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Ferroptosis is a novel class of programmed cell death that is mainly dependent on
intracellular iron accumulation and lipid peroxidation. Ferroptosis is closely
related to a variety of human diseases, especially different kinds of cancer.
Several small molecule inducers have been developed to induce ferroptosis in
tumor cells, some of which have been used in clinical studies. However, these
chemical small molecules have toxic effects that limit its wide application. Natural
products, however, have a natural advantage in cancer therapy due to their low
toxicity and side effects. Some natural products have been found to inhibit tumor
growth by inducing ferroptosis in tumor cells. In this review, we reviewed the
molecular mechanism of ferroptosis and how natural products targeting
ferroptosis signaling pathways affect tumor growth. We also analyzed the
application of various natural products such as flavonoids, terpenoids, and
alkaloids in inducing ferroptosis in tumor cells. This review will assist in the
future discovery and study of more natural product inducers that can induce
ferroptosis in tumor cells, and ultimately provide insights into identifying natural
products that can be applied to clinical applications.

cancer, molecular mechanisms, ferroptosis, natural products, applications

Introduction

The goal of tumor therapy is to remove tumor cells. Therefore, inducing tumor cell
death is an attractive therapeutic target in cancer therapy. Currently, many drugs inhibit
tumor growth by inducing programmed cell death (PCD) in tumor cells. These PCD
include apoptosis, necroptosis, pyroptosis, autophagy-dependent cell death (ADCD) and
the newly discovered ferroptosis (1). Many of these early anticancer drugs inhibit tumor
growth by inducing tumor cell apoptosis. However, due to the heterogeneity of tumor cells
and tumor resistance to apoptosis, many drugs that induce apoptosis may develop
resistance and thus do not achieve the desired therapeutic effect. Therefore, there is an
urgent need to develop new drugs that inhibit tumor growth by inducing other types of
programmed cell death. Many small molecules have been reported, such as the small
molecule drugs emodin (2-4), shikonin (5, 6), and tanshinol A (7), which target
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necroptosis, and the small molecules berberine, fluoxetine, and
ABTLO081, which target ADCD.

The concept of ferroptosis was first proposed by Dixon et al. in
2012 (8). It’s a type of iron-dependent programmed cell death
caused by an imbalance of intracellular reactive oxygen species
(ROS). Increasing evidence suggests that ferroptosis is closely
related to the tumorigenesis and therapeutic efficacy of various
tumors. Key proteins on the ferroptosis-related signaling pathway
are expected to be new targets for cancer therapy. Induction of
ferroptosis can reverse anticancer drug resistance, while inhibition
of ferroptosis can block specific death processes. Various inducers
and inhibitors have been developed for key proteins of the
ferroptosis signaling pathway, inducers such as Erastin, MEII, PE,
AE, SAS, Sorafenib and inhibitors such as Fer-1, CPX and DFO (9).

On the other hand, many chemotherapy drugs have strong side
effects in cancer treatment. Therefore, there is an urgent need to
develop drugs with fewer side effects to achieve better treatment
outcomes. Natural products refer to compounds extracted from
natural sources such as plants, microorganisms, and animals.
Natural products usually have complex structures and specific
biosynthetic pathways, while chemical small molecules are
relatively small organic compounds prepared by chemical
synthesis methods, with relatively simple structures and not
necessarily naturally produced by living organisms. They have a
range of unique advantages in cancer treatment, including
abundant sources, low toxicity and side effects, multiple targets
and the ability to overcome drug resistance. Many natural products
have been used in the clinic, such as paclitaxel, camptothecin and
doxorubicin, which have demonstrated their potential and efficacy
in the treatment of a wide range of cancers in clinical applications
(10). However, the number of these discovered natural products is
limited, and many of them inhibit tumor growth by inducing
apoptosis. Ferroptosis is a new type of cell death pathway that
offers unparalleled advantages compared to traditional apoptosis
and necrosis, such as selectively killing tumor cells, involving
multiple pathways and reversing drug resistance. Therefore,
inhibition of tumor growth by ferroptosis inducers, especially
natural product inducers, will provide new therapeutic options for
cancer patients, improve therapeutic efficacy, reduce side effects and
improve patients’ quality of life.

Overview and molecular mechanisms
of ferroptosis

In 2003, Sonam Dolma et al. first discovered that a new
compound, erastin, could selectively kill tumor cells expressing ST
and mutant RAS, but erastin-induced cell death did not show
apoptotic features and could not be inhibited by caspase
inhibitors. Therefore, it is suggested that erastin-induced cell
death was presumed to be a completely new form of death (11).
Subsequently, Yang and Yagoda et al. found that this form of death
could be inhibited by iron chelators. In 2012, Dixon et al. officially
named this type of death as ferroptosis (8). Ferroptosis is
characterized by the accumulation of iron and a significant
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increase in lipid peroxidation. This type of cell death is different
from traditional forms of death such as apoptosis and necrosis. It
has unique biological and molecular characteristics. During
ferroptosis, cell rupture does not occur. Morphological features
include an increase in the density of mitochondrial membranes, a
decrease in volume, a reduction in mitochondrial cristae, a decrease
in cristae density and rupture of the mitochondrial outer
membrane, but the nuclear morphology is normal but lacks
chromatin condensation (12).

