declaration of Helsinki.
2.7 Western blotting

Cellular proteins were extracted using a DSS lysis buffer

containing protease and phosphatase inhibitors. Protein

concentrations were quantified using a BCA assay kit, and

samples were separated on an SDS-PAGE gel. The proteins were

then electrophoretically transferred to a PVDF membrane. After

blocking with skim milk for one hour, the membrane was washed

three times with TBST and incubated overnight at 4 °C with the

primary antibody. Following three additional washes with TBST,

the membrane was incubated at room temperature for one hour

with the secondary antibody. Bands were visualized using

chemiluminescent detection reagents. The antibodies used were:

Rabbit anti-SPINK4 from Abcam (catalog #AB175929) at a 1:2000

dilution, Rabbit anti-RPS17 from Abclonal (catalog #A16426) at a

1:1000 dilution, Rabbit anti-TNNT1 from Abclonal (catalog

#A10354) at a 1:1000 dilution, Rabbit anti-TPM2 from Abclonal

(catalog #A3096) at a 1:700 dilution, and Mouse anti-GAPDH from

Proteintech (catalog #60004-1-Ig) at a 1:5000 dilution.
2.8 Immunohistochemical staining

Cancer tissues were fixed overnight in a 4% formaldehyde

solution, followed by embedding and sectioning. The sections

were deparaffinized with xylene and rehydrated through a graded

series of ethanol solutions. After antigen retrieval and blocking, the

sections were incubated with the primary antibody, followed by

washes of TBST. They were then incubated with the secondary

antibody and stained with hematoxylin to visualize the nuclei.

Microscopic examination of the stained sections provided insights

into the expression and distribution of the protein. The antibodies

used in this study included Rabbit anti-TPM2 from Abclonal

(catalog #A3096) at a 1:100 dilution, Rabbit anti-RPS17 from

Abclonal (catalog #A16426) at a 1:100 dilution, Rabbit anti-

TNNT1 from Bioss (catalog #bs-10616R) at a 1:200 dilution, and

Rabbit anti-SPINK4 from Immunoway (catalog #YN3682) at a

1:100 dilution.
2.9 Statistical analysis

All single-cell data analyses and statistical tests were conducted

using the R programming language. Statistical significance was

defined as a p-value below 0.05. Cox regression was employed for

survival analysis to develop predictive models.
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3 Results

3.1 Single-cell atlas and cell lineage
annotation in colorectal cancer tissue

Based on single-cell transcriptomic analysis of four tissue

samples, namely NOR(Normal), CRC(Colorectal Cancer), CRCM

(Colorectal Cancer with Metastasis to the Liver), and LM(Liver

Metastasis), the results show uniformManifold Approximation and

Projection (UMAP) clustering identified 16 distinct clusters

(Supplementary Figure 1A). Analyzing sample identifiers within

the dataset confirmed the successful mitigation of batch effects

(Supplementary Figure 1B). We categorized all cells into seven main

types: epithelial cells, T cells, B cells, macrophages, plasma cells,

fibroblasts, mast cells (Figure 1A), and each cluster’s cell type was

annotated using canonical marker genes (Figure 1B).

