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Ferroptosis is a novel class of programmed cell death that is mainly dependent on

intracellular iron accumulation and lipid peroxidation. Ferroptosis is closely

related to a variety of human diseases, especially different kinds of cancer.

Several small molecule inducers have been developed to induce ferroptosis in

tumor cells, some of which have been used in clinical studies. However, these

chemical small molecules have toxic effects that limit its wide application. Natural

products, however, have a natural advantage in cancer therapy due to their low

toxicity and side effects. Some natural products have been found to inhibit tumor

growth by inducing ferroptosis in tumor cells. In this review, we reviewed the

molecular mechanism of ferroptosis and how natural products targeting

ferroptosis signaling pathways affect tumor growth. We also analyzed the

application of various natural products such as flavonoids, terpenoids, and

alkaloids in inducing ferroptosis in tumor cells. This review will assist in the

future discovery and study of more natural product inducers that can induce

ferroptosis in tumor cells, and ultimately provide insights into identifying natural

products that can be applied to clinical applications.
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Introduction

The goal of tumor therapy is to remove tumor cells. Therefore, inducing tumor cell

death is an attractive therapeutic target in cancer therapy. Currently, many drugs inhibit

tumor growth by inducing programmed cell death (PCD) in tumor cells. These PCD

include apoptosis, necroptosis, pyroptosis, autophagy-dependent cell death (ADCD) and

the newly discovered ferroptosis (1). Many of these early anticancer drugs inhibit tumor

growth by inducing tumor cell apoptosis. However, due to the heterogeneity of tumor cells

and tumor resistance to apoptosis, many drugs that induce apoptosis may develop

resistance and thus do not achieve the desired therapeutic effect. Therefore, there is an

urgent need to develop new drugs that inhibit tumor growth by inducing other types of

programmed cell death. Many small molecules have been reported, such as the small

molecule drugs emodin (2–4), shikonin (5, 6), and tanshinol A (7), which target
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necroptosis, and the small molecules berberine, fluoxetine, and

ABTL081, which target ADCD.

The concept of ferroptosis was first proposed by Dixon et al. in

2012 (8). It’s a type of iron-dependent programmed cell death

caused by an imbalance of intracellular reactive oxygen species

(ROS). Increasing evidence suggests that ferroptosis is closely

related to the tumorigenesis and therapeutic efficacy of various

tumors. Key proteins on the ferroptosis-related signaling pathway

are expected to be new targets for cancer therapy. Induction of

ferroptosis can reverse anticancer drug resistance, while inhibition

of ferroptosis can block specific death processes. Various inducers

and inhibitors have been developed for key proteins of the

ferroptosis signaling pathway, inducers such as Erastin, MEII, PE,

AE, SAS, Sorafenib and inhibitors such as Fer-1, CPX and DFO (9).

On the other hand, many chemotherapy drugs have strong side

effects in cancer treatment. Therefore, there is an urgent need to

develop drugs with fewer side effects to achieve better treatment

outcomes. Natural products refer to compounds extracted from

natural sources such as plants, microorganisms, and animals.

Natural products usually have complex structures and specific

biosynthetic pathways, while chemical small molecules are

relatively small organic compounds prepared by chemical

synthesis methods, with relatively simple structures and not

necessarily naturally produced by living organisms. They have a

range of unique advantages in cancer treatment, including

abundant sources, low toxicity and side effects, multiple targets

and the ability to overcome drug resistance. Many natural products

have been used in the clinic, such as paclitaxel, camptothecin and

doxorubicin, which have demonstrated their potential and efficacy

in the treatment of a wide range of cancers in clinical applications

(10). However, the number of these discovered natural products is

limited, and many of them inhibit tumor growth by inducing

apoptosis. Ferroptosis is a new type of cell death pathway that

offers unparalleled advantages compared to traditional apoptosis

and necrosis, such as selectively killing tumor cells, involving

multiple pathways and reversing drug resistance. Therefore,

inhibition of tumor growth by ferroptosis inducers, especially

natural product inducers, will provide new therapeutic options for

cancer patients, improve therapeutic efficacy, reduce side effects and

improve patients’ quality of life.
Overview and molecular mechanisms
of ferroptosis

In 2003, Sonam Dolma et al. first discovered that a new

compound, erastin, could selectively kill tumor cells expressing ST

and mutant RAS, but erastin-induced cell death did not show

apoptotic features and could not be inhibited by caspase

inhibitors. Therefore, it is suggested that erastin-induced cell

death was presumed to be a completely new form of death (11).

Subsequently, Yang and Yagoda et al. found that this form of death

could be inhibited by iron chelators. In 2012, Dixon et al. officially

named this type of death as ferroptosis (8). Ferroptosis is

characterized by the accumulation of iron and a significant
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increase in lipid peroxidation. This type of cell death is different

from traditional forms of death such as apoptosis and necrosis. It

has unique biological and molecular characteristics. During

ferroptosis, cell rupture does not occur. Morphological features

include an increase in the density of mitochondrial membranes, a

decrease in volume, a reduction in mitochondrial cristae, a decrease

in cristae density and rupture of the mitochondrial outer

membrane, but the nuclear morphology is normal but lacks

chromatin condensation (12).