The main trigger of ferroptosis in cells is the excessive
accumulation of lipid peroxides. This is reflected in the disrupts
the balance between the execution of ferroptosis and the defense
system of the cell, thereby inducing cell ferroptosis. The factors that
drive ferroptosis are Polyunsaturated Fatty Acid — Phospholipids
(PUFA-PLs) synthesis and oxidation, abnormal iron metabolism,
and mitochondrial metabolism abnormalities. The defense
mechanism against ferroptosis is mainly the cellular antioxidant
system that neutralizes lipid peroxides. These antioxidant systems
include the GPX4 system, free radical scavenging antioxidant
systems (such as the FSP1-COQH2 system, DHODH-CoQH?2
system, and GCH1-BH4 system), and membrane repair systems
(Figure 1). When the promotion of ferroptosis execution exceeds
the cellular defense system, the accumulation of lipid peroxides can
induce cell ferroptosis (12, 13) Many ferroptosis inducers have now
been designed based on the characteristics of the ferroptosis
signaling pathway. Most of them are small molecule compounds
and some compounds such as SRF and SAS have been used in the
clinic (9).

Ferroptosis is a form of iron-dependent programmed cell death,
and its molecular mechanisms involve multiple signaling pathways.
The System Xc -GSH-GPX4 pathway is the core regulatory
pathway of ferroptosis. During the process of ferroptosis, the
process initially begins with the initiation phase, where the
intracellular iron content increases due to enhanced iron uptake
mediated by the transferrin receptor (TfR) or increased
ferritinophagy. Meanwhile, the function of system Xc~ is
impaired, leading to a decrease in intracellular glutathione
synthesis and a reduction in the activity of glutathione peroxidase
4 (GPX4). Subsequently, in the progression phase, the reduced
levels of glutathione and decreased GPX4 activity prevent the timely
reduction of lipid peroxides, exacerbating lipid peroxidation
reactions and generating a large amount of lipid reactive oxygen
species (ROS). ROS directly damage the cell membrane and further
promote iron release and mitochondrial dysfunction, creating a
vicious cycle. Finally, in the effector phase, mitochondria suffer
damage and dysfunction, characterized by a decrease in size,
increased membrane density, and a reduction or even
disappearance of cristae. Cellular energy metabolism is disrupted,
and lipid peroxidation products accumulate in large amounts
within the cell. Ultimately, the integrity of the cell membrane is
compromised, leading to cell death (14). (Figure 2). In addition,
NCOA4-mediated ferritin degradation, also known as
ferritinophagy, increases the intracellular iron ion levels,
promotes lipid peroxidation, and triggers ferroptosis (15). Recent
studies have also found that USP13 can promote the transition of
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Factors driving ferroptosis and defense mechanisms of ferroptosis. The main factors driving ferroptosis mainly include the synthesis and oxidation of
PUFA-PLs, abnormal iron metabolism, and abnormal mitochondrial metabolism. The defense mechanisms against ferroptosis mainly involve the cell
antioxidant system that neutralizes lipid peroxides. These antioxidant systems include the GPX4 system, free radical scavenging antioxidant systems
(such as FSP1-COQH2 system, DHODH-CoQH2 system, and GCH1-BH4 system).

ferroptosis to autophagy in tumor cells by activating the NFE2L2/
NRF2-SQSTM1/p62-KEAP1 axis in a KRAS signaling pathway-
dependent manner (16).

Ferroptosis has emerged as a promising target for cancer therapy
(17). However, many small molecule compounds have shown
drawbacks such as poor water solubility and targeting ability.
Therefore, it is necessary to discover more molecules to induce
tumor cell death by other routes. Among them, inducing tumor
cell ferroptosis through natural products is a feasible approach.

Natural products targeting the iron
death signaling pathway affect tumor
growth

Based on the characteristics of the ferroptosis signaling
pathway, natural products that can induce ferroptosis mainly
include the following types: 1. Class I that inhibits the system Xc'.
2. Class II that inhibits or degrades GPX4. 3. Class III that depletes
coenzyme Q10 (18). 4. Class IV that induces lipid peroxidation
through iron or PUFA overload (19). These natural products target
different targets of the ferroptosis signaling pathways, and
ultimately induce ferroptosis in tumor cells to inhibit tumor growth.

Natural products inhibit system Xc~
induce ferroptosis

System Xc  is an important component of the antioxidant
system in cells, mainly distributed in the phospholipid bilayer.
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System Xc” is composed of two subunits, a heterodimer consisting
of a heavy chain subunit, SLC3A2, and a light chain subunit,
SLC7A11, respectively (20). Cells use system Xc to uptake cystine
into the cell, and the cystine entering the cell is reduced to cysteine,
which is an important raw material for synthesizing glutathione
(GSH). GSH is an important antioxidant and free radical scavenger,
which has a coordinated role with GPX4 to maintain intracellular
oxidative balance. By inhibiting System Xc™ to limit cysteine intake
is the main rate-limiting step in inhibiting glutathione synthesis.
Depletion of GSH leads to intracellular redox imbalance, which
then leads to intracellular ROS accumulation and ultimately
induces ferroptosis. Various natural products targeting System
Xc™ have been reported to induce ferroptosis, such as kayadiol
(21), Bavachin (22), and tanshinone ITA (23) (Figure 3).