Further analyses focused on the cell populations at the primary

sites of colorectal cancer (both CRC and CRCM) to identify cellular

and genetic changes during the metastatic process. Cells were

reanalyzed using the standard Seurat pipeline, resulting in 18 clusters

(Supplementary Figure 1C). Seven cell types were identified

(Figure 1C), and each cluster was annotated using canonical marker

genes to classify the cell types (Figure 1D). Cells from both sources were

evenly mixed, indicating successful elimination of batch effects

(Supplementary Figure 1D). Cluster 13, initially grouped with

epithelial cell markers, was reclassified as a T cell type based on gene

markers from a bubble plot. Spearman’s correlations between clusters

were calculated, and a heatmap revealed a close relationship between

Cluster 13 and Clusters 0 and 1 (Figure 1E). Non-negative least squares

regression was used to explore correlations between all cells and the

CRC&CRCM cells clusters, further detailing the relationships among

cluster subtypes (26). A heatmap demonstrated that Cluster 13,

Clusters 0 and 1 are closely associated with C0(Tcell) in the overall

dataset, predominantly composed of T cells, confirming that Cluster 13

is likely made up of T cells rather than epithelial cells (Figure 1F). The

cell proportion diagram shows that T and epithelial cells are the

predominant cell types across all samples (Figure 1G). Notably, from

non-metastatic colorectal cancer to metastatic states and liver

metastases, there is a progressive increase in T cells, accompanied by

a decrease in epithelial and B cells. In recent years, accumulating

evidence has highlighted the pivotal role of the tumor immune

microenvironment and the dynamic shifts in immune cell

populations in the initiation and progression of colorectal cancer (27,

28), the tumor microenvironment exerts a profound influence on the

recruitment and activation of tumor-infiltrating lymphocytes, which

may underlie the observed immune cell alterations across different

disease stages (29).

3.2 The prognostic risk-scoring signature
predicted that the expression of four genes
was strongly correlated with the patient’s
prognosis

Using R’s FindMarkers function, differential gene expression

among various cell types in CRC and CRCM samples was analyzed,
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focusing on the differing pathological conditions of the samples.

This function helps identify genes that show significant expression

differences between two groups. The thresholds for identifying

significant differential expression were set at p < 0.05 and log fold

change (log FC) > 1. Differentially expressed genes (DEGs) were

identified for each cell type, with particular attention given to the

top five upregulated and downregulated genes (Figure 2A). In the

comparative analysis of epithelial cells from two different sample

sets, 243 DEGs were identified. A detailed Gene Ontology (GO)

enrichment analysis was then performed to explore changes in

colorectal cancer tissue states post-metastasis. The results showed

that the related genes were primarily enriched in pathways involved

in inflammatory processes, metabolic functions, cell proliferation,

migration, and specific enzymatic activities (Figure 2B).

Additionally, the AUCell algorithm was used to quantify changes

in pathway activities related to colorectal cancer tissues before and

after metastasis (30). This analysis highlighted a significant increase

in pathway activities associated with inflammation, metabolism, cell

proliferation, migration, and responses to external stimuli during

the metastatic transition (Supplementary Figure 2). Gene Set

Enrichment Analysis (GSEA) revealed multiple pathways

significantly enriched in metastatic colorectal cancer lesions

compared to non-metastatic lesions (Supplementary Figure 3).

The figures illustrate that a sharp rise in the enrichment score

(ES) curves indicates a coordinated upregulation of gene sets in

metastatic colorectal cancer samples, while a gradual decline

indicates downregulation.

A prognostic analysis model was developed for the 243

differentially expressed genes (DEGs) identified in epithelial cells.

CRC expression data from GSE12945 and GSE29623 in the GEO

database were downloaded and merged after eliminating batch

effects for validation (31, 32). The training set utilized FPKM and

clinical data from the TCGA database, excluding samples with an

overall survival (OS) of zero. The integration of GEO and TCGA

databases narrowed the list to 198 DEGs for further analysis.

Univariate analysis identified 15 prognosis-related DRGs

(Figure 3A), which were subjected to multivariate Cox regression

analysis, hazard ratios (HRs) were visualized using a forest plot.

Next, a RS(Risk Score) signature of four DEGs (TPM2, RPS17,

TNNT1, and SPINK4) was created. Next, the RS of each sample was

computed based on relative coefficient and DEGs expression. RS

was calculated as follows: RS=(0.163822904780406)* expression of

TPM2+(0.19795829828391)* expression of. RPS17+(0.14008

4452797051)* expression of TNNT1+(-0.0845093126747071)*

expression of SPINK4. The TCGA dataset was used to train the

model, which calculates patient risk scores based on gene

expression. Patients were classified into high-risk and low-risk

groups using RS median through a Cox regression prognostic

model. The same median was applied to the GEO dataset for

validation, segmenting patients into high- and low-risk groups.

