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single-cell transcriptomics and
regulation of the MIF pathway
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Introduction: Colorectal cancer is associated with a generally poor prognosis,
primarily due to its often late diagnosis and the high propensity for liver
metastasis. Current treatment strategies emphasize personalized approaches,
integrating advanced targeted therapies based on specific molecular profiles
to enhance outcomes. Continued research into molecular targets and
innovative treatments is crucial for improving survival rates and managing
disease progression.

Methods: We retrieved single-cell transcriptomic and bulk RNA-seq data from
colorectal cancer samples in the GEO and TCGA databases. The analysis focused
on changes in pathway and gene expression in epithelial cells during the
metastatic progression. A prognostic risk model was developed based on
differentially expressed genes, and experimental validation confirmed the
differential expression of prognostic-related genes in colorectal cancer tissues.
Results: During the process of liver metastasis in colorectal cancer, the
interaction between MIF and its receptors, CD74 and CXCR4, is markedly
intensified, promoting tumor cell invasion and migration. The expression levels
of TPM2, RPS17, and TNNT1 were significantly elevated, while SPINK4 expression
was reduced in the epithelial cells of colorectal cancer with liver metastasis.
These findings were further validated experimentally. A prognostic model based
on these genes predicted patients’ overall survival at 1, 3, and 5 years.
Discussion: During liver metastasis in colorectal cancer, the expression levels of
TPM2, RPS17, and TNNT1 were significantly elevated, SPINK4 expression was
reduced in the epithelial cells. Furthermore, the interaction between the MIF
pathway and its ligands, CD74/CXCR4, may play a important role in promoting
tumor metastasis.

KEYWORDS

single-cell transcriptomics, colorectal cancer, liver metastasis, targeted therapy,
prognostic model

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fonc.2025.1588514/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1588514/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1588514/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1588514/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1588514/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2025.1588514&domain=pdf&date_stamp=2025-10-07
mailto:dr.peng@email.sdu.edu.cn
https://doi.org/10.3389/fonc.2025.1588514
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2025.1588514
https://www.frontiersin.org/journals/oncology

Cao et al.

1 Introduction

Colorectal cancer is a significant cause of both morbidity and
mortality worldwide. By 2040, projections estimate that the
incidence and mortality rates will rise to 3.2 million and 1.6
million cases, respectively (1). Liver metastasis is an important
clinical feature of colorectal cancer and leads to an inferior
prognosis. The five-year survival rate for patients with non-
metastatic colorectal cancer is around 60%. In contrast, for
metastatic colorectal cancer, particularly in stage IV cases with
liver metastasis, the five-year survival rate drastically decreases to
about 12% (2).Treatment for liver-metastatic colorectal cancer
typically involves a combination of surgery, systemic therapies,
and targeted liver treatments. Unfortunately, around 40%-50% of
these patients are inoperable at the time of diagnosis, leaving
palliative chemotherapy as the only treatment option. Introducing
innovative targeted therapies has become crucial in the
personalized, comprehensive management of colorectal cancer (3).

According to a meta-analysis, for patients with unresectable liver-
metastatic colorectal cancer, combining chemotherapy with targeted
therapies increases the overall response rate to 68%, compared to 43%
with chemotherapy alone (4). In current clinical practice, primary
treatments for these patients include anti-epidermal growth factor
receptor (anti-EGFR) antibodies and anti-vascular endothelial
growth factor (anti-VEGF) antibodies, such as cetuximab and
panitumumab, which are known to provide additional survival
benefits (5-7). Research by Modest and colleagues has
demonstrated that KRAS-targeted therapies can lead to early tumor
shrinkage rates exceeding 20%, significantly improving disease-free
and overall survival (8). Targeting the CLDNI gene has been shown
to reduce colorectal cancer cell growth and survival, effectively
inhibiting cell proliferation and migration (9). Moreover, Yuan-
Hong Xie’s research indicates that overexpression of the MET and
HGF genes is associated with poor prognosis in colorectal cancer
patients. Additionally, interactions between MET and EGFR can
result in compensatory activation of one receptor when the other is
inhibited, suggesting that MET may play a role in resistance to EGFR
inhibitors (10). Identifying additional critical pathways and genes,
along with developing therapeutics targeting these areas, is essential
for improving the prognosis of colorectal cancer patients and
reducing the incidence of metastases.

In recent years, the advancement of single-cell sequencing
technologies has led to a growing number of studies integrating
scRNA-seq and bulk RNA-seq data to develop prognostic models
for colorectal cancer (11). These studies have substantially propelled
progress in translational research within this domain. The
progression of colorectal cancer typically follows a continuous
trajectory, moving from normal tissue to malignancy and
eventually to metastasis. This document highlights research into
the essential biological processes involved in tumor development,
starting with single-cell transcriptomic analyses, focusing on
examining and comparing the significant changes in genes,
pathways, and metabolic processes in primary colorectal cancer
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tissues with or without liver metastasis. Additionally, it explores
prognosis-associated genes in epithelial tissues. It constructs a
prognostic model, offering valuable insights into the malignant
evolution of colorectal cancer and helping to inform clinical
treatment strategies.