The main trigger of ferroptosis in cells is the excessive

accumulation of lipid peroxides. This is reflected in the disrupts

the balance between the execution of ferroptosis and the defense

system of the cell, thereby inducing cell ferroptosis. The factors that

drive ferroptosis are Polyunsaturated Fatty Acid – Phospholipids

(PUFA-PLs) synthesis and oxidation, abnormal iron metabolism,

and mitochondrial metabolism abnormalities. The defense

mechanism against ferroptosis is mainly the cellular antioxidant

system that neutralizes lipid peroxides. These antioxidant systems

include the GPX4 system, free radical scavenging antioxidant

systems (such as the FSP1-COQH2 system, DHODH-CoQH2

system, and GCH1-BH4 system), and membrane repair systems

(Figure 1). When the promotion of ferroptosis execution exceeds

the cellular defense system, the accumulation of lipid peroxides can

induce cell ferroptosis (12, 13) Many ferroptosis inducers have now

been designed based on the characteristics of the ferroptosis

signaling pathway. Most of them are small molecule compounds

and some compounds such as SRF and SAS have been used in the

clinic (9).

Ferroptosis is a form of iron-dependent programmed cell death,

and its molecular mechanisms involve multiple signaling pathways.

The System Xc−-GSH-GPX4 pathway is the core regulatory

pathway of ferroptosis. During the process of ferroptosis, the

process initially begins with the initiation phase, where the

intracellular iron content increases due to enhanced iron uptake

mediated by the transferrin receptor (TfR) or increased

ferritinophagy. Meanwhile, the function of system Xc− is

impaired, leading to a decrease in intracellular glutathione

synthesis and a reduction in the activity of glutathione peroxidase

4 (GPX4). Subsequently, in the progression phase, the reduced

levels of glutathione and decreased GPX4 activity prevent the timely

reduction of lipid peroxides, exacerbating lipid peroxidation

reactions and generating a large amount of lipid reactive oxygen

species (ROS). ROS directly damage the cell membrane and further

promote iron release and mitochondrial dysfunction, creating a

vicious cycle. Finally, in the effector phase, mitochondria suffer

damage and dysfunction, characterized by a decrease in size,

increased membrane density, and a reduction or even

disappearance of cristae. Cellular energy metabolism is disrupted,

and lipid peroxidation products accumulate in large amounts

within the cell. Ultimately, the integrity of the cell membrane is

compromised, leading to cell death (14). (Figure 2). In addition,

NCOA4-mediated ferritin degradation, also known as

ferritinophagy, increases the intracellular iron ion levels,

promotes lipid peroxidation, and triggers ferroptosis (15). Recent

studies have also found that USP13 can promote the transition of
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ferroptosis to autophagy in tumor cells by activating the NFE2L2/

NRF2-SQSTM1/p62-KEAP1 axis in a KRAS signaling pathway-

dependent manner (16).

Ferroptosis has emerged as a promising target for cancer therapy

(17). However, many small molecule compounds have shown

drawbacks such as poor water solubility and targeting ability.

Therefore, it is necessary to discover more molecules to induce

tumor cell death by other routes. Among them, inducing tumor

cell ferroptosis through natural products is a feasible approach.
Natural products targeting the iron
death signaling pathway affect tumor
growth

Based on the characteristics of the ferroptosis signaling

pathway, natural products that can induce ferroptosis mainly

include the following types: 1. Class I that inhibits the system Xc-.

2. Class II that inhibits or degrades GPX4. 3. Class III that depletes

coenzyme Q10 (18). 4. Class IV that induces lipid peroxidation

through iron or PUFA overload (19). These natural products target

different targets of the ferroptosis signaling pathways, and

ultimately induce ferroptosis in tumor cells to inhibit tumor growth.
Natural products inhibit system Xc-

induce ferroptosis

System Xc- is an important component of the antioxidant

system in cells, mainly distributed in the phospholipid bilayer.
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System Xc- is composed of two subunits, a heterodimer consisting

of a heavy chain subunit, SLC3A2, and a light chain subunit,

SLC7A11, respectively (20). Cells use system Xc- to uptake cystine

into the cell, and the cystine entering the cell is reduced to cysteine,

which is an important raw material for synthesizing glutathione

(GSH). GSH is an important antioxidant and free radical scavenger,

which has a coordinated role with GPX4 to maintain intracellular

oxidative balance. By inhibiting System Xc- to limit cysteine intake

is the main rate-limiting step in inhibiting glutathione synthesis.

Depletion of GSH leads to intracellular redox imbalance, which

then leads to intracellular ROS accumulation and ultimately

induces ferroptosis. Various natural products targeting System

Xc- have been reported to induce ferroptosis, such as kayadiol

(21), Bavachin (22), and tanshinone IIA (23) (Figure 3).
Natural products inhibit or degrade
GPX4-induced ferroptosis