The training cohort comprised 515 patients, with 257 classified as

high-risk and 258 as low-risk. The validation cohort consisted of

127 patients, including 71 high-risk and 56 low-risk cases. Survival

curves were plotted for the training and validation sets to assess

prognostic differences between the high-risk and low-risk groups.
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FIGURE 1

Single-cell atlas of colorectal cancer tissue. (A) Annotations for seven different types of cells in the tissue samples of NOR, CRC, CRCM, and LM.
(B) Bubble chart annotating marker genes corresponding to the four tissue types to characterize cell types. (C) Annotations for seven different cell
types in the tissue samples of CRC and CRCM. (D) Bubble chart marking marker genes for the two tissue types to annotate cell types. (E) Cluster13
has high similarity with cluster1 and cluster0. (F) Non-negative least squares calculations suggest that cluster 13(C13), cluster0(C0), cluster1(C1) share
similar cellular properties with clusters0(T cell), identifying them as T immune cells. (G) Distribution of various cell types across the four tissue
samples.
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FIGURE 2

Analysis of differences between CRC and CRCM tissues. (A) The differential genes among seven different cell types in two types of tissue, marking
the top five upregulated and downregulated genes. (B) The Gene Ontology (GO) pathways enriched by differential genes, predominantly associated
with inflammation, metabolism, and proliferation migration. (C) The changes in metabolic activity across seven cell types in two tumor samples.
(D) UMAP plots of epithelial cells from the two samples.
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FIGURE 3

Prognostic analysis of differentially expressed genes in epithelial cells. (A) Forest plot displaying prognostically significant genes identified from the
training cohorts. (B) The differential survival rates between high-risk and low-risk groups across the validation and training cohorts. (C) Computes
the area under the ROC curve for the survival model in both the validation and training sets, assessing predictive performance. (D) Forest plots for
univariate and multivariate prognostic analyses, respectively, highlighting the influence of various factors on outcomes. (E) Nomogram to estimate
the 1-year, 3-year, and 5-year survival probabilities based on identified risk factors. (F) Calibration curve evaluating the predictive accuracy of the
survival analysis model.
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In the training set, significant prognostic differences were observed

between the two groups (p < 0.001) (Figure 3B left). Similarly, in the

validation set, the prognosis for high-risk patients was notably

worse compared to the low-risk group (p < 0.05) (Figure 3B

right). The model’s predictive performance was further validated

using the area under the ROC curve (AUC), with AUC values of

0.676, 0.665, and 0.685 in the training set and 0.698, 0.626, and

0.661, in the validation set (Figure 3C). These metrics demonstrate

the model’s substantial predictive accuracy.

Univariate and multivariate prognostic analyses using clinical

data and risk scores from the TCGA database were conducted to

identify risk factors impacting patient survival. These analyses

revealed significant associations between age, cancer staging, and

risk scores with survival rates (p < 0.001), underscoring the

statistical significance and independent prognostic value of the

risk score (Figure 3D). The cohort consisted of 84 patients with

stage I disease, 190 patients with stage II disease, and 123 patients

with stage III disease. A predictive nomogram was developed based

on the identified prognostic factors to estimate survival probabilities

for patients with metastatic colorectal cancer (Figure 3E). The
Frontiers in Oncology 08
nomogram consists of eight axes; the first four represent the

variables of the predictive model. A vertical line drawn across

these axes allows for calculating the risk score for each factor by

summing the individual scores. The last three axes indicate one-

year, three-year, and five-year survival probabilities. Calibration

curves showed a strong correlation between the predicted and

observed survival rates, validating the nomogram’s accuracy in

predicting patient outcomes (Figure 3F).