2 Materials and methods

2.1 Clustering and marker gene
identification in single-cell data

The single-cell transcriptomic data was sourced from the GEO
database hosted by the NCBI website. This research specifically
utilized data from GSE161277 and GSE178318, following the
clinical information provided for each patient cohort (12, 13).
The GSE161277 dataset includes samples of normal and non-
metastatic colorectal cancer tissues, while the GSE178318 dataset
contains samples from metastatic colorectal cancer and liver
metastases. We analyzed a total of 19 samples, including 3
Normal, 4 Colorectal Cancer, 6 Colorectal Cancer with Metastasis
to the Liver, and 6 Liver Metastasis, with 9,000 cells randomly
selected from each sample for downstream analyses. Data
integration across different disease states was achieved using the
Read 10x and CreatSeuratObject packages, with genes showing low
expression levels (defined as expression in at least three cells with a
count exceeding 200) excluded (14).

The raw data quality was controlled using R software version
4.2.3, which excluded cells where mitochondrial gene ratios
exceeded 20% and erythrocyte gene ratios exceeded 3%. After
normalization, the filtered data were analyzed to identify highly
variable genes. The Harmony package eliminated batch effects and
performed principal component analysis (PCA) (15). The elbow
plot function was used to select the top 20 principal components for
analysis, with a resolution of 0.5 set for clustering. Differentially
expressed genes (DEGs) among different cell types were identified
using the Wilcoxon rank sum test via the “FindMarkers” function.
Statistically significant genes were defined as those with a
Bonferroni-corrected p-value below 0.05. Genes with a log-fold
change (logFC) greater than one were selected, indicating that their
average expression level within the cluster was more than double
that of other clusters. Cell types within each cluster were annotated
using established marker genes (16-21).

2.2 Gene ontologyand kyoto encyclopedia
of genes and genomes functional
enrichment analysis

The cluster profile package in R was used for GO and KEGG
pathway enrichment analyses (22). These analyses were performed
with a log-fold change (logFC) threshold of 1, focusing on pathways
with P-values below 0.05.
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2.3 Prognostic model construction based
on TCGA and GEO cohorts

RNA-seq count data from colorectal cancer patients were
downloaded from the official TCGA site. These counts were
converted into transcripts per million (TPM) to normalize
marker gene expression levels across patients. The Cox
proportional hazards model was applied to assess the relationship
between key genes and overall survival, considering age, sex, tumor
staging, and risk scores (23). After removing duplicate entries and
excluding cases with incomplete clinical information, prior
radiotherapy or chemotherapy, concurrent malignancies, or
missing survival data, a total of 515 patients were included in the
analysis and designated as the training cohort for prognostic model
development. In parallel, transcriptomic and clinical data from the
GSE12945 and GSE29623 datasets in the Gene Expression Omnibus
(GEO) database were retrieved. Applying the same inclusion and
exclusion criteria, 127 samples were included as the
validation cohort.

2.4 Analysis of single-cell trajectories

Single-cell trajectories were constructed using the Monocle2 R
package, with the orderCells function used to sequence the cells
(24). This approach provided insights into the continuity of cellular
state transitions, resulting in a time-oriented dendrogram.
Generally, the progression from the dendrogram’s root to its
branches represents the flow of time, with cells along this timeline
exhibiting distinct states, possibly including various subgroups.

2.5 Cell-cell communication analysis

CellChat was employed to infer cellular communications from
single-cell RNA data. This analysis identified the signaling
molecules and receptors involved, quantified the interaction
strengths between cells, and highlighted key nodes and pathways
within the communication network (25).

2.6 Human tumor specimens

The Shandong University Qilu Hospital system procured tumor
specimens from ten patients diagnosed with colorectal cancer, five
of whom also had liver metastases. Importantly, none of these
individuals had undergone any pre-surgical treatments, including
radiotherapy, chemotherapy, or immunotherapy. After collection,
each tumor specimen was carefully preserved at -80 °C. Diagnostic
evaluations were conducted by two pathologists, both highly
experienced in their field. Comprehensive clinical data were
gathered for all enrolled patients, and informed consent was
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obtained from each participant. The ethical integrity of this study
was approved by the Ethics Committee of Qilu Hospital of
Shandong University, ensuring that all procedures strictly
followed the principles outlined in the Declaration of Helsinki.

2.7 Western blotting

Cellular proteins were extracted using a DSS lysis buffer
containing protease and phosphatase inhibitors. Protein
concentrations were quantified using a BCA assay kit, and
samples were separated on an SDS-PAGE gel. The proteins were
then electrophoretically transferred to a PVDF membrane. After
blocking with skim milk for one hour, the membrane was washed
three times with TBST and incubated overnight at 4 °C with the
primary antibody. Following three additional washes with TBST,
the membrane was incubated at room temperature for one hour
with the secondary antibody. Bands were visualized using
chemiluminescent detection reagents. The antibodies used were:
Rabbit anti-SPINK4 from Abcam (catalog #AB175929) at a 1:2000
dilution, Rabbit anti-RPS17 from Abclonal (catalog #A16426) at a
1:1000 dilution, Rabbit anti-TNNT1 from Abclonal (catalog
#A10354) at a 1:1000 dilution, Rabbit anti-TPM2 from Abclonal
(catalog #A3096) at a 1:700 dilution, and Mouse anti-GAPDH from
Proteintech (catalog #60004-1-Ig) at a 1:5000 dilution.