Glutathione peroxidase 4 (GPX4) is the only enzyme in cells

that can reduce lipid peroxides to lipids, and GPX4 plays a crucial

role in ferroptosis (24). GPX4 is a selenoprotein that primarily

functions to inhibit the formation of lipid peroxides. GPX4 can use

GSH as a substrate to specifically catalyze the reduction of lipid

peroxides to normal phospholipid molecules. In ferroptosis, when

the activity of GPX4 is inhibited, it leads to the accumulation of

intracellular peroxides, which in turn causes ferroptosis. RSL3 is one

of the most typical inducers of ferroptosis. RSL3 inhibits the activity

of GPX4 by covalently binding to the active site of selenocysteine in

GPX4, thereby inducing ferroptosis (25). It has been reported that
FIGURE 1

Factors driving ferroptosis and defense mechanisms of ferroptosis. The main factors driving ferroptosis mainly include the synthesis and oxidation of
PUFA-PLs, abnormal iron metabolism, and abnormal mitochondrial metabolism. The defense mechanisms against ferroptosis mainly involve the cell
antioxidant system that neutralizes lipid peroxides. These antioxidant systems include the GPX4 system, free radical scavenging antioxidant systems
(such as FSP1-COQH2 system, DHODH-CoQH2 system, and GCH1-BH4 system).
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GPX4 is highly expressed in various types of tumors, which may be

related to the tumorigenesis (26). Several natural products have

been reported to induce ferroptosis by inhibiting GPX4, such as

Capsaicin (27), heteronemin (28) and Eriocitrin (29) (Figure 3).
Natural products target iron
metabolism to induce ferroptosis

Iron is an important trace element for maintaining the life of

living organisms and a cofactor for many biochemical reactions

within cells. In ferroptosis, excess intracellular Fe2+ can promote the

accumulation of lipid ROS through the Fenton reaction, ultimately

leading to the induction of ferroptosis. When Fe2+ from food is

absorbed into the blood, it is oxidized to Fe3+. Subsequently, Fe3+

binds to transferrin (TF) and is transported to tissues. The

transferrin receptor (TFR) on the cell membrane can bind to TF

carrying Fe3+ and enter the cell through endocytosis. Subsequently,

the intracellular Fe3+ is reduced to Fe2+ by STEAP3 and stored in

the labile iron pool (LIP) and in the ferritin consisting of ferritin
Frontiers in Oncology 04
light chain (FTL) and ferritin heavy chain 1 (FTH1), and small

molecule complex GSH. Excess intracellular Fe2+ is eliminated from

the body mainly through SLC40A1. Due to the instability and high

reactivity of Fe2+, it participates in the Fenton reaction. The Fenton

refers to the reaction where Fe2+ reacts with hydrogen peroxide to

generate Fe3+ and oxygen free radicals. Excessive intracellular iron

can generate oxygen free radicals and reactive oxygen through an

iron-dependent Fenton reaction, leading to oxidative stress and

lipid peroxidation in cells, ultimately inducing cell ferroptosis.

Various natural products have been reported to target iron

metabolism to induce ferroptosis, such as Baicalin (30), Juglone

(31), Trabectedin (32), Vitamin C (33) (Figure 3).
Natural products target lipid
metabolism to induce ferroptosis

The formation of lipid peroxides in membrane phospholipids in

cells usually leads to ferroptosis. Unsaturated PUFAs, especially

arachidonic acid (AA) and adrenoyl acid (AdA), are prone to react
FIGURE 2

Signaling pathway for inducing ferroptosis in tumor cells. Intracellular iron metabolism and lipid peroxides are the main reasons that induce
ferroptosis in tumor cells. The major cellular defense system to avoid ferroptosis are the System Xc-/GSH/GPX4 axis, the CoQ/FSP1 axis and the
GCH1-BH4 defense system.
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with ROS, leading to lipid peroxidation and inducing cell

ferroptosis. phosphatidylethanolamines (PEs) containing AA or

AdA are key phospholipids that induce ferroptosis. The oxidation

of unsaturated PUFAs such as AA is regulated by ACSL4. ACSL4

catalyzes the binding of free AA or AdA with coenzyme A (CoA) to

form AA-CoA or AdA-CoA. It is then esterified to membrane AA-

PEs by lysophosphatidyltransferase 3 (LPCAT3) and finally

undergoes lipid peroxidation catalyzed by the lipoxygenase

protein family (LOXs). Therefore, ferroptosis can be inhibited by

inhibiting ACSL4 and LPCAT3 or LOXs. Various natural products

targeting lipid metabolism have been reported to induce ferroptosis,

such as Capsaicin (34), Berberine (35), Oleanolic acid

(36) (Figure 3).
Natural products target other
pathways to induce iron death

Currently, there are reports showing that there are other

pathways and proteins that can affect cell death by ferroptosis.

These include coenzyme Q10, nicotinamide adenine dinucleotide

phosphate (NADPH), selenium, p53, nuclear factor E2-related
Frontiers in Oncology 05
factor 2 (NRF2), nuclear factor erythroid 2-related factor 2

(NFE2L2) and Vitamin E.
Application of natural products in
inducing ferroptosis in tumor cells

The active ingredients of natural products originating from the

plant kingdom mainly include flavonoids, alkaloids, polysaccharides,

volatile oils, quinones, terpenoids, lignans, coumarins, saponins,

cardiac glycosides, phenolic acids, amino acids and enzymes.

Currently, reports show that most of these types of natural

products can induce ferroptosis in tumor cells through various

signaling pathways (Table 1).
Flavonoids induce ferroptosis in tumor
cells

Flavonoids are a class of compounds with a flavone skeleton,

widely distributed in certain plants and herbs. Most natural

flavonoids exist in the form of glycosides. Among the flavonoids
FIGURE 3

Molecular targets of various types of natural products inhibit tumor ferroptosis.
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reported to induce ferroptosis in tumor cells are Ginkgetin, Baicalin,

Amentoflavone, Nobiletin, and 4,4-Dimethoxychalcone

(Table 1) (37).