Western blot analysis revealed higher expression levels of

TPM2, RPS17, and TNNT1 genes in CRCM tissues compared to

primary CRC, whereas SPINK4 expression was slightly reduced in

CRCM tissues (Figures 4A, B). Immunohistochemical experiments

were conducted to confirm further these genes’ distribution and

expression in cancer tissues. The results demonstrated significantly

increased expression of RPS17 and TNNT1 in CRCM tissue

samples compared to CRC tissues. Changes in TPM2 expression

were less pronounced, possibly due to limited sample size, which

did not yield statistically significant differences. Additionally,

SPINK4 expression showed a declining trend in CRCM tissues,

corroborating the Western blot findings (Figure 4C).
FIGURE 4

Verification of differentially expressed genes expression in tumor tissues. (A, B) The comparative protein expression levels of four high-risk
prognostic genes in CRC and CRCM tissues. (C) Immunohistochemistry detailing the distribution and expression intensity of four genes (10×20).
*Indicates that the difference is statistically significant (P < 0.05)
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FIGURE 5

Epithelial cell pseudo-time analysis. (A) The developmental trajectories of cells and the distribution of cells from two sample states in the pseudo-
time analysis. (B) The expression distribution of the RPS17, SPINK4, TNNT1, and TPM2 genes across two different tissue samples and three states.
(C) The expression changes of four genes along a pseudo-time trajectory. (D) Comparative analysis of copy number variations (CNV) in epithelial
cells between CRC, CRCM, and NOR samples.
Frontiers in Oncology frontiersin.org09

https://doi.org/10.3389/fonc.2025.1588514
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Cao et al. 10.3389/fonc.2025.1588514
3.3 Pseudotime analysis revealed changes
in the expression of four genes as the
disease progressed

Trajectory analysis of epithelial cells from colorectal cancer,

with and without metastasis, was conducted. Using Monocle2, the

cell trajectories were divided into three distinct states, outlining the

differentiation paths of these cells following dimensionality

reduction clustering. The epithelial cell differentiation trajectory

branches off from the main fork, extending from the upper left

toward the right in the figure (Figure 5A upper).In the pseudotime

analysis, States 1 and 2 correspond to non-metastatic colorectal

cancer cells, while State 3 includes both metastatic and non-

metastatic cells (Figure 5A lower).

Subsequent studies explored the transcriptomic variations of

differentially expressed genes (DEGs) during epithelial cell

differentiation. We focused on four genes with significant

prognostic relevance, tracking their dynamic changes throughout

this process. The expression levels of TPM2, RPS17, and TNNT1

progressively increased during the progression and metastasis of

colorectal cancer (CRC); in contrast, SPINK4 expression initially

rose before sharply declining (Figures 5B, C).
3.4 Chromosomal copy number variation

Studies indicate that in primary liver lesions and their

corresponding metastatic liver sites, copy numbers for

chromosomes 7, 8, and 20 increase, while chromosomes 1, 4, 8,

17, and 18 show a reduction. Comparative analyses between

primary tumors and their metastatic liver counterparts reveal

chromosomal changes, including gains in chromosomes 7, 8, 13,

and 20 and losses in chromosomes 1, 8, 14, and 18.

In the comparative analysis of epithelial cells from tumor

samples before and after metastasis (Figure 5D), chromosomes 6,

7, and 20 exhibited significant levels of copy number variation

(CNV), suggesting that CNVs in these regions may be linked to the

loss or amplification of tumor suppressor genes, oncogenes, or non-

coding RNAs like miRNAs.
3.5 Cell-cell communication reveals that
the MIF-CD74+CXCR4 ligand pair plays a
role in colorectal cancer metastasis

Comprehensive analyses were performed on CRC and CRCM.

The results indicated that before metastasis, epithelial cells and

fibroblasts exhibited high levels of communicative activity. In

contrast, B cells showed weaker interactions with other cell types

(Figures 6A, B), suggesting the dominance of humoral immune

responses at this stage. Fibroblasts were strongly connected with

various cell types, highlighting their crucial role in tumor

progression and the shaping of the tumor microenvironment.