Natural products inhibit or degrade
GPX4-induced ferroptosis

Glutathione peroxidase 4 (GPX4) is the only enzyme in cells
that can reduce lipid peroxides to lipids, and GPX4 plays a crucial
role in ferroptosis (24). GPX4 is a selenoprotein that primarily
functions to inhibit the formation of lipid peroxides. GPX4 can use
GSH as a substrate to specifically catalyze the reduction of lipid
peroxides to normal phospholipid molecules. In ferroptosis, when
the activity of GPX4 is inhibited, it leads to the accumulation of
intracellular peroxides, which in turn causes ferroptosis. RSL3 is one
of the most typical inducers of ferroptosis. RSL3 inhibits the activity
of GPX4 by covalently binding to the active site of selenocysteine in
GPX4, thereby inducing ferroptosis (25). It has been reported that
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Signaling pathway for inducing ferroptosis in tumor cells. Intracellular iron metabolism and lipid peroxides are the main reasons that induce
ferroptosis in tumor cells. The major cellular defense system to avoid ferroptosis are the System Xc'/GSH/GPX4 axis, the CoQ/FSP1 axis and the

GCH1-BH4 defense system.

GPX4 is highly expressed in various types of tumors, which may be
related to the tumorigenesis (26). Several natural products have
been reported to induce ferroptosis by inhibiting GPX4, such as
Capsaicin (27), heteronemin (28) and Eriocitrin (29) (Figure 3).

Natural products target iron
metabolism to induce ferroptosis

Iron is an important trace element for maintaining the life of
living organisms and a cofactor for many biochemical reactions
within cells. In ferroptosis, excess intracellular Fe** can promote the
accumulation of lipid ROS through the Fenton reaction, ultimately
leading to the induction of ferroptosis. When Fe2" from food is
absorbed into the blood, it is oxidized to Fe3". Subsequently, Fe3*
binds to transferrin (TF) and is transported to tissues. The
transferrin receptor (TFR) on the cell membrane can bind to TF
carrying Fe3™ and enter the cell through endocytosis. Subsequently,
the intracellular Fe** is reduced to Fe*" by STEAP3 and stored in

the labile iron pool (LIP) and in the ferritin consisting of ferritin
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light chain (FTL) and ferritin heavy chain 1 (FTH1), and small
molecule complex GSH. Excess intracellular Fe**
the body mainly through SLC40A1. Due to the instability and high
reactivity of Fe2", it participates in the Fenton reaction. The Fenton

is eliminated from

refers to the reaction where Fe2" reacts with hydrogen peroxide to
generate Fe3" and oxygen free radicals. Excessive intracellular iron
can generate oxygen free radicals and reactive oxygen through an
iron-dependent Fenton reaction, leading to oxidative stress and
lipid peroxidation in cells, ultimately inducing cell ferroptosis.
Various natural products have been reported to target iron
metabolism to induce ferroptosis, such as Baicalin (30), Juglone
(31), Trabectedin (32), Vitamin C (33) (Figure 3).

Natural products target lipid
metabolism to induce ferroptosis

The formation of lipid peroxides in membrane phospholipids in
cells usually leads to ferroptosis. Unsaturated PUFAs, especially
arachidonic acid (AA) and adrenoyl acid (AdA), are prone to react
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Molecular targets of various types of natural products inhibit tumor ferroptosis.

with ROS, leading to lipid peroxidation and inducing cell
ferroptosis. phosphatidylethanolamines (PEs) containing AA or
AdA are key phospholipids that induce ferroptosis. The oxidation
of unsaturated PUFAs such as AA is regulated by ACSL4. ACSL4
catalyzes the binding of free AA or AdA with coenzyme A (CoA) to
form AA-CoA or AdA-CoA. It is then esterified to membrane AA-
PEs by lysophosphatidyltransferase 3 (LPCAT3) and finally
undergoes lipid peroxidation catalyzed by the lipoxygenase
protein family (LOXs). Therefore, ferroptosis can be inhibited by
inhibiting ACSL4 and LPCAT3 or LOXs. Various natural products
targeting lipid metabolism have been reported to induce ferroptosis,
such as Capsaicin (34), Berberine (35), Oleanolic acid
(36) (Figure 3).

Natural products target other
pathways to induce iron death

Currently, there are reports showing that there are other
pathways and proteins that can affect cell death by ferroptosis.
These include coenzyme Q10, nicotinamide adenine dinucleotide
phosphate (NADPH), selenium, p53, nuclear factor E2-related
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factor 2 (NRF2), nuclear factor erythroid 2-related factor 2
(NFE2L2) and Vitamin E.

Application of natural products in
inducing ferroptosis in tumor cells

The active ingredients of natural products originating from the
plant kingdom mainly include flavonoids, alkaloids, polysaccharides,
volatile oils, quinones, terpenoids, lignans, coumarins, saponins,
cardiac glycosides, phenolic acids, amino acids and enzymes.
Currently, reports show that most of these types of natural
products can induce ferroptosis in tumor cells through various
signaling pathways (Table 1).