2.8 Immunohistochemical staining

Cancer tissues were fixed overnight in a 4% formaldehyde
solution, followed by embedding and sectioning. The sections
were deparaffinized with xylene and rehydrated through a graded
series of ethanol solutions. After antigen retrieval and blocking, the
sections were incubated with the primary antibody, followed by
washes of TBST. They were then incubated with the secondary
antibody and stained with hematoxylin to visualize the nuclei.
Microscopic examination of the stained sections provided insights
into the expression and distribution of the protein. The antibodies
used in this study included Rabbit anti-TPM2 from Abclonal
(catalog #A3096) at a 1:100 dilution, Rabbit anti-RPS17 from
Abclonal (catalog #A16426) at a 1:100 dilution, Rabbit anti-
TNNTI from Bioss (catalog #bs-10616R) at a 1:200 dilution, and
Rabbit anti-SPINK4 from Immunoway (catalog #YN3682) at a
1:100 dilution.

2.9 Statistical analysis
All single-cell data analyses and statistical tests were conducted
using the R programming language. Statistical significance was

defined as a p-value below 0.05. Cox regression was employed for
survival analysis to develop predictive models.
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3 Results

3.1 Single-cell atlas and cell lineage
annotation in colorectal cancer tissue

Based on single-cell transcriptomic analysis of four tissue
samples, namely NOR(Normal), CRC(Colorectal Cancer), CRCM
(Colorectal Cancer with Metastasis to the Liver), and LM(Liver
Metastasis), the results show uniform Manifold Approximation and
Projection (UMAP) clustering identified 16 distinct clusters
(Supplementary Figure 1A). Analyzing sample identifiers within
the dataset confirmed the successful mitigation of batch effects
(Supplementary Figure 1B). We categorized all cells into seven main
types: epithelial cells, T cells, B cells, macrophages, plasma cells,
fibroblasts, mast cells (Figure 1A), and each cluster’s cell type was
annotated using canonical marker genes (Figure 1B).

Further analyses focused on the cell populations at the primary
sites of colorectal cancer (both CRC and CRCM) to identify cellular
and genetic changes during the metastatic process. Cells were
reanalyzed using the standard Seurat pipeline, resulting in 18 clusters
(Supplementary Figure 1C). Seven cell types were identified
(Figure 1C), and each cluster was annotated using canonical marker
genes to classify the cell types (Figure 1D). Cells from both sources were
evenly mixed, indicating successful elimination of batch effects
(Supplementary Figure 1D). Cluster 13, initially grouped with
epithelial cell markers, was reclassified as a T cell type based on gene
markers from a bubble plot. Spearman’s correlations between clusters
were calculated, and a heatmap revealed a close relationship between
Cluster 13 and Clusters 0 and 1 (Figure 1E). Non-negative least squares
regression was used to explore correlations between all cells and the
CRC&CRCM cells clusters, further detailing the relationships among
cluster subtypes (26). A heatmap demonstrated that Cluster 13,
Clusters 0 and 1 are closely associated with CO(Tcell) in the overall
dataset, predominantly composed of T cells, confirming that Cluster 13
is likely made up of T cells rather than epithelial cells (Figure 1F). The
cell proportion diagram shows that T and epithelial cells are the
predominant cell types across all samples (Figure 1G). Notably, from
non-metastatic colorectal cancer to metastatic states and liver
metastases, there is a progressive increase in T cells, accompanied by
a decrease in epithelial and B cells. In recent years, accumulating
evidence has highlighted the pivotal role of the tumor immune
microenvironment and the dynamic shifts in immune cell
populations in the initiation and progression of colorectal cancer (27,
28), the tumor microenvironment exerts a profound influence on the
recruitment and activation of tumor-infiltrating lymphocytes, which
may underlie the observed immune cell alterations across different
disease stages (29).

3.2 The prognostic risk-scoring signature
predicted that the expression of four genes
was strongly correlated with the patient’s
prognosis