Bar graphs illustrated changes in pathway activities between

CRC and CRCM tissues, with pathways such as CXCL, IFN-II,
Frontiers in Oncology 10
TNF, SPP1, THBS, and COMPLEMENT showing increased activity

in CRCM tissues (Figure 6C). This rise indicates an intensified

inflammatory state in these tissues, which promotes tumor

angiogenesis and enhances metastatic potential. These findings

highlight the critical roles these molecules play in tumor

proliferation, invasion, immune evasion, and the shaping of the

tumor microenvironment. Cell-cell interactions were analyzed

based on ligand-receptor pairs for the seven cell types in each

sample (Supplementary Figure 4A). In CRCM samples, specific

ligand-receptor pairs, particularly MIF-CD74+CD44, MIF-CD74

+CXCR4, and APP-CD74, were identified as particularly

significant. Given the pronounced impact of the MIF pathway in

epithelial and fibroblast cells, further analyses identified fibroblasts

and epithelial cells as ligands, with T cells, B cells, and macrophages

acting as receptors (Figure 6D). Bubble plots highlighted differences

in the activities of receptor-ligand pairs involving epithelial and

fibroblast cells across the two samples (Supplementary Figure 5A).

Heatmaps comparing the number and intensity of pathways

between these samples revealed a significant increase in the

communication strength and activity of epithelial cells in CRCM

tissues (Supplementary Figures 4B, C). This analysis disclosed

dynamic interaction patterns, particularly the intensified

communication of epithelial cells in metastatic colorectal cancer.

The MIF pathway, especially the MIF-CD74+CXCR4 pair, was

identified as a critical contributor, consistent with its key role in

tumor progression and metastasis (33).

Subsequent analyses of the MIF pathway and its associated

ligand interactions among different cell types revealed that MIF

expression is primarily derived from epithelial cells and fibroblasts.

The violin plots (Figure 6E) show that macrophages exhibited high

CD44 and CD74 expression levels, while CXCR4 was

predominantly expressed in T and B cells.
3.6 The PPI network emphasizes the
weight value of CD74

A comprehensive protein-protein interaction (PPI) network

analysis was conducted on 243 differentially expressed genes

identified from an epithelial cell gene expression study (34).

These genes were initially entered into the STRING database

using the multiple protein options to generate a detailed PPI

network, with the corresponding raw data subsequently preserved

(Supplementary Figure 5B). The raw data were then visually

transformed using Cytoscape software (35). Within Cytoscape,

the network was analyzed using the CytoNCA plugin, which

applies the “betweenness centrality” algorithm to predict and

explore key nodes in the network. This algorithm measures the

centrality of nodes in a network graph by assessing the shortest

paths between them and identifying their importance.CD74

emerged as the node with the highest weighted value in the

protein network (Supplementary Figure 5C). In the context of

cellular communication, this finding confirmed the critical role of

CD74-related signaling pathways in tumor metastasis, aligning with

the results of the PPI network analysis.
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FIGURE 6

Analysis of intercellular communication between CRC and CRCM tissues. (A, B) Comparative analysis of pathway quantity differences between two
tissue types. (C) The differences in ligand-related pathway activities between CRC and CRCM tissues. (D) That the primary source of MIF ligand pairs
is epithelial cells and fibroblasts, while the receptors are primarily B cells, T cells and macrophages. (E) Violin plot showing the expression levels of
pathway molecules related to the MIF ligand across various cell types.
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4 Discussion

Liver metastasis is a pivotal clinical feature of colorectal cancer,

often leading to a poor prognosis. Significant clinical interest is

understanding the mechanisms driving this metastatic process and

developing effective therapeutic strategies. Single-cell transcriptomics

offers a powerful approach to dissecting tumor progression dynamics

and identifying viable targets for personalized cellular therapies.