Biflavonoids like bilobetin, isooginkgetin, and ginkgetin from

Ginkgo biloba can inhibit MDM2 to boost wild-type P53

expression. This significantly raises ROS levels in colon cancer

HCT-116 cells, triggering ferroptosis. Ginkgetin also enhances 5-

fluorouracil’s anti-tumor effect in these cells (38). Furthermore,

studies have demonstrated that ginkgetin enhances the therapeutic

efficacy of cisplatin (DDP) in EGFR wild-type non-small cell lung

cancer by inducing ferroptosis via disruption of the Nrf2/HO-1 axis.

These findings indicate that ginkgetin not only induces ferroptosis

in tumor cells but also potentiates the therapeutic effects of certain

chemotherapeutic agents. Nevertheless, further research is required

to elucidate the underlying mechanisms.

Baicalin, a flavonoid compound extracted from the roots of

Scutellaria baicalensis, exhibits significant anti-tumor activity. It

induces ferroptosis in tumor cells through multiple mechanisms

(39). In bladder cancer and oral squamous cell carcinoma (OSCC),

baicalin induces ferroptosis by suppressing the activity of FTH1 (30,

40). In osteosarcoma (OS), it triggers ferroptosis through the

regulation of the Nrf2/xCT/GPX4 axis (41). Furthermore, in gastric

cancer, baicalin inhibits TFR1 to facilitate ROS-mediated ferroptosis,

thereby enhancing the therapeutic efficacy of 5-fluorouracil (42).

Tiliroside, a compound present in various plants, has been

demonstrated to inhibit the growth of multiple tumors through

ferroptosis, such as triple-negative breast cancer, liver cancer and

pancreatic cancer (43–45). In pancreatic cancer, it disrupts iron

homeostasis and triggers ferroptosis through direct targeting of

calpain-2 (43). In liver cancer, it induces ferroptosis by targeting

TBK1 and sensitizes tumors to the chemotherapy drug sorafenib

(44). In triple-negative breast cancer, tiliroside induces ferroptosis

in TNBC cells through the PUFA-PLS pathway, which is associated

with the Nrf2/HO-1 pathway (45). Thus, tiliroside can induce

ferroptosis in tumor cells through multiple mechanisms.

Quercetin is a natural flavonoid abundant in various plants. In

human liver cancer cells, it mediates ferritin degradation through

TFEB-dependent lysosomal activation, thereby promoting

ferroptosis via iron release and subsequent lipid oxidation (46). A

similar mechanism is also found in breast cancer, where quercetin

induces ferroptosis by promoting lysosomal degradation of ferritin

through TFEB nuclear translocation (47). In gastric cancer,

quercetin induces ferroptosis in gastric cancer cells by targeting

SLC1A5 and regulating the p-Camk2/p-DRP1 and NRF2/GPX4

axis (48).
Terpenoids induce ferroptosis in
tumor cells

Terpenoids are widely distributed in nature and constitute the

main components of fragrances, resins, and pigments in certain

plants. As polymers formed by the head-to-tail linkage of isoprene

units in various configurations, they exhibit structural diversity.

A variety of terpenoids, including Heteronemin, Kayadiol,
Frontiers in Oncology 06
Corosolic acid, Parthenolide, Curcumenol and Manoalide, have

been reported to inhibit tumor growth by inducing ferroptosis in

tumor cells (Table 1).

Ginsenosides, key bioactive components in ginseng, are

triterpene glycosides. Over 40 compounds have been isolated

from ginseng roots. Those reported to induce tumor cell

ferroptosis include primarily Rh4, Rh3, and Rg5, with Rh4 being

the most extensively studied. Notably, Rh4 triggers ferroptosis in

malignancies like multiple myeloma (MM) and colorectal

cancer (CRC).

In renal cell carcinoma (RCC), Rh4 induces ferroptosis

primarily via the NRF2 pathway (49). In multiple myeloma, Rh4

induces ferroptosis mainly through SIRT2 (50). In gastric cancer, it

induced ferroptosis through the activation of ROS/p53 signaling

pathway and activation of autophagy (51). In glioma, ginsenoside

Rg5 inhibits the progression of glioblastoma by activating

ferroptosis via the NR3C1/HSPB1/NCOA4 axis (50). Meanwhile,

ginsenoside Rh3 (GRh3), a semi-natural product derived from

chemical processing, induces both pyroptosis and ferroptosis in

CRC cells via the Stat3/p53/NRF2 axis (52).

Andrographolide, the primary bioactive component of

Andrographis paniculata, is a diterpenoid lactone with potent

anticancer activity. In multiple myeloma, it induces ferroptosis in

MM cells by activating p38 and subsequently blocking the Nrf2/HO-

1 pathway (53). In NSCLC cells, andrographolide downregulates the

ferroptosis-related proteins GPX4 and SLC7A11, exacerbates

mitochondrial dysfunction, and ultimately triggers ferroptosis (54).

Terpene lactones (NTLs), including g-lactones and d-lactones, are a
large part of terpenes. Such compounds have a wide range of biological

activities. Sesquiterpene lactones, a large group of secondary

metabolites predominantly derived from Asteraceae plants, include

artemisinin, a sesquiterpene lactone with an endoperoxide bridge

extracted from Artemisia annua. Its derivatives comprise artemether

(ARM), arteether (ARTE), dihydroartemisinin (DHA), and artesunate

(ATS), and various derivatives have been reported to induce ferroptosis

in tumor cells (55).