Using R’s FindMarkers function, differential gene expression
among various cell types in CRC and CRCM samples was analyzed,
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focusing on the differing pathological conditions of the samples.
This function helps identify genes that show significant expression
differences between two groups. The thresholds for identifying
significant differential expression were set at p < 0.05 and log fold
change (log FC) > 1. Differentially expressed genes (DEGs) were
identified for each cell type, with particular attention given to the
top five upregulated and downregulated genes (Figure 2A). In the
comparative analysis of epithelial cells from two different sample
sets, 243 DEGs were identified. A detailed Gene Ontology (GO)
enrichment analysis was then performed to explore changes in
colorectal cancer tissue states post-metastasis. The results showed
that the related genes were primarily enriched in pathways involved
in inflammatory processes, metabolic functions, cell proliferation,
migration, and specific enzymatic activities (Figure 2B).
Additionally, the AUCell algorithm was used to quantify changes
in pathway activities related to colorectal cancer tissues before and
after metastasis (30). This analysis highlighted a significant increase
in pathway activities associated with inflammation, metabolism, cell
proliferation, migration, and responses to external stimuli during
the metastatic transition (Supplementary Figure 2). Gene Set
Enrichment Analysis (GSEA) revealed multiple pathways
significantly enriched in metastatic colorectal cancer lesions
compared to non-metastatic lesions (Supplementary Figure 3).
The figures illustrate that a sharp rise in the enrichment score
(ES) curves indicates a coordinated upregulation of gene sets in
metastatic colorectal cancer samples, while a gradual decline
indicates downregulation.

A prognostic analysis model was developed for the 243
differentially expressed genes (DEGs) identified in epithelial cells.
CRC expression data from GSE12945 and GSE29623 in the GEO
database were downloaded and merged after eliminating batch
effects for validation (31, 32). The training set utilized FPKM and
clinical data from the TCGA database, excluding samples with an
overall survival (OS) of zero. The integration of GEO and TCGA
databases narrowed the list to 198 DEGs for further analysis.
Univariate analysis identified 15 prognosis-related DRGs
(Figure 3A), which were subjected to multivariate Cox regression
analysis, hazard ratios (HRs) were visualized using a forest plot.
Next, a RS(Risk Score) signature of four DEGs (TPM2, RPS17,
TNNT1, and SPINK4) was created. Next, the RS of each sample was
computed based on relative coefficient and DEGs expression. RS
was calculated as follows: RS=(0.163822904780406)* expression of
TPM2+(0.19795829828391)* expression of. RPS17+(0.14008
4452797051)* expression of TNNT1+(-0.0845093126747071)*
expression of SPINK4. The TCGA dataset was used to train the
model, which calculates patient risk scores based on gene
expression. Patients were classified into high-risk and low-risk
groups using RS median through a Cox regression prognostic
model. The same median was applied to the GEO dataset for
validation, segmenting patients into high- and low-risk groups.
The training cohort comprised 515 patients, with 257 classified as
high-risk and 258 as low-risk. The validation cohort consisted of
127 patients, including 71 high-risk and 56 low-risk cases. Survival
curves were plotted for the training and validation sets to assess
prognostic differences between the high-risk and low-risk groups.
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FIGURE 1

Single-cell atlas of colorectal cancer tissue. (A) Annotations for seven different types of cells in the tissue samples of NOR, CRC, CRCM, and LM.

(B) Bubble chart annotating marker genes corresponding to the four tissue types to characterize cell types. (C) Annotations for seven different cell
types in the tissue samples of CRC and CRCM. (D) Bubble chart marking marker genes for the two tissue types to annotate cell types. (E) Clusterl3
has high similarity with clusterl and cluster0. (F) Non-negative least squares calculations suggest that cluster 13(C13), cluster0(CO0), cluster1(C1) share
similar cellular properties with clustersO(T cell), identifying them as T immune cells. (G) Distribution of various cell types across the four tissue
samples.
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FIGURE 2

Analysis of differences between CRC and CRCM tissues. (A) The differential genes among seven different cell types in two types of tissue, marking
the top five upregulated and downregulated genes. (B) The Gene Ontology (GO) pathways enriched by differential genes, predominantly associated
with inflammation, metabolism, and proliferation migration. (C) The changes in metabolic activity across seven cell types in two tumor samples.

(D) UMAP plots of epithelial cells from the two samples.
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FIGURE 3

Prognostic analysis of differentially expressed genes in epithelial cells. (A) Forest plot displaying prognostically significant genes identified from the
training cohorts. (B) The differential survival rates between high-risk and low-risk groups across the validation and training cohorts. (C) Computes
the area under the ROC curve for the survival model in both the validation and training sets, assessing predictive performance. (D) Forest plots for
univariate and multivariate prognostic analyses, respectively, highlighting the influence of various factors on outcomes. (E) Nomogram to estimate
the 1-year, 3-year, and 5-year survival probabilities based on identified risk factors. (F) Calibration curve evaluating the predictive accuracy of the

survival analysis model.
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In the training set, significant prognostic differences were observed
between the two groups (p < 0.001) (Figure 3B left). Similarly, in the
validation set, the prognosis for high-risk patients was notably
worse compared to the low-risk group (p < 0.05) (Figure 3B
right). The model’s predictive performance was further validated
using the area under the ROC curve (AUC), with AUC values of
0.676, 0.665, and 0.685 in the training set and 0.698, 0.626, and
0.661, in the validation set (Figure 3C). These metrics demonstrate
the model’s substantial predictive accuracy.