Flavonoids induce ferroptosis in tumor
cells

Flavonoids are a class of compounds with a flavone skeleton,
widely distributed in certain plants and herbs. Most natural
flavonoids exist in the form of glycosides. Among the flavonoids
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reported to induce ferroptosis in tumor cells are Ginkgetin, Baicalin,
Amentoflavone, Nobiletin, and 4,4-Dimethoxychalcone
(Table 1) (37).

Biflavonoids like bilobetin, isooginkgetin, and ginkgetin from
Ginkgo biloba can inhibit MDM2 to boost wild-type P53
expression. This significantly raises ROS levels in colon cancer
HCT-116 cells, triggering ferroptosis. Ginkgetin also enhances 5-
fluorouracil’s anti-tumor effect in these cells (38). Furthermore,
studies have demonstrated that ginkgetin enhances the therapeutic
efficacy of cisplatin (DDP) in EGFR wild-type non-small cell lung
cancer by inducing ferroptosis via disruption of the Nrf2/HO-1 axis.
These findings indicate that ginkgetin not only induces ferroptosis
in tumor cells but also potentiates the therapeutic effects of certain
chemotherapeutic agents. Nevertheless, further research is required
to elucidate the underlying mechanisms.

Baicalin, a flavonoid compound extracted from the roots of
Scutellaria baicalensis, exhibits significant anti-tumor activity. It
induces ferroptosis in tumor cells through multiple mechanisms
(39). In bladder cancer and oral squamous cell carcinoma (OSCC),
baicalin induces ferroptosis by suppressing the activity of FTH1 (30,
40). In osteosarcoma (OS), it triggers ferroptosis through the
regulation of the Nrf2/xCT/GPX4 axis (41). Furthermore, in gastric
cancer, baicalin inhibits TFRI1 to facilitate ROS-mediated ferroptosis,
thereby enhancing the therapeutic efficacy of 5-fluorouracil (42).

Tiliroside, a compound present in various plants, has been
demonstrated to inhibit the growth of multiple tumors through
ferroptosis, such as triple-negative breast cancer, liver cancer and
pancreatic cancer (43-45). In pancreatic cancer, it disrupts iron
homeostasis and triggers ferroptosis through direct targeting of
calpain-2 (43). In liver cancer, it induces ferroptosis by targeting
TBK1 and sensitizes tumors to the chemotherapy drug sorafenib
(44). In triple-negative breast cancer, tiliroside induces ferroptosis
in TNBC cells through the PUFA-PLS pathway, which is associated
with the Nrf2/HO-1 pathway (45). Thus, tiliroside can induce
ferroptosis in tumor cells through multiple mechanisms.
Quercetin is a natural flavonoid abundant in various plants. In
human liver cancer cells, it mediates ferritin degradation through
TFEB-dependent lysosomal activation, thereby promoting
ferroptosis via iron release and subsequent lipid oxidation (46). A
similar mechanism is also found in breast cancer, where quercetin
induces ferroptosis by promoting lysosomal degradation of ferritin
through TFEB nuclear translocation (47). In gastric cancer,
quercetin induces ferroptosis in gastric cancer cells by targeting
SLC1A5 and regulating the p-Camk2/p-DRP1 and NRF2/GPX4
axis (48).

Terpenoids induce ferroptosis in
tumor cells

Terpenoids are widely distributed in nature and constitute the
main components of fragrances, resins, and pigments in certain
plants. As polymers formed by the head-to-tail linkage of isoprene
units in various configurations, they exhibit structural diversity.
A variety of terpenoids, including Heteronemin, Kayadiol,

Frontiers in Oncology

10.3389/fonc.2025.1588668

Corosolic acid, Parthenolide, Curcumenol and Manoalide, have
been reported to inhibit tumor growth by inducing ferroptosis in
tumor cells (Table 1).

Ginsenosides, key bioactive components in ginseng, are
triterpene glycosides. Over 40 compounds have been isolated
from ginseng roots. Those reported to induce tumor cell
ferroptosis include primarily Rh4, Rh3, and Rg5, with Rh4 being
the most extensively studied. Notably, Rh4 triggers ferroptosis in
malignancies like multiple myeloma (MM) and colorectal
cancer (CRC).

In renal cell carcinoma (RCC), Rh4 induces ferroptosis
primarily via the NRF2 pathway (49). In multiple myeloma, Rh4
induces ferroptosis mainly through SIRT2 (50). In gastric cancer, it
induced ferroptosis through the activation of ROS/p53 signaling
pathway and activation of autophagy (51). In glioma, ginsenoside
Rg5 inhibits the progression of glioblastoma by activating
ferroptosis via the NR3C1/HSPB1/NCOA4 axis (50). Meanwhile,
ginsenoside Rh3 (GRh3), a semi-natural product derived from
chemical processing, induces both pyroptosis and ferroptosis in
CRC cells via the Stat3/p53/NRF2 axis (52).

Andrographolide, the primary bioactive component of
Andrographis paniculata, is a diterpenoid lactone with potent
anticancer activity. In multiple myeloma, it induces ferroptosis in
MM cells by activating p38 and subsequently blocking the Nrf2/HO-
1 pathway (53). In NSCLC cells, andrographolide downregulates the
ferroptosis-related proteins GPX4 and SLC7ALll, exacerbates
mitochondrial dysfunction, and ultimately triggers ferroptosis (54).