We detailedly analyzed gene expression changes in epithelial

cells using single-cell transcriptomics. During the metastasis

process, we observed significant increases in the expression of the

TPM2, RPS17, and TNNT1 genes in colorectal cancer epithelial

cells, while SPINK4 expression was notably reduced. These findings

were confirmed through Western blot and immunohistochemical

staining, suggesting that the overexpression of these genes may

drive malignant behaviors such as migration, invasion, and liver

metastasis in colorectal cancer. In our study, TNNT1 demonstrated

consistent expression patterns across RNA-seq, Western blotting

(WB), and immunohistochemistry (IHC), whereas the other

examined genes exhibited only modest alterations at the protein

level. Several factors may account for this discrepancy: the relatively

small validation cohort, which reduced statistical power; inherent

biological differences between mRNA and protein expression

arising from post-transcriptional regulation; the limited sensitivity

of WB and IHC for detecting subtle protein-level changes; and

potential cell-type-specific expression patterns that may be masked

in bulk tissue analyses. Such challenges are frequently encountered

in integrative studies, highlighting the complexity of gene regulation

during metastasis, as reflected in our WB and IHC results

(Figure 5). Additionally, analyses of patient prognosis data from

the GEO and TCGA databases revealed a strong correlation

between these four genes and poor outcomes in our constructed

prognostic models, supporting previous research on these genes in

colorectal cancer tumors.

Troponin T, a protein with a molecular weight of 30–35 kDa

and composed of 220–300 amino acids, primarily expressed in

skeletal muscles, functions as part of a regulatory complex on

filaments, playing a critical role in modulating muscle contraction

and relaxation through calcium signaling. Elevated TNNT1 levels

have been shown to drive proliferation, migration, and invasion in

colorectal, thyroid, and uterine sarcoma cancers (36). It accelerates

cancer progression by influencing the cell cycle and promoting E-

cadherin during the epithelial-mesenchymal transition (EMT), thus

facilitating tumor metastasis (37, 38). Studies by Yu Chen and

colleagues have empirically established TNNT1’s oncogenic role in

colorectal cancer progression (39). C. Jiang’s research shows that

Tnnt1 overexpression markedly increases MMP-2 and MMP-9

protein levels in cells while suppressing E-cadherin expression

(40). This regulation of the epithelial-mesenchymal transition

(EMT) process reduces adhesion among tumor cells, promoting

their migration and metastasis . Furthermore, TNNT1

overexpression induces cyclin D expression, accelerating the G1/S

phase transition and reducing the activity of caspases 3 and 7—key

apoptosis markers (41). This shortens the cell cycle, promotes
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cellular proliferation, and significantly enhances tumor growth. In

TNNT1-knockdown cells, Xiaobin Ge et al. observed reduced levels

of b-catenin and cMyc, suggesting that TNNT1 suppression may

inhibit the Wnt/b-catenin pathway (42, 43). Additional research

reveals that Tnnt1 strongly activates the p38/JNK signaling

pathway, which, when aberrantly activated, contributes to

excessive cell proliferation and reduced apoptosis, thereby

facilitating the progression, migration, and invasion of various

cancers (40).

TPM2 (b-tropomyosin) is a member of the tropomyosin family,

encoding the b-chain with a molecular weight of approximately 32

kDa. It plays a crucial role in regulating muscle contraction by

forming complexes with actin and troponin, orchestrating actin

filament assembly, and controlling actin nucleation. Our research

identified significant amplifications at the chromosome locus 9p.

TPM2 is associated with unfavorable tumor prognoses, and prior

studies have confirmed its function as an oncogenic glycoprotein that

promotes proliferation andmetastasis in colorectal cancer (44). It also

exerts carcinogenic effects in other cancers, such as prostate cancer.

Dysregulation of actin-binding proteins compromises the stability of

the actin cytoskeleton, which may contribute to tumorigenesis (45,

46). We propose that increased TPM2 expression enhances

cytoskeleton dynamics, altering cellular adhesion to the

extracellular matrix (ECM) and modifying tumor cell interactions

with the microenvironment, including angiogenesis and immune

evasion, thereby increasing migratory and invasive capacities.