Univariate and multivariate prognostic analyses using clinical
data and risk scores from the TCGA database were conducted to
identify risk factors impacting patient survival. These analyses
revealed significant associations between age, cancer staging, and
risk scores with survival rates (p < 0.001), underscoring the
statistical significance and independent prognostic value of the
risk score (Figure 3D). The cohort consisted of 84 patients with
stage I disease, 190 patients with stage II disease, and 123 patients
with stage III disease. A predictive nomogram was developed based
on the identified prognostic factors to estimate survival probabilities
for patients with metastatic colorectal cancer (Figure 3E). The
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nomogram consists of eight axes; the first four represent the
variables of the predictive model. A vertical line drawn across
these axes allows for calculating the risk score for each factor by
summing the individual scores. The last three axes indicate one-
year, three-year, and five-year survival probabilities. Calibration
curves showed a strong correlation between the predicted and
observed survival rates, validating the nomogram’s accuracy in
predicting patient outcomes (Figure 3F).

Western blot analysis revealed higher expression levels of
TPM2, RPS17, and TNNT1 genes in CRCM tissues compared to
primary CRC, whereas SPINK4 expression was slightly reduced in
CRCM tissues (Figures 4A, B). Immunohistochemical experiments
were conducted to confirm further these genes’ distribution and
expression in cancer tissues. The results demonstrated significantly
increased expression of RPS17 and TNNT1 in CRCM tissue
samples compared to CRC tissues. Changes in TPM2 expression
were less pronounced, possibly due to limited sample size, which
did not yield statistically significant differences. Additionally,
SPINK4 expression showed a declining trend in CRCM tissues,
corroborating the Western blot findings (Figure 4C).
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Epithelial cell pseudo-time analysis. (A) The developmental trajectories of cells and the distribution of cells from two sample states in the pseudo-
time analysis. (B) The expression distribution of the RPS17, SPINK4, TNNT1, and TPM2 genes across two different tissue samples and three states.
(C) The expression changes of four genes along a pseudo-time trajectory. (D) Comparative analysis of copy number variations (CNV) in epithelial
cells between CRC, CRCM, and NOR samples.

Frontiers in Oncology 09 frontiersin.org


https://doi.org/10.3389/fonc.2025.1588514
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Cao et al.

3.3 Pseudotime analysis revealed changes
in the expression of four genes as the
disease progressed

Trajectory analysis of epithelial cells from colorectal cancer,
with and without metastasis, was conducted. Using Monocle2, the
cell trajectories were divided into three distinct states, outlining the
differentiation paths of these cells following dimensionality
reduction clustering. The epithelial cell differentiation trajectory
branches off from the main fork, extending from the upper left
toward the right in the figure (Figure 5A upper).In the pseudotime
analysis, States 1 and 2 correspond to non-metastatic colorectal
cancer cells, while State 3 includes both metastatic and non-
metastatic cells (Figure 5A lower).

Subsequent studies explored the transcriptomic variations of
differentially expressed genes (DEGs) during epithelial cell
differentiation. We focused on four genes with significant
prognostic relevance, tracking their dynamic changes throughout
this process. The expression levels of TPM2, RPS17, and TNNT1
progressively increased during the progression and metastasis of
colorectal cancer (CRC); in contrast, SPINK4 expression initially
rose before sharply declining (Figures 5B, C).

3.4 Chromosomal copy number variation

Studies indicate that in primary liver lesions and their
corresponding metastatic liver sites, copy numbers for
chromosomes 7, 8, and 20 increase, while chromosomes 1, 4, 8,
17, and 18 show a reduction. Comparative analyses between
primary tumors and their metastatic liver counterparts reveal
chromosomal changes, including gains in chromosomes 7, 8, 13,
and 20 and losses in chromosomes 1, 8, 14, and 18.

In the comparative analysis of epithelial cells from tumor
samples before and after metastasis (Figure 5D), chromosomes 6,
7, and 20 exhibited significant levels of copy number variation
(CNV), suggesting that CNVs in these regions may be linked to the
loss or amplification of tumor suppressor genes, oncogenes, or non-
coding RNAs like miRNAs.

3.5 Cell-cell communication reveals that
the MIF-CD74+CXCR4 ligand pair plays a
role in colorectal cancer metastasis

Comprehensive analyses were performed on CRC and CRCM.
The results indicated that before metastasis, epithelial cells and
fibroblasts exhibited high levels of communicative activity. In
contrast, B cells showed weaker interactions with other cell types
(Figures 6A, B), suggesting the dominance of humoral immune
responses at this stage. Fibroblasts were strongly connected with
various cell types, highlighting their crucial role in tumor
progression and the shaping of the tumor microenvironment.