Terpene lactones (NTLs), including y-lactones and 3-lactones, are a
large part of terpenes. Such compounds have a wide range of biological
activities. Sesquiterpene lactones, a large group of secondary
metabolites predominantly derived from Asteraceae plants, include
artemisinin, a sesquiterpene lactone with an endoperoxide bridge
extracted from Artemisia annua. Its derivatives comprise artemether
(ARM), arteether (ARTE), dihydroartemisinin (DHA), and artesunate
(ATS), and various derivatives have been reported to induce ferroptosis
in tumor cells (55).

Artemisinin can induce ferroptosis of tumor cells through
multiple mechanisms, such as triggering intracellular ROS
production, promoting lysosomal degradation of ferritin, and
regulating the System Xc-/GPX4 axis to induce ferroptosis (56, 57).
Among artemisinin derivatives, DHA has been most extensively
studied, with its mechanisms well characterized. DHA is produced
by reducing artemisinin with sodium borohydride; compared to the
parent compound, it exhibits greater water solubility, a higher
metabolic rate, faster absorption, lower cytotoxicity, and reduced
drug resistance. Early studies demonstrated that in head and neck
cancer, DHA specifically inhibits cancer cell growth by inducing both
ferroptosis and apoptosis (58, 59). Subsequently, it was found that
DHA induces ferroptosis in glioma cells through the PERK-ATF4-
HSPA5-GPX4 pathway (60), with GPX4 identified as a key target of
DHA-mediated ferroptosis in glioblastoma (61). In liver cancer, DHA
induces hepatocyte ferroptosis by inhibiting ATF4, SLC7A11 or xCT,
and also induces ferroptosis in hepatocellular carcinoma by
promoting PEBP1/15-LO formation (62). Additionally, other
reports suggest DHA triggers ferroptosis in primary liver cancer
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TABLE 1 Various natural products induce iron death in tumor cells.

10.3389/fonc.2025.1588668

Category Compounds Cancer types Mechanism Ref
Flavonoids bilobetin, isooginkgetin, HCT-116, Enhanced P53 expression, (38, 85)
Ginkgetin nonsmall cell lung cancer Destruction of Nrf2/HO-1 axis
Baicalin bladder cancer, Inhibition of FTHI activity, (30, 40-42)
Osteosarcoma, regulation of the Nrf2/xCT/GPX4 axis,
gastric cancer Inhibits TFR1 and others to induce ROS
Amentoflavone gastric cancer Targeting the miR-496/ATF2 axis (86)
Nobiletin multiple myeloma Induces ROS production by an unknown (87, 88)
mechanism that
Inhibits NRF2/GPX4
4,4-Dimethoxychalcone nonsmall cell lung cancer Keap1/Nrf2/HMOX1 pathway and (89)
inhibition FECH,
Icariin prostate cancer Regulation of miR-7/mTOR/ (90)
SREBPI pathway
Ononin Triple-negative breast cancer Nrf2/SLC7A11 axis 91)
Myricetin gastric cancer NOX4/NRF2/GPX4 pathway regulation (92)
Tiliroside Pancreatic Cancer, Liver Cancer, Triple Targeting calpain-2 to disrupt iron (43-45)
Negative Breast Cancer homeostasis,
Targeting TBK1,
Through the PUFA-PLS pathway
Quercetin Breast Cancer, Liver Cancer and by promoting lysosomal degradation (46-48)
gastric cancer following nuclear translocation of TFEB to
activate ferritin,
Targeting SLCIA5 Regulates the NRF2/
GPX4 Axis
Eriocitrin lung adenocarcinoma Elevated ROS levels, down-regulation of (29)
Nrf-2, SLC7A11, and GPX4 expression
Isoliquiritigenin gallbladder cancer by activating p62-Keap1-Nrf2- (93)
HMOX]1 signaling
Wogonin Pancreatic cancer By suppressing the Nrf2/GPX4 axis (94)
Lysionotin colorectal cancer Promoting Nrf2 Degradation (95)
Rhamnazin hepatocellular carcinoma inhibiting GPX4 expression (22)
Bavachin Osteosarcoma STAT3/P53/SLC7A11 Axis (22, 96)
Typhaneoside Leukemia ROS accumulation (97)
Terpenoids Ginsenoside Rh4, Multiple myeloma (MM), regulating SIRT2, (49-51)
Renal cell carcinoma (RCC) via the NRF2 Pathway,
activating the ROS/p53 signaling pathway
Ginsenoside Rh5 glioblastoma Through NR3C1/HSPB1/NCOAA4 signaling | (98)
Ginsenoside Rh3 colorectal cancer through the Stat3/p53/NRF2 axis (52)
Andrographolide Multiple myeloma Regulating the P38/Nrf2/HO-1 pathway (53)
Abeetic acid Bladder cancer activation of the HO-1 pathway (99)
Corosolic acid (CA) liver cancer upregulating HERPUD1 (100)
Terpenoid Hepatocellular Carcinoma Reduced the expression of GPX4 (28)
Kayadiol Extranodal natural killer/T cell through p53 (21)
lymphoma (NKTCL)
d-Borneol lung cancer by promotin NCOA4-mediated (101)
ferritinophagy
(Continued)
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TABLE 1 Continued