Artemisinin can induce ferroptosis of tumor cells through

multiple mechanisms, such as triggering intracellular ROS

production, promoting lysosomal degradation of ferritin, and

regulating the System Xc-/GPX4 axis to induce ferroptosis (56, 57).

Among artemisinin derivatives, DHA has been most extensively

studied, with its mechanisms well characterized. DHA is produced

by reducing artemisinin with sodium borohydride; compared to the

parent compound, it exhibits greater water solubility, a higher

metabolic rate, faster absorption, lower cytotoxicity, and reduced

drug resistance. Early studies demonstrated that in head and neck

cancer, DHA specifically inhibits cancer cell growth by inducing both

ferroptosis and apoptosis (58, 59). Subsequently, it was found that

DHA induces ferroptosis in glioma cells through the PERK-ATF4-

HSPA5-GPX4 pathway (60), with GPX4 identified as a key target of

DHA-mediated ferroptosis in glioblastoma (61). In liver cancer, DHA

induces hepatocyte ferroptosis by inhibiting ATF4, SLC7A11 or xCT,

and also induces ferroptosis in hepatocellular carcinoma by

promoting PEBP1/15-LO formation (62). Additionally, other

reports suggest DHA triggers ferroptosis in primary liver cancer
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TABLE 1 Various natural products induce iron death in tumor cells.

Category Compounds Cancer types Mechanism Ref

Flavonoids bilobetin, isooginkgetin,
Ginkgetin

HCT-116,
nonsmall cell lung cancer

Enhanced P53 expression,
Destruction of Nrf2/HO-1 axis

(38, 85)

Baicalin bladder cancer,
Osteosarcoma,
gastric cancer

Inhibition of FTH1 activity,
regulation of the Nrf2/xCT/GPX4 axis,
Inhibits TFR1 and others to induce ROS

(30, 40–42)

Amentoflavone gastric cancer Targeting the miR-496/ATF2 axis (86)

Nobiletin multiple myeloma Induces ROS production by an unknown
mechanism that
Inhibits NRF2/GPX4

(87, 88)

4,4’-Dimethoxychalcone nonsmall cell lung cancer Keap1/Nrf2/HMOX1 pathway and
inhibition FECH,

(89)

Icariin prostate cancer Regulation of miR-7/mTOR/
SREBP1 pathway

(90)

Ononin Triple-negative breast cancer Nrf2/SLC7A11 axis (91)

Myricetin gastric cancer NOX4/NRF2/GPX4 pathway regulation (92)

Tiliroside Pancreatic Cancer, Liver Cancer, Triple
Negative Breast Cancer

Targeting calpain-2 to disrupt iron
homeostasis,
Targeting TBK1,
Through the PUFA-PLS pathway

(43–45)

Quercetin Breast Cancer, Liver Cancer and
gastric cancer

by promoting lysosomal degradation
following nuclear translocation of TFEB to
activate ferritin,
Targeting SLC1A5 Regulates the NRF2/
GPX4 Axis

(46–48)

Eriocitrin lung adenocarcinoma Elevated ROS levels, down-regulation of
Nrf-2, SLC7A11, and GPX4 expression

(29)

Isoliquiritigenin gallbladder cancer by activating p62-Keap1-Nrf2-
HMOX1 signaling

(93)

Wogonin Pancreatic cancer By suppressing the Nrf2/GPX4 axis (94)

Lysionotin colorectal cancer Promoting Nrf2 Degradation (95)

Rhamnazin hepatocellular carcinoma inhibiting GPX4 expression (22)

Bavachin Osteosarcoma STAT3/P53/SLC7A11 Axis (22, 96)

Typhaneoside Leukemia ROS accumulation (97)

Terpenoids Ginsenoside Rh4, Multiple myeloma (MM),
Renal cell carcinoma (RCC)

regulating SIRT2,
via the NRF2 Pathway,
activating the ROS/p53 signaling pathway

(49–51)

Ginsenoside Rh5 glioblastoma Through NR3C1/HSPB1/NCOA4 signaling (98)

Ginsenoside Rh3 colorectal cancer through the Stat3/p53/NRF2 axis (52)

Andrographolide Multiple myeloma Regulating the P38/Nrf2/HO-1 pathway (53)

Abeetic acid Bladder cancer activation of the HO-1 pathway (99)

Corosolic acid (CA) liver cancer upregulating HERPUD1 (100)

Terpenoid Hepatocellular Carcinoma Reduced the expression of GPX4 (28)

Kayadiol Extranodal natural killer/T cell
lymphoma (NKTCL)

through p53 (21)

d-Borneol lung cancer by promotin NCOA4-mediated
ferritinophagy

(101)

(Continued)
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TABLE 1 Continued

Category Compounds Cancer types Mechanism Ref

Tagitinin C Colorectal cancer through PERK-Nrf2-HO-1
signaling pathway

(102)

ardisiacrispin B colon adenocarcinoma increase in ROS production (103)

Oleanolic acid Cervical cancer modulation of the ACSL4 (36)

Parthenolide (PTL) Hepatocellular carcinoma Reduce GPX4 expression (104)

manoalide lung cancer mitochondrial Ca2+ overload induced-
FTH1 pathways

(105)

Andrographolide Non-Small Cell Lung Cancer,
Multiple myeloma

inhibited GPX4 and SLC7A11 expression,
block the Nrf2/HO-1 signaling pathway

(53, 54)

Eupalinolide B hepatic carcinoma mediated by endoplasmic reticulum (ER)
stress, as well as HO-1 activation.