Bar graphs illustrated changes in pathway activities between
CRC and CRCM tissues, with pathways such as CXCL, IFN-II,

Frontiers in Oncology

10

10.3389/fonc.2025.1588514

TNF, SPP1, THBS, and COMPLEMENT showing increased activity
in CRCM tissues (Figure 6C). This rise indicates an intensified
inflammatory state in these tissues, which promotes tumor
angiogenesis and enhances metastatic potential. These findings
highlight the critical roles these molecules play in tumor
proliferation, invasion, immune evasion, and the shaping of the
tumor microenvironment. Cell-cell interactions were analyzed
based on ligand-receptor pairs for the seven cell types in each
sample (Supplementary Figure 4A). In CRCM samples, specific
ligand-receptor pairs, particularly MIF-CD74+CD44, MIF-CD74
+CXCR4, and APP-CD74, were identified as particularly
significant. Given the pronounced impact of the MIF pathway in
epithelial and fibroblast cells, further analyses identified fibroblasts
and epithelial cells as ligands, with T cells, B cells, and macrophages
acting as receptors (Figure 6D). Bubble plots highlighted differences
in the activities of receptor-ligand pairs involving epithelial and
fibroblast cells across the two samples (Supplementary Figure 5A).
Heatmaps comparing the number and intensity of pathways
between these samples revealed a significant increase in the
communication strength and activity of epithelial cells in CRCM
tissues (Supplementary Figures 4B, C). This analysis disclosed
dynamic interaction patterns, particularly the intensified
communication of epithelial cells in metastatic colorectal cancer.
The MIF pathway, especially the MIF-CD74+CXCR4 pair, was
identified as a critical contributor, consistent with its key role in
tumor progression and metastasis (33).

Subsequent analyses of the MIF pathway and its associated
ligand interactions among different cell types revealed that MIF
expression is primarily derived from epithelial cells and fibroblasts.
The violin plots (Figure 6E) show that macrophages exhibited high
CD44 and CD74 expression levels, while CXCR4 was
predominantly expressed in T and B cells.

3.6 The PPl network emphasizes the
weight value of CD74

A comprehensive protein-protein interaction (PPI) network
analysis was conducted on 243 differentially expressed genes
identified from an epithelial cell gene expression study (34).
These genes were initially entered into the STRING database
using the multiple protein options to generate a detailed PPI
network, with the corresponding raw data subsequently preserved
(Supplementary Figure 5B). The raw data were then visually
transformed using Cytoscape software (35). Within Cytoscape,
the network was analyzed using the CytoNCA plugin, which
applies the “betweenness centrality” algorithm to predict and
explore key nodes in the network. This algorithm measures the
centrality of nodes in a network graph by assessing the shortest
paths between them and identifying their importance.CD74
emerged as the node with the highest weighted value in the
protein network (Supplementary Figure 5C). In the context of
cellular communication, this finding confirmed the critical role of
CD74-related signaling pathways in tumor metastasis, aligning with
the results of the PPI network analysis.
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FIGURE 6

Analysis of intercellular communication between CRC and CRCM tissues. (A, B) Comparative analysis of pathway quantity differences between two
tissue types. (C) The differences in ligand-related pathway activities between CRC and CRCM tissues. (D) That the primary source of MIF ligand pairs
is epithelial cells and fibroblasts, while the receptors are primarily B cells, T cells and macrophages. (E) Violin plot showing the expression levels of
pathway molecules related to the MIF ligand across various cell types.
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4 Discussion

Liver metastasis is a pivotal clinical feature of colorectal cancer,
often leading to a poor prognosis. Significant clinical interest is
understanding the mechanisms driving this metastatic process and
developing effective therapeutic strategies. Single-cell transcriptomics
offers a powerful approach to dissecting tumor progression dynamics
and identifying viable targets for personalized cellular therapies.

We detailedly analyzed gene expression changes in epithelial
cells using single-cell transcriptomics. During the metastasis
process, we observed significant increases in the expression of the
TPM2, RPS17, and TNNT1 genes in colorectal cancer epithelial
cells, while SPINK4 expression was notably reduced. These findings
were confirmed through Western blot and immunohistochemical
staining, suggesting that the overexpression of these genes may
drive malignant behaviors such as migration, invasion, and liver
metastasis in colorectal cancer. In our study, TNNT1 demonstrated
consistent expression patterns across RNA-seq, Western blotting
(WB), and immunohistochemistry (IHC), whereas the other
examined genes exhibited only modest alterations at the protein
level. Several factors may account for this discrepancy: the relatively
small validation cohort, which reduced statistical power; inherent
biological differences between mRNA and protein expression
arising from post-transcriptional regulation; the limited sensitivity
of WB and IHC for detecting subtle protein-level changes; and
potential cell-type-specific expression patterns that may be masked
in bulk tissue analyses. Such challenges are frequently encountered
in integrative studies, highlighting the complexity of gene regulation
during metastasis, as reflected in our WB and IHC results
(Figure 5). Additionally, analyses of patient prognosis data from
the GEO and TCGA databases revealed a strong correlation
between these four genes and poor outcomes in our constructed
prognostic models, supporting previous research on these genes in
colorectal cancer tumors.