10.3389/fonc.2025.1588668

Category Compounds Cancer types Mechanism Ref
Tagitinin C Colorectal cancer through PERK-Nrf2-HO-1 (102)
signaling pathway
ardisiacrispin B colon adenocarcinoma increase in ROS production (103)
Oleanolic acid Cervical cancer modulation of the ACSL4 (36)
Parthenolide (PTL) Hepatocellular carcinoma Reduce GPX4 expression (104)
manoalide lung cancer mitochondrial Ca2+ overload induced- (105)
FTH1 pathways
Andrographolide Non-Small Cell Lung Cancer, inhibited GPX4 and SLC7A11 expression, (53, 54)
Multiple myeloma block the Nrf2/HO-1 signaling pathway
Eupalinolide B hepatic carcinoma mediated by endoplasmic reticulum (ER) (106)
stress, as well as HO-1 activation.
Curcumenol lung cancer via IncRNA H19/miR-19b-3p/FTH1 axis (107)
Eupaformosanin triple-negative breast cancer through ubiquitination of mutant p53 (108)
Artemisinin and Head and neck cancer, triggering intracellular ROS production, (56, 57, 63-65)
its Derivatives Glioma, lung cancer, liver cancer promoting the lysosomal degradation of
ferritin and regulating the System Xc-/
GPX4 axis.
Tanshinone ITA Breast cancer, destabilizes SLC7A11, through p53- (23, 109, 110)
gastric cancer mediated SLC7A11 down-regulation, via
the KDM4D/p53 pathway
Tagitinin C colorectal cancer through PERK-Nrf2-HO-1 (102)
signaling pathway
Cucurbitacin B nasopharyngeal cancer downregulated the expression of GPX4 (111)
Heteronemin Hepatocellular Carcinoma downregulated the expression of GPX4 (28)
Alkaloids Anisomycin Hepatocellular Carcinoma Modulation of the p38 MAPK Pathway (112)
Peiminine breast cancer through triggering Nrf2 signaling (113)
nitidine chloride multiple myeloma inhibits PI3K/AKT signaling pathway (114)
Chelerythrine ovarian cancer through Nrf2 (115)
nitidine chloride multiple myeloma inhibits PI3K/AKT signaling pathway (114)
soyauxinium chloride Melanoma, colon adenocarcinoma Unknown (116)
ungeremine 9 cancers Unknown (117)
Solasonine hepatoma carcinoma, by suppression of GPX4 and GSS, inhibits (66, 67, 118)
Pancreatic cancer, the TFAP2A/OTUBI1 SLC7A11,
mitochondrial damage
Evodiamine Bladder Cancer, prostate cancer Suppression of GPX4, by reducing (68, 69)
GPX4 expression,
talaroconvolutin A colorectal cancer, bladder cancer downregulated SLC7A11 expression, (119, 120)
elevated ROS and upregulated transferrin
Matrine Cervical cancer, through activation of piezol channel (121)
Cephaeline lung cancer by targeting NRF2 (122)
Trabectedin Non-small cell lung cancer via regulation of HIF-1a/IRP1/FE1 and (32)
Keap1/Nrf2/GPX4 axis
Tomatidine pancreatic cancer targets ATF4-dependent signaling (123)
Berberine Nasopharyngeal carcinoma through System Xc/GSH/GPX4 Axis (35)
Solanine colorectal cancer through ALOX12B/ADCY4 molecular axis (124)
(Continued)
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TABLE 1 Continued
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Category Compounds Cancer types Mechanism Ref
Lepadins E and H Cervical cancer through the p53-SLC7A11-GPX4 pathway  (125)
And melanoma
Piperlongumine various tumors by Targeting Selenocysteine Residues (126)
Capsaicin Glioblastoma, NSCLC, through ACSL4/GPX4 signaling pathways (27, 34, 70)
Hepatocellular carcinoma,
Sanguinarine Cervical Cancer involved SLC7A11 down-regulation, (127)
GSH depletion,
brucine Hepatocellular Carcinoma via promotion of hydrogen peroxide (128)
and iron
Phenols Curcumin Follicular thyroid cancer, Breast Cancer, increasing the HO-1 expression, (18, 71, 129-132)
osteosarcoma, Colorectal Cancer, by regulating Nrf2/GPX4 signaling, via
breast cancer PI3K/Akt/mTOR or JNK Signaling, by
promoting SLC1A5
Erianin lung cancer, Bladder Cancer, colorectal Via Ca2+/CaM signaling, via NRF2 (73-76)
cancer, hepatocellular carcinoma Inactivation, through autophagy-
dependent, through the JAK2/STAT3/
SLC7A11 pathway
Gallic acid hepatocellular carcinoma via inactivating Wnt/B-catenin (133)
signaling pathway
Honokiol ovarian cancer, colon cancer, Acute through the regulation of YAP by OTUB2, (134-136)
Myeloid Leukemia by regulating GPX4 activity, by
Upregulating HMOX1
Resveratrol acute myeloid leukemia (AML) through Hsa-miR-335-5p/NFS1/ (137)
GPX4 pathway
Propofol non-small cell lung cancer through the miR-744-5p/miR-615-3p axis (138)
6-Gingerol Lung cancer via suppression of USP14 expression (139)
Others Vitamin C Pancreatic Cancer, Anaplastic thyroid Activating the AMPK/Nrf2/ (33,79)
cancer (ATC) HMOX1 Pathway
Vitamin D Colorectal Cancer via SLC7A11 Downregulation (80)
Osthole colorectal cancer via suppressing AMPK/Akt signaling (81)
Withaferin A hepatocellular carcinoma via Nrf2-mediated EMT (82)