(106)

Curcumenol lung cancer via lncRNA H19/miR-19b-3p/FTH1 axis (107)

Eupaformosanin triple-negative breast cancer through ubiquitination of mutant p53 (108)

Artemisinin and
its Derivatives

Head and neck cancer,
Glioma, lung cancer, liver cancer

triggering intracellular ROS production,
promoting the lysosomal degradation of
ferritin and regulating the System Xc-/
GPX4 axis.

(56, 57, 63–65)

Tanshinone IIA Breast cancer,
gastric cancer

destabilizes SLC7A11, through p53-
mediated SLC7A11 down-regulation, via
the KDM4D/p53 pathway

(23, 109, 110)

Tagitinin C colorectal cancer through PERK-Nrf2-HO-1
signaling pathway

(102)

Cucurbitacin B nasopharyngeal cancer downregulated the expression of GPX4 (111)

Heteronemin Hepatocellular Carcinoma downregulated the expression of GPX4 (28)

Alkaloids Anisomycin Hepatocellular Carcinoma Modulation of the p38 MAPK Pathway (112)

Peiminine breast cancer through triggering Nrf2 signaling (113)

nitidine chloride multiple myeloma inhibits PI3K/AKT signaling pathway (114)

Chelerythrine ovarian cancer through Nrf2 (115)

nitidine chloride multiple myeloma inhibits PI3K/AKT signaling pathway (114)

soyauxinium chloride Melanoma, colon adenocarcinoma Unknown (116)

ungeremine 9 cancers Unknown (117)

Solasonine hepatoma carcinoma,
Pancreatic cancer,

by suppression of GPX4 and GSS, inhibits
the TFAP2A/OTUB1 SLC7A11,
mitochondrial damage

(66, 67, 118)

Evodiamine Bladder Cancer, prostate cancer Suppression of GPX4, by reducing
GPX4 expression,

(68, 69)

talaroconvolutin A colorectal cancer, bladder cancer downregulated SLC7A11 expression,
elevated ROS and upregulated transferrin

(119, 120)

Matrine Cervical cancer, through activation of piezo1 channel (121)

Cephaeline lung cancer by targeting NRF2 (122)

Trabectedin Non-small cell lung cancer via regulation of HIF-1a/IRP1/FE1 and
Keap1/Nrf2/GPX4 axis

(32)

Tomatidine pancreatic cancer targets ATF4-dependent signaling (123)

Berberine Nasopharyngeal carcinoma through System Xc/GSH/GPX4 Axis (35)

Solanine colorectal cancer through ALOX12B/ADCY4 molecular axis (124)

(Continued)
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cells by upregulating CHAC1 expression, which is induced through

interactions with unfolded proteins (63). The molecular mechanisms

behind this difference still need further in-depth study. In lung

cancer, DHA inhibits proliferation and colony formation, increases

cell death, and induces ferroptosis in lung cancer cells by inactivating

the PRIM2/SLC7A11 axis (64). Subsequently, it was found that DHA

not only induces ferroptosis through lipid peroxide (LPO)

accumulation but also promotes immunogenic cell death of lung

cancer cells, thereby enhancing anti-tumor effects (65).
Alkaloids induce ferroptosis in tumor
cells

Solasonine, a steroidal alkaloid derived from the natural herb

Solanum melongena, exhibits potent anticancer activity. In gastric

cancer, it induces ferroptosis by inhibiting GPX4 and GSS, thereby

elevating lipid ROS levels; this effect can be significantly reversed by
Frontiers in Oncology 09
ferroptosis inhibitors (66). In pancreatic cancer, by contrast,

solasonine activates ferroptosis and suppresses cancer cell

progression through inhibition of the TFAP2A/OTUB1/SLC7A11

axis. In lung adenocarcinoma, it triggers tumor cell ferroptosis by

disrupting redox balance and causing mitochondrial oxidative stress

damage (67) (Table 1).

Evodiamine, an alkaloid from Hemerocallis fulva fruits, has

antitumor effects. In bladder cancer, it induces ferroptosis mainly by

inhibiting GPX4 expression (68). In prostate cancer, Evodiamine

acts as a metabolic epigenetic regulator. It increases Sema3A

expression to impair angiogenesis and induces ferroptosis by

decreasing GPX4 expression. After ferroptosis, HIF1A protein

lactylation is inhibited. This blocks lactate-induced angiogenesis,

enhances Sema3A transcription and inhibits PD-L1 transcription,

boosting antitumor effects (69).

Capsaicinoids, the active components of chili peppers and

secondary metabolites, show antitumor activity in various tumors.