Although previous studies , such as Cui , reported

downregulation of TPM2 in CRC cell lines, these findings were

derived from in vitro models and may not fully capture the gene’s

behavior in patient-derived tumor tissues (47). The choice of

experimental model is critical: cell lines reflect intrinsic cellular

behavior under controlled conditions, whereas patient-derived

tumor samples encompass complex tissue interactions. Tumor

stage also affects TPM2 expression and its prognostic relevance,

and distinct molecular subtypes of CRC may regulate TPM2

through different transcriptional programs. Moreover, the tumor

microenvironment—including stromal and immune components—

can influence TPM2 levels and activity, and genetic alterations such

as copy number variations may further modulate its expression and

function. In our analysis of clinical CRC specimens, elevated TPM2

expression correlated with poorer prognosis. This finding aligns

with recent evidence supporting a pro-metastatic role for TPM2: for

instance, TPM2 can interact with Endomucin to promote

proliferation and metastasis in CRC (48), and tumor-associated

stromal cells overexpressing TPM2 enhance cancer cell

proliferation, migration, and metastatic potential (49). Such

discrepancies likely arise from multiple context-dependent factors.

To further address these questions, our ongoing studies integrate

single-cell and bulk transcriptomic analyses, coupled with detailed

characterization of TPM2 across tumor compartments, aiming to

elucidate its context-dependent role in CRC progression

and metastasis.

Studies consistently show that SPINK4 mRNA and protein

levels are significantly reduced in tumor tissues compared to
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controls. SPINK4 is prominently expressed in normal colorectal,

small intestine, and stomach tissues, as well as in gastrointestinal

cell lines, but its expression significantly declines in colorectal

cancer (CRC) tissues (50). Regarding its prognostic value, a study

by Xie et al. found no correlation between serum SPINK4 levels and

either overall survival (OS) or disease-free survival (DFS) in CRC

patients (51). This result may be due to the study’s brief follow-up

period and limited sample size. However, investigations by Xiaojie

Wang and colleagues revealed that lower SPINK4 expression

correlates with stem-like features and undifferentiated states in

CRC cells. They also confirmed that reduced SPINK4 protein

levels in tissues are significantly associated with poorer survival

rates in CRC patients (50). SPINK4 is an inhibitor of serine protease

activity, indirectly regulating multiple signaling pathways and

reducing cellular adhesion. Serine proteases facilitate tumor cell

migration and invasion by degrading the extracellular matrix and

inhibiting serine hydrolase activity. SPINK4 may block these

processes by inhibiting these proteases, potentially preventing

tumor metastasis.

Research on the RPS17 gene remains relatively limited. Data

indicate that elevated RPS17 levels, as shown in prognostic risk

models, are associated with poor outcomes (52). Additionally,

studies by Meir et al. have highlighted substantial RPS17

expression in primary choroidal melanoma tissues and liver

metastases, suggesting its potential role in tumor pathology (53).

Previous studies have confirmed that elevated expression of RPS17

in colorectal cancer tissues is associated with poor prognosis in

patients. Additionally, the upregulation of RPS17 correlates with a

decrease in the tumor microenvironment (TME) score, suggesting a

potential link between RPS17 expression and TME heterogeneity

(11). Moreover, the increased expression of related genes, such as

TPM2, raises the hypothesis that this may influence the interaction

between tumor cells and the extracellular matrix, as well as the

remodeling of the cytoskeleton. This regulation could modulate the

expression of adhesion molecules or matrix metalloproteinases,

thereby enhancing the ability of tumor cells to traverse the

basement membrane and endothelial cells, facilitating their entry

into the bloodstream or lymphatic system, and ultimately

promoting their migratory and invasive capacities.