cells by upregulating CHACI expression, which is induced through
interactions with unfolded proteins (63). The molecular mechanisms
behind this difference still need further in-depth study. In lung
cancer, DHA inhibits proliferation and colony formation, increases
cell death, and induces ferroptosis in lung cancer cells by inactivating
the PRIM2/SLC7A11 axis (64). Subsequently, it was found that DHA
not only induces ferroptosis through lipid peroxide (LPO)
accumulation but also promotes immunogenic cell death of lung
cancer cells, thereby enhancing anti-tumor effects (65).

Alkaloids induce ferroptosis in tumor
cells

Solasonine, a steroidal alkaloid derived from the natural herb
Solanum melongena, exhibits potent anticancer activity. In gastric
cancer, it induces ferroptosis by inhibiting GPX4 and GSS, thereby
elevating lipid ROS levels; this effect can be significantly reversed by
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ferroptosis inhibitors (66). In pancreatic cancer, by contrast,
solasonine activates ferroptosis and suppresses cancer cell
progression through inhibition of the TFAP2A/OTUB1/SLC7A11
axis. In lung adenocarcinoma, it triggers tumor cell ferroptosis by
disrupting redox balance and causing mitochondrial oxidative stress
damage (67) (Table 1).

Evodiamine, an alkaloid from Hemerocallis fulva fruits, has
antitumor effects. In bladder cancer, it induces ferroptosis mainly by
inhibiting GPX4 expression (68). In prostate cancer, Evodiamine
acts as a metabolic epigenetic regulator. It increases Sema3A
expression to impair angiogenesis and induces ferroptosis by
decreasing GPX4 expression. After ferroptosis, HIFIA protein
lactylation is inhibited. This blocks lactate-induced angiogenesis,
enhances Sema3A transcription and inhibits PD-L1 transcription,
boosting antitumor effects (69).

Capsaicinoids, the active components of chili peppers and
secondary metabolites, show antitumor activity in various tumors.
In glioblastoma, capsaicin induces redox imbalance and ferroptosis
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in U87-MG and U251 cells primarily via the ACSL4/GPX4
signaling pathway (27). Similar findings were observed in NSCLC,
where capsaicin induces ferroptosis mainly by inactivating
SLC7A11/GPX4 signaling (34), suggesting its potential as an
anticancer agent for NSCLC. Additionally, the synthetic capsaicin
analog Arvanil induces high mitochondrial calcium flux, opening
the mitochondrial membrane permeability transition pore (mPTP)
and triggering ferroptosis in hepatocellular carcinoma (70).

Phenol induce ferroptosis in tumor
cells

Phenolic compounds, formed by hydroxyl groups directly attached
to aromatic hydrocarbons, are produced by plants and
microorganisms. Curcumin, a yellow pigment extracted from
turmeric rhizomes, is an unsaturated polyphenolic compound. It
inhibits tumor growth by inducing ferroptosis in various tumor cells,
primarily by upregulating HO-1 expression. For example, in Follicular
Thyroid Cancer (FTC), HO-1 overexpression activates ferroptosis
signaling. Curcumin suppresses FTC growth by inducing ferroptosis
through increased HO-1 expression (71) (Table 1).

Erianin, extracted from Dendrobium chrysotoxum Lindl, shows
anti-cancer activity across various cancers, inhibiting tumor growth
via ferroptosis in lung, liver, bladder, and colon cancers (72). In lung
cancer, it induces ferroptosis and inhibits cell migration through
Ca2+/CaM signaling (73). In bladder cancer, Erianin triggers
ferroptosis by inactivating NRF2 (74). In colon cancer, it
suppresses growth and metastasis via autophagy-dependent
ferroptosis in KRAS (75). In liver cancer, Erianin induces
ferroptosis by activating JAK2/STAT3 and inhibiting SLC7A11
and GPX4 expression, reducing HCC cell proliferation and
invasion (76). Additionally, in kidney cancer, Erianin promotes
ferroptosis in cancer stem cells by enhancing ALOX12/p53 mRNA
N6-methyladenosine modification (77). It also inhibits lung cancer
stemness and improves chemosensitivity by inducing ferroptosis,
highlighting its potential in cancer therapy (78).

Other natural products induce
ferroptosis in tumor cells

Other natural products can also induce ferroptosis in tumor
cells, including vitamins, coumarins, and steroids (Table 1).
Vitamin C induces ferroptosis in pancreatic cancer cells and
inhibits tumor growth by activating AMPK/Nrf2/HMOX1 (33,
79). while vitamin D promotes ferroptosis in colorectal cancer
stem cells by downregulating SLC7A11 (80). Osthole, a natural
coumarin from fungi and umbelliferous plants, induces ferroptosis
in colon cancer cells by inhibiting the AMPK/Akt/mTOR pathway
(81). Withaferin A, a sterol lactone from the medicinal plant
Withania somnifera, induces EMT and ferroptosis in liver cancer
cells through Nrf2 mediation (82).