In glioblastoma, capsaicin induces redox imbalance and ferroptosis
TABLE 1 Continued

Category Compounds Cancer types Mechanism Ref

Lepadins E and H Cervical cancer
And melanoma

through the p53-SLC7A11-GPX4 pathway (125)

Piperlongumine various tumors by Targeting Selenocysteine Residues (126)

Capsaicin Glioblastoma, NSCLC,
Hepatocellular carcinoma,

through ACSL4/GPX4 signaling pathways (27, 34, 70)

Sanguinarine Cervical Cancer involved SLC7A11 down-regulation,
GSH depletion,

(127)

brucine Hepatocellular Carcinoma via promotion of hydrogen peroxide
and iron

(128)

Phenols Curcumin Follicular thyroid cancer, Breast Cancer,
osteosarcoma, Colorectal Cancer,
breast cancer

increasing the HO-1 expression,
by regulating Nrf2/GPX4 signaling, via
PI3K/Akt/mTOR or JNK Signaling, by
promoting SLC1A5

(18, 71, 129–132)

Erianin lung cancer, Bladder Cancer, colorectal
cancer, hepatocellular carcinoma

Via Ca2+/CaM signaling, via NRF2
Inactivation, through autophagy-
dependent, through the JAK2/STAT3/
SLC7A11 pathway

(73–76)

Gallic acid hepatocellular carcinoma via inactivating Wnt/b-catenin
signaling pathway

(133)

Honokiol ovarian cancer, colon cancer, Acute
Myeloid Leukemia

through the regulation of YAP by OTUB2,
by regulating GPX4 activity, by
Upregulating HMOX1

(134–136)

Resveratrol acute myeloid leukemia (AML) through Hsa-miR-335-5p/NFS1/
GPX4 pathway

(137)

Propofol non-small cell lung cancer through the miR-744-5p/miR-615-3p axis (138)

6-Gingerol Lung cancer via suppression of USP14 expression (139)

Others Vitamin C Pancreatic Cancer, Anaplastic thyroid
cancer (ATC)

Activating the AMPK/Nrf2/
HMOX1 Pathway

(33, 79)

Vitamin D Colorectal Cancer via SLC7A11 Downregulation (80)

Osthole colorectal cancer via suppressing AMPK/Akt signaling (81)

Withaferin A hepatocellular carcinoma via Nrf2-mediated EMT (82)
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in U87-MG and U251 cells primarily via the ACSL4/GPX4

signaling pathway (27). Similar findings were observed in NSCLC,

where capsaicin induces ferroptosis mainly by inactivating

SLC7A11/GPX4 signaling (34), suggesting its potential as an

anticancer agent for NSCLC. Additionally, the synthetic capsaicin

analog Arvanil induces high mitochondrial calcium flux, opening

the mitochondrial membrane permeability transition pore (mPTP)

and triggering ferroptosis in hepatocellular carcinoma (70).
Phenol induce ferroptosis in tumor
cells

Phenolic compounds, formed by hydroxyl groups directly attached

to aromatic hydrocarbons, are produced by plants and

microorganisms. Curcumin, a yellow pigment extracted from

turmeric rhizomes, is an unsaturated polyphenolic compound. It

inhibits tumor growth by inducing ferroptosis in various tumor cells,

primarily by upregulating HO-1 expression. For example, in Follicular

Thyroid Cancer (FTC), HO-1 overexpression activates ferroptosis

signaling. Curcumin suppresses FTC growth by inducing ferroptosis

through increased HO-1 expression (71) (Table 1).

Erianin, extracted from Dendrobium chrysotoxum Lindl, shows

anti-cancer activity across various cancers, inhibiting tumor growth

via ferroptosis in lung, liver, bladder, and colon cancers (72). In lung

cancer, it induces ferroptosis and inhibits cell migration through

Ca2+/CaM signaling (73). In bladder cancer, Erianin triggers

ferroptosis by inactivating NRF2 (74). In colon cancer, it

suppresses growth and metastasis via autophagy-dependent

ferroptosis in KRAS (75). In liver cancer, Erianin induces

ferroptosis by activating JAK2/STAT3 and inhibiting SLC7A11

and GPX4 expression, reducing HCC cell proliferation and

invasion (76). Additionally, in kidney cancer, Erianin promotes

ferroptosis in cancer stem cells by enhancing ALOX12/p53 mRNA

N6-methyladenosine modification (77). It also inhibits lung cancer

stemness and improves chemosensitivity by inducing ferroptosis,

highlighting its potential in cancer therapy (78).
Other natural products induce
ferroptosis in tumor cells

Other natural products can also induce ferroptosis in tumor

cells, including vitamins, coumarins, and steroids (Table 1).

Vitamin C induces ferroptosis in pancreatic cancer cells and

inhibits tumor growth by activating AMPK/Nrf2/HMOX1 (33,

79). while vitamin D promotes ferroptosis in colorectal cancer

stem cells by downregulating SLC7A11 (80). Osthole, a natural

coumarin from fungi and umbelliferous plants, induces ferroptosis

in colon cancer cells by inhibiting the AMPK/Akt/mTOR pathway

(81). Withaferin A, a sterol lactone from the medicinal plant

Withania somnifera, induces EMT and ferroptosis in liver cancer

cells through Nrf2 mediation (82).

Flavonoids, terpenoids, alkaloids and phenols all induce

ferroptosis in tumor cells by interfering with the antioxidant
Frontiers in Oncology 10
system, promoting lipid peroxidation and regulating iron

metabolism. However, they differ in their specific mechanisms.