MIF is frequently overexpressed across a broad range of

malignancies, with its expression levels positively correlated with

tumor progression. CD74, a high-affinity receptor for MIF,

mediates activation of the ERK signaling cascade, thereby

promoting innate immune responses driven by macrophages and

monocytes (54). In the context of tumor invasion and metastasis,

MIF may enhance tumor cell motility through multiple

mechanisms—for instance, by activating Rho GTPases and

promoting the polymerization of filamentous actin to remodel the

cytoskeleton, or by inducing epithelial–mesenchymal transition

(EMT) via modulation of the TGF-b pathway (55). Gui-Qi Zhu

and colleagues demonstrated that MIF promotes the expansion of

immunosuppressive myeloid-derived cells, accelerating tumor

progression and dampening antitumor immunity (33).

Mechanistic studies have further shown that MIF facilitates

osteosarcoma cell proliferation and metastasis by activating the
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RAS/MAPK signaling axis, with the degree of pathway activation

closely tied to tumor burden and patient prognosis (56).

Add i t iona l l y , spec ific inh ib i to r s such as 4- iodo-6-

phenylpyrimidine have been employed to disrupt MIF signaling,

markedly enhancing tumor cell sensitivity to chemotherapy,

suppressing primary tumor growth and angiogenesis, and

significantly reducing the incidence of distant metastasis (57).

These findings highlight the potential of MIF-targeted

interventions as a promising therapeutic strategy in

colorectal cancer.

In our study, we found that MIF pathway activity is significantly

elevated following hepatic metastasis of CRC. Epithelial cells and

fibroblasts were identified as the primary sources of MIF signals,

while macrophages, T cells, and B cells served as the main

recipients. Among intercellular interactions, the MIF–CD74

+CXCR4 axis emerged as a key communication pathway,

showing particularly high activity in signaling between epithelial

and B cells. Within the tumor microenvironment, macrophages and

B cells contribute to tumor-associated paracrine signaling through

the MIF pathway. Notably, macrophages act as central mediators in

this signaling network, relaying MIF signals from epithelial cells and

fibroblasts to lymphocytes—likely through the secretion of growth

factors or cytokines that coordinate crosstalk between epithelial and

immune cells. Notably, the influence of fibroblasts in controlling

tumor tissue increases during metastasis, indicating that tumor-

associated fibroblasts may release signaling molecules or alter the

extracellular matrix to support tumor invasion and migration. This

support may include promoting angiogenesis, modulating immune

responses, and facilitating immune evasion.

Numerous studies have shown that the binding of MIF to its

receptors activates the Src/PI3K signaling pathway, initiating a

downstream kinase cascade in which AKT activation plays a

central role (58). Once activated, AKT promotes the

phosphorylation of various downstream targets, thereby

modulating the molecular interactions between actin and myosin.

For instance, activated LIM kinases phosphorylate actin-

depolymerizing factors such as cofilin, suppressing their activity,

which in turn stabilizes actin filaments and facilitates their dynamic

elongation. These molecular alterations directly or indirectly affect

the function of actin-binding proteins such as TPM2, as well as the

structural stability and remodeling capacity of the cytoskeleton (59,

60). Based on this molecular framework, we propose that TPM2

activity, regulated by the MIF–mediated Src/PI3K signaling

pathway, may contribute to the phosphorylation of myosin II

chains, thereby modulating their intracellular polymerization

state. This cytoskeletal reorganization could enhance tumor cell

motility and ultimately promote distant metastasis.

Nonetheless, this research is not without its limitations.

Predominantly, given that the majority of patients with liver

metastases originating from colorectal cancer have previously

undergone radiotherapy and chemotherapy, the availability of

eligible CRCM patient samples is markedly limited,the sample

size impedes the ability to perform a statistical analysis of

differences, potentially resulting in susceptibility to considerable

random variations. Consequently, to bolster the robustness and
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applicability of our findings, further in-depth analytical studies and

the augmentation of sample sizes to ascertain the statistical

significance of differences have become focal points for our

forthcoming research endeavors. Identifying novel therapeutic

targets linked to these key genes and pathways may provide more

efficacious treatment alternatives for metastatic colorectal cancer

patients, constituting a vital trajectory for future investigations.
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