Flavonoids, terpenoids, alkaloids and phenols all induce
ferroptosis in tumor cells by interfering with the antioxidant
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system, promoting lipid peroxidation and regulating iron
metabolism. However, they differ in their specific mechanisms.
Flavonoids induce ferroptosis by releasing iron ions via
ferritinophagy and inhibiting antioxidant enzymes. Terpenoids
activate ACSL4 to boost lipid peroxidation substrate synthesis
and affect mitochondrial function. Alkaloids suppress xCT to
block cystine uptake or inhibit the mitochondrial respiratory
chain to produce ROS. Phenols directly promote oxidation
through the Fenton reaction and inhibit repair of peroxidized
phospholipids at high concentrations.

Conclusion

Ferroptosis is a recently discovered novel mode of programmed
death, mainly caused by intracellular iron accumulation and an
increase in lipid peroxidation. There are significant differences
between ferroptosis and other types of programmed death in terms
of cell morphology and molecular mechanisms. Current reports show
that ferroptosis is closely related to a variety of human diseases, such as
neurological diseases, cardiovascular diseases, infectious diseases and
cancer. Inhibiting tumor growth by inducing ferroptosis in various
tumor cells has become a popular target in cancer therapy. Some small
molecule compounds that can induce tumor cell ferroptosis such as
SRF and SAS have been used in clinical studies. However, small
molecule compounds have always had side effects in cancer
treatment, causing toxic effects on normal cells. Natural products
have unique advantages in cancer therapy, such as low toxicity and
side effects as well as overcoming drug resistance. Therefore,
discovering and studying the use of natural product therapy to
induce ferroptosis of tumor cells has important theoretical and
practical significance. We systematically analyzed the molecular
mechanisms of natural products inducing ferroptosis in tumor cells
and the applications of various types of natural products reported in
inducing ferroptosis in tumor cells. These analyses provide a theoretical
basis and guidance for the discovery and study of more natural product
inducers in the future. Although many natural products have been
found to induce ferroptosis in tumor cells, however, further research is
needed to discover and study the molecular mechanisms and clinical
efficacy of these natural products.

Natural products hold certain therapeutic potential in inducing
ferroptosis in tumors, but they also face many limitations and
challenges. First, tumor cells show significant differences in
sensitivity to ferroptosis. Different tumor types vary in their
sensitivity to ferroptosis due to differences in metabolic
characteristics, gene expression profiles, and genetic mutation
patterns. For example, hepatocellular carcinoma, pancreatic
cancer, and breast cancer are relatively sensitive to ferroptosis,
while some tumor cells may develop tolerance to ferroptosis
inducers because they contain high levels of antioxidant enzymes
or iron regulatory proteins. In addition, the complexity of the tumor
microenvironment can also affect the occurrence of ferroptosis, and
genetic mutations that may occur during the process of cell
carcinogenesis, such as mutations in the p53 gene, can also
change the sensitivity of cells to ferroptosis (83).

frontiersin.org


https://doi.org/10.3389/fonc.2025.1588668
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Ye and Ju

Second, the potential side effects of natural products in inducing
ferroptosis cannot be ignored. Natural products may have toxic
effects on normal tissues, especially at high doses or with long-term
use. Some natural products may be photosensitive, thermosensitive,
or chemically unstable, which limits their clinical application
prospects. Moreover, ferroptosis inducers may increase oxidative
stress levels, which in some cases may promote the occurrence and
development of tumors. For example, excessive lipid peroxidation
can lead to DNA damage, thereby triggering mutations and tumor
development. Certain natural products may interact with
ferroptosis inducers to produce unknown side effects or enhance
toxicity. In summary, although natural products have potential in
inducing ferroptosis in tumors, their limitations and challenges
should not be overlooked (84).

In future research, we need to focus more on the following
issues. First, different types of tumor cells have varying sensitivities
to natural products inducing ferroptosis in these tumor cells, and
the underlying mechanisms have been unknown. Therefore, future
research needs to focus on studying the molecular mechanisms that
cause differences in sensitivity. Secondly, many natural products
have disadvantages such as poor water solubility, limiting their
wider application. Therefore, future studies need to focus on the
structurally modifying these natural products that can induce
ferroptosis in tumor cells to make them more soluble in water
and more easily absorbed by the body. Alternatively, the
development of more effective drug delivery vehicles that can
deliver these natural products to the tumor site in the human
body. Finally, the combination of natural products with
chemotherapeutic or targeted drugs for the treatment of tumors
can achieve better therapeutic effects, so future research needs to
focus on this combination of drug therapy. The in-depth study of
the above issues will eventually provide broader prospects for the
application of natural products in cancer therapy.

In future research, the induction of ferroptosis by natural
products should focus on addressing existing limitations. On the
one hand, improving the solubility and bioavailability of natural
products through means such as nanotechnology, microemulsion
technology, and liposome encapsulation, and developing tumor-
targeted nanocarriers or drug delivery systems to enhance their
accumulation and efficacy in tumor tissues while reducing toxicity
to normal tissues. On the other hand, delving into the molecular
mechanisms underlying the sensitivity of tumor cells to ferroptosis,
identifying predictive biomarkers, and providing a basis for
precision therapy. Research should be committed to the
development of combination therapies, integrating ferroptosis
inducers with traditional chemotherapy, radiotherapy, targeted
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