Troponin T, a protein with a molecular weight of 30-35 kDa
and composed of 220-300 amino acids, primarily expressed in
skeletal muscles, functions as part of a regulatory complex on
filaments, playing a critical role in modulating muscle contraction
and relaxation through calcium signaling. Elevated TNNT1 levels
have been shown to drive proliferation, migration, and invasion in
colorectal, thyroid, and uterine sarcoma cancers (36). It accelerates
cancer progression by influencing the cell cycle and promoting E-
cadherin during the epithelial-mesenchymal transition (EMT), thus
facilitating tumor metastasis (37, 38). Studies by Yu Chen and
colleagues have empirically established TNNT1’s oncogenic role in
colorectal cancer progression (39). C. Jiang’s research shows that
Tnntl overexpression markedly increases MMP-2 and MMP-9
protein levels in cells while suppressing E-cadherin expression
(40). This regulation of the epithelial-mesenchymal transition
(EMT) process reduces adhesion among tumor cells, promoting
their migration and metastasis. Furthermore, TNNTI
overexpression induces cyclin D expression, accelerating the G1/S
phase transition and reducing the activity of caspases 3 and 7—key
apoptosis markers (41). This shortens the cell cycle, promotes
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cellular proliferation, and significantly enhances tumor growth. In
TNNT1-knockdown cells, Xiaobin Ge et al. observed reduced levels
of B-catenin and cMyc, suggesting that TNNT1 suppression may
inhibit the Wnt/B-catenin pathway (42, 43). Additional research
reveals that Tnntl strongly activates the p38/JNK signaling
pathway, which, when aberrantly activated, contributes to
excessive cell proliferation and reduced apoptosis, thereby
facilitating the progression, migration, and invasion of various
cancers (40).

TPM2 (B-tropomyosin) is a member of the tropomyosin family,
encoding the B-chain with a molecular weight of approximately 32
kDa. It plays a crucial role in regulating muscle contraction by
forming complexes with actin and troponin, orchestrating actin
filament assembly, and controlling actin nucleation. Our research
identified significant amplifications at the chromosome locus 9p.
TPM2 is associated with unfavorable tumor prognoses, and prior
studies have confirmed its function as an oncogenic glycoprotein that
promotes proliferation and metastasis in colorectal cancer (44). It also
exerts carcinogenic effects in other cancers, such as prostate cancer.
Dysregulation of actin-binding proteins compromises the stability of
the actin cytoskeleton, which may contribute to tumorigenesis (45,
46). We propose that increased TPM2 expression enhances
cytoskeleton dynamics, altering cellular adhesion to the
extracellular matrix (ECM) and modifying tumor cell interactions
with the microenvironment, including angiogenesis and immune
evasion, thereby increasing migratory and invasive capacities.

Although previous studies, such as Cui, reported
downregulation of TPM2 in CRC cell lines, these findings were
derived from in vitro models and may not fully capture the gene’s
behavior in patient-derived tumor tissues (47). The choice of
experimental model is critical: cell lines reflect intrinsic cellular
behavior under controlled conditions, whereas patient-derived
tumor samples encompass complex tissue interactions. Tumor
stage also affects TPM2 expression and its prognostic relevance,
and distinct molecular subtypes of CRC may regulate TPM2
through different transcriptional programs. Moreover, the tumor
microenvironment—including stromal and immune components—
can influence TPM2 levels and activity, and genetic alterations such
as copy number variations may further modulate its expression and
function. In our analysis of clinical CRC specimens, elevated TPM2
expression correlated with poorer prognosis. This finding aligns
with recent evidence supporting a pro-metastatic role for TPM2: for
instance, TPM2 can interact with Endomucin to promote
proliferation and metastasis in CRC (48), and tumor-associated
stromal cells overexpressing TPM2 enhance cancer cell
proliferation, migration, and metastatic potential (49). Such
discrepancies likely arise from multiple context-dependent factors.
To further address these questions, our ongoing studies integrate
single-cell and bulk transcriptomic analyses, coupled with detailed
characterization of TPM2 across tumor compartments, aiming to
elucidate its context-dependent role in CRC progression
and metastasis.

Studies consistently show that SPINK4 mRNA and protein
levels are significantly reduced in tumor tissues compared to
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controls. SPINK4 is prominently expressed in normal colorectal,
small intestine, and stomach tissues, as well as in gastrointestinal
cell lines, but its expression significantly declines in colorectal
cancer (CRC) tissues (50). Regarding its prognostic value, a study
by Xie et al. found no correlation between serum SPINK4 levels and
either overall survival (OS) or disease-free survival (DFS) in CRC
patients (51). This result may be due to the study’s brief follow-up
period and limited sample size. However, investigations by Xiaojie
Wang and colleagues revealed that lower SPINK4 expression
correlates with stem-like features and undifferentiated states in
CRC cells. They also confirmed that reduced SPINK4 protein
levels in tissues are significantly associated with poorer survival
rates in CRC patients (50). SPINK4 is an inhibitor of serine protease
activity, indirectly regulating multiple signaling pathways and
reducing cellular adhesion. Serine proteases facilitate tumor cell
migration and invasion by degrading the extracellular matrix and
inhibiting serine hydrolase activity. SPINK4 may block these
processes by inhibiting these proteases, potentially preventing
tumor metastasis.