Flavonoids induce ferroptosis by releasing iron ions via

ferritinophagy and inhibiting antioxidant enzymes. Terpenoids

activate ACSL4 to boost lipid peroxidation substrate synthesis

and affect mitochondrial function. Alkaloids suppress xCT to

block cystine uptake or inhibit the mitochondrial respiratory

chain to produce ROS. Phenols directly promote oxidation

through the Fenton reaction and inhibit repair of peroxidized

phospholipids at high concentrations.
Conclusion

Ferroptosis is a recently discovered novel mode of programmed

death, mainly caused by intracellular iron accumulation and an

increase in lipid peroxidation. There are significant differences

between ferroptosis and other types of programmed death in terms

of cell morphology and molecular mechanisms. Current reports show

that ferroptosis is closely related to a variety of human diseases, such as

neurological diseases, cardiovascular diseases, infectious diseases and

cancer. Inhibiting tumor growth by inducing ferroptosis in various

tumor cells has become a popular target in cancer therapy. Some small

molecule compounds that can induce tumor cell ferroptosis such as

SRF and SAS have been used in clinical studies. However, small

molecule compounds have always had side effects in cancer

treatment, causing toxic effects on normal cells. Natural products

have unique advantages in cancer therapy, such as low toxicity and

side effects as well as overcoming drug resistance. Therefore,

discovering and studying the use of natural product therapy to

induce ferroptosis of tumor cells has important theoretical and

practical significance. We systematically analyzed the molecular

mechanisms of natural products inducing ferroptosis in tumor cells

and the applications of various types of natural products reported in

inducing ferroptosis in tumor cells. These analyses provide a theoretical

basis and guidance for the discovery and study of more natural product

inducers in the future. Although many natural products have been

found to induce ferroptosis in tumor cells, however, further research is

needed to discover and study the molecular mechanisms and clinical

efficacy of these natural products.

Natural products hold certain therapeutic potential in inducing

ferroptosis in tumors, but they also face many limitations and

challenges. First, tumor cells show significant differences in

sensitivity to ferroptosis. Different tumor types vary in their

sensitivity to ferroptosis due to differences in metabolic

characteristics, gene expression profiles, and genetic mutation

patterns. For example, hepatocellular carcinoma, pancreatic

cancer, and breast cancer are relatively sensitive to ferroptosis,

while some tumor cells may develop tolerance to ferroptosis

inducers because they contain high levels of antioxidant enzymes

or iron regulatory proteins. In addition, the complexity of the tumor

microenvironment can also affect the occurrence of ferroptosis, and

genetic mutations that may occur during the process of cell

carcinogenesis, such as mutations in the p53 gene, can also

change the sensitivity of cells to ferroptosis (83).
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Second, the potential side effects of natural products in inducing

ferroptosis cannot be ignored. Natural products may have toxic

effects on normal tissues, especially at high doses or with long-term

use. Some natural products may be photosensitive, thermosensitive,

or chemically unstable, which limits their clinical application

prospects. Moreover, ferroptosis inducers may increase oxidative

stress levels, which in some cases may promote the occurrence and

development of tumors. For example, excessive lipid peroxidation

can lead to DNA damage, thereby triggering mutations and tumor

development. Certain natural products may interact with

ferroptosis inducers to produce unknown side effects or enhance

toxicity. In summary, although natural products have potential in

inducing ferroptosis in tumors, their limitations and challenges

should not be overlooked (84).

In future research, we need to focus more on the following

issues. First, different types of tumor cells have varying sensitivities

to natural products inducing ferroptosis in these tumor cells, and

the underlying mechanisms have been unknown. Therefore, future

research needs to focus on studying the molecular mechanisms that

cause differences in sensitivity. Secondly, many natural products

have disadvantages such as poor water solubility, limiting their

wider application. Therefore, future studies need to focus on the

structurally modifying these natural products that can induce

ferroptosis in tumor cells to make them more soluble in water

and more easily absorbed by the body. Alternatively, the

development of more effective drug delivery vehicles that can

deliver these natural products to the tumor site in the human

body. Finally, the combination of natural products with

chemotherapeutic or targeted drugs for the treatment of tumors

can achieve better therapeutic effects, so future research needs to

focus on this combination of drug therapy. The in-depth study of

the above issues will eventually provide broader prospects for the

application of natural products in cancer therapy.

In future research, the induction of ferroptosis by natural

products should focus on addressing existing limitations. On the

one hand, improving the solubility and bioavailability of natural

products through means such as nanotechnology, microemulsion

technology, and liposome encapsulation, and developing tumor-

targeted nanocarriers or drug delivery systems to enhance their

accumulation and efficacy in tumor tissues while reducing toxicity

to normal tissues. On the other hand, delving into the molecular

mechanisms underlying the sensitivity of tumor cells to ferroptosis,

identifying predictive biomarkers, and providing a basis for

precision therapy. Research should be committed to the

development of combination therapies, integrating ferroptosis

inducers with traditional chemotherapy, radiotherapy, targeted
Frontiers in Oncology 11
therapy, or immunotherapy to enhance therapeutic effects and

reduce the resistance associated with monotherapy. For example,

combining ferroptosis inducers with radiotherapy can enhance

DNA damage induced by radiotherapy, while combining them

with immune checkpoint inhibitors can improve the immune

microenvironment. In addition, it is necessary to explore the

interactions between ferroptosis and other forms of cell death, as

well as the regulatory role of the tumor microenvironment in

these processes, to provide a more comprehensive strategy for

cancer treatment.
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