Research on the RPS17 gene remains relatively limited. Data
indicate that elevated RPS17 levels, as shown in prognostic risk
models, are associated with poor outcomes (52). Additionally,
studies by Meir et al. have highlighted substantial RPS17
expression in primary choroidal melanoma tissues and liver
metastases, suggesting its potential role in tumor pathology (53).
Previous studies have confirmed that elevated expression of RPS17
in colorectal cancer tissues is associated with poor prognosis in
patients. Additionally, the upregulation of RPS17 correlates with a
decrease in the tumor microenvironment (TME) score, suggesting a
potential link between RPS17 expression and TME heterogeneity
(11). Moreover, the increased expression of related genes, such as
TPM2, raises the hypothesis that this may influence the interaction
between tumor cells and the extracellular matrix, as well as the
remodeling of the cytoskeleton. This regulation could modulate the
expression of adhesion molecules or matrix metalloproteinases,
thereby enhancing the ability of tumor cells to traverse the
basement membrane and endothelial cells, facilitating their entry
into the bloodstream or lymphatic system, and ultimately
promoting their migratory and invasive capacities.

MIF is frequently overexpressed across a broad range of
malignancies, with its expression levels positively correlated with
tumor progression. CD74, a high-affinity receptor for MIF,
mediates activation of the ERK signaling cascade, thereby
promoting innate immune responses driven by macrophages and
monocytes (54). In the context of tumor invasion and metastasis,
MIF may enhance tumor cell motility through multiple
mechanisms—for instance, by activating Rho GTPases and
promoting the polymerization of filamentous actin to remodel the
cytoskeleton, or by inducing epithelial-mesenchymal transition
(EMT) via modulation of the TGF-f pathway (55). Gui-Qi Zhu
and colleagues demonstrated that MIF promotes the expansion of
immunosuppressive myeloid-derived cells, accelerating tumor
progression and dampening antitumor immunity (33).
Mechanistic studies have further shown that MIF facilitates
osteosarcoma cell proliferation and metastasis by activating the

Frontiers in Oncology

13

10.3389/fonc.2025.1588514

RAS/MAPK signaling axis, with the degree of pathway activation
closely tied to tumor burden and patient prognosis (56).
Additionally, specific inhibitors such as 4-iodo-6-
phenylpyrimidine have been employed to disrupt MIF signaling,
markedly enhancing tumor cell sensitivity to chemotherapy,
suppressing primary tumor growth and angiogenesis, and
significantly reducing the incidence of distant metastasis (57).
These findings highlight the potential of MIF-targeted
interventions as a promising therapeutic strategy in
colorectal cancer.

In our study, we found that MIF pathway activity is significantly
elevated following hepatic metastasis of CRC. Epithelial cells and
fibroblasts were identified as the primary sources of MIF signals,
while macrophages, T cells, and B cells served as the main
recipients. Among intercellular interactions, the MIF-CD74
+CXCR4 axis emerged as a key communication pathway,
showing particularly high activity in signaling between epithelial
and B cells. Within the tumor microenvironment, macrophages and
B cells contribute to tumor-associated paracrine signaling through
the MIF pathway. Notably, macrophages act as central mediators in
this signaling network, relaying MIF signals from epithelial cells and
fibroblasts to lymphocytes—likely through the secretion of growth
factors or cytokines that coordinate crosstalk between epithelial and
immune cells. Notably, the influence of fibroblasts in controlling
tumor tissue increases during metastasis, indicating that tumor-
associated fibroblasts may release signaling molecules or alter the
extracellular matrix to support tumor invasion and migration. This
support may include promoting angiogenesis, modulating immune
responses, and facilitating immune evasion.

Numerous studies have shown that the binding of MIF to its
receptors activates the Src/PI3K signaling pathway, initiating a
downstream kinase cascade in which AKT activation plays a
central role (58). Once activated, AKT promotes the
phosphorylation of various downstream targets, thereby
modulating the molecular interactions between actin and myosin.
For instance, activated LIM kinases phosphorylate actin-
depolymerizing factors such as cofilin, suppressing their activity,
which in turn stabilizes actin filaments and facilitates their dynamic
elongation. These molecular alterations directly or indirectly affect
the function of actin-binding proteins such as TPM2, as well as the
structural stability and remodeling capacity of the cytoskeleton (59,
60). Based on this molecular framework, we propose that TPM2
activity, regulated by the MIF-mediated Src/PI3K signaling
pathway, may contribute to the phosphorylation of myosin II
chains, thereby modulating their intracellular polymerization
state. This cytoskeletal reorganization could enhance tumor cell
motility and ultimately promote distant metastasis.

Nonetheless, this research is not without its limitations.
Predominantly, given that the majority of patients with liver
metastases originating from colorectal cancer have previously
undergone radiotherapy and chemotherapy, the availability of
eligible CRCM patient samples is markedly limited,the sample
size impedes the ability to perform a statistical analysis of
differences, potentially resulting in susceptibility to considerable
random variations. Consequently, to bolster the robustness and
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applicability of our findings, further in-depth analytical studies and
the augmentation of sample sizes to ascertain the statistical
significance of differences have become focal points for our
forthcoming research endeavors. Identifying novel therapeutic
targets linked to these key genes and pathways may provide more
efficacious treatment alternatives for metastatic colorectal cancer
patients, constituting a vital trajectory for future investigations.
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