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carcinoma: an integrative
bioinformatics analysis
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1Department of Monitoring and Early Warning, YinZhou District Center for Disease Control and
Prevention, Ningbo, China, 2Department of Gynaecology, YinZhou Third Hospital, Ningbo, China,
3Department of Radiology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
Introduction: Immunogenic cell death (ICD) is the phenomenon in which tumor

cells undergo the transition from a non-immunogenic state to an immunogenic

state upon their demise as a result of external stimuli. While ICD systems have

been widely adopted in oncological research, their specific utilization for Uterine

Corpus Endometrial Carcinoma (UCEC) investigations has received

comparatively little attention.

Methods: The ICD score was assessed using single-sample gene set enrichment

analysis (ssGSEA). Differentially expressed genes (DEGs) were identified from

transcriptomic data processed with the "DESeq2" R package. A prognostic model

was then developed by integrating these DEGs with clinical variables. The

immune landscape was characterized through multiple bioinformatics

approaches, and immunotherapy response was predicted using the Tumor

Immune Dysfunction and Exclusion (TIDE) algorithm. Additionally, drug

sensitivity analysis was performed based on the Genomics of Drug Sensitivity in

Cancer (GDSC) database.

Results: In this study, we calculated ICD scores based on 74 ICD-related genes to

explore the role of ICD in UCEC progression. We observed that patients with

higher ICD scores exhibited a more favorable prognosis, and the score showed a

positive correlation with mutation burden (r=0.16, P<0.001). Then we identified

587 upregulated DEGs and 153 downregulated DEGs in high-ICD group

compared to low-ICD group. The former was predominantly associated with

immune pathways, which was validated in GEO dataset. Using the 64 common

DEGs obtained from both TCGA and GEO datasets, we developed a prognostic

model specifically tailored for UCEC patients, incorporating five optimal

prognostic genes (CD52, SLC30A3, ST8SIA5, STAT1 and TRBC1). Furthermore,

the inclusion of clinical factors (stage and ICD score) significantly enhanced the

model's predictive ability. The ICD score exhibited positive correlations with

immune cell infiltration, as verified by ESTIMATE, xCell, TIMER, MCPcounter,

EPIC, and IPS algorithms. Finally, we found that hyper-immunogenicity may be

sensitive to immunotherapy and certain drugs (AZD5991, Ibrutinib, Osimertinib,
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AGI-5198, Savolitinib, Sapitinib, AZ960, AZD3759 and Ruxolitinib), while PCI-

34051 and Vorinostat showed sensitivity in patients with hypo-immunogenicity.

Discussion: Our results demonstrate that ICD plays an important role in UCEC

progression, suggesting that ICD-related markers could serve as potential targets

for prognosis and treatment.
KEYWORDS

immunogenic cell death, uterine corpus endometrial carcinoma, immunotherapy,
prognostic model, immune microenvironment
Introduction
Mammalian cells respond to environmental disturbances by

activating signaling pathways that attempt to restore cellular

homeostasis. However, when these perturbations exceed cellular

repair capacities, the initially cytoprotective signals shift to a

cytotoxic mode, ultimately promoting regulated cell death (RCD)

(1). A growing number of RCD types have been identified,

including necroptosis, pyroptosis, and ferroptosis, among others

(2). In 2005, Guido Kroemer et al. discovered that tumor cells dying

in response to anthracyclines (such as doxorubicin) can elicit an

effective antitumor immune response even without any adjuvant.

This response suppresses the growth of inoculated tumors or leads

to the regression of established neoplasia (3). This unique form of

functionally distinctive RCD is now commonly referred to as

immunogenic cell death (ICD).

When tumor cells undergo cell death as a result of external

stimulation, the process of transitioning from a non-immunogenic

state to an immunogenic state is referred to as ICD (4). Unlike other

forms of cell death, ICD triggers the immune system to recognize

and selectively target cancerous cells (5). During ICD, dying tumor

cells release specific molecules known as damage-associated

molecular patterns (DAMPs), including high mobility group

protein B1 (HMGB1), ATP, and calreticulin (CRT), among

others, into the surrounding environment (6). The release of

DAMPs initiates a series of events that promote the recruitment

and activation of immune cells, particularly dendritic cells, which

play a critical role in initiating an immune response. Dendritic cells

capture antigens from dying tumor cells and present them to T cells,

stimulating an adaptive immune response specifically targeting the

tumor cells (7). Additionally, ICD can induce the release of pro-

inflammatory cytokines, which further amplify the immune

response and facilitate the recruitment of additional immune cells

to the tumor site (1). The immune response activated through ICD

is crucial as it enhances the body’s inherent ability to recognize and

eliminate tumor cells. This provides a mechanism for the immune

system to precisely target and attack cancer cells, potentially leading

to more effective anti-tumor responses.
02
Uterine corpus endometrial carcinoma (UCEC), one of the

most prevalent malignancies in the female reproductive system, is

an epithelial tumor originating from the endometrial lining (8).

According to the 2022 Global Cancer Statistics (GLOBOCAN),

UCEC accounted for an estimated 420,242 new cases and 97,704

deaths worldwide, highlighting its significant global burden (9).

Traditionally, UCEC has been classified into two distinct subtypes:

Type I tumors are estrogen-dependent, predominantly exhibiting

endometrioid histology and a more favorable prognosis; whereas

Type II tumors are estrogen-independent, frequently

demonstrating aggressive serous or clear cell histology and

associated with poorer clinical outcomes (10). Recent advances in

molecular characterization, particularly through The Cancer

Genome Atlas (TCGA) initiative, have redefined the classification

of UCEC into four molecular subtypes: POLE ultramutated,

microsatellite instability-high (MSI-H), copy-number low

(endometrioid), and copy-number high (serous-like). Each

subtype demonstrates unique clinicopathological characteristics

and prognostic implications (11). Notably, POLE-mutated

tumors, characterized by an ultrahigh mutation burden and

enhanced immunogenicity, are associated with exceptional

survival outcomes. In contrast, copy-number high serous-like

tumors display aggressive biological behavior and intrinsic

resistance to standard treatment modalities (12). Although

increasing attention has been paid to the mutation (13) and

immune microenvironment (14, 15) in UCEC, the role of

immunogenic cell death (ICD) in UCEC progression remains

largely unclear. In particular, studies exploring ICD-related gene

expression patterns and their association with tumor mutation,

prognosis, and potential therapeutic sensitivity in UCEC are

limited. Thus, elucidating key genes and immunological

landscapes is vital to discover prognostic biomarkers and advance

precision medicine for UCEC.

In this study, we conducted a comprehensive bioinformatics

analysis to investigate the interplay between ICD, tumor mutation

burden, and immune microenvironment in UCEC. By leveraging

publicly available datasets, we hypothesized that ICD-related genes

regulate immune cell infiltration and mutational patterns, thereby

influencing prognosis and drug sensitivity. By constructing a
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prognostic model combining ICD-related genes and clinical factors,

we aimed to provide a robust tool for prognostic risk and

therapeutic decision-making. Our analysis also explored ICD-

associated pathways, immune microenvironment dynamics, and

drug sensitivity profiles, bridging the gap between bioinformatics

insights and clinical applications.
Materials and methods

Data sources and processing

We selected a total of 74 ICD-related genes, after removing

duplicates from three different sources: Garg et al. (16) contributed

34 genes, Huang et al. (17) contributed 25 genes, and Xu et al. (18)

contributed 32 genes. To conduct our analysis, we obtained

transcriptome data from The Cancer Genome Atlas (TCGA)

database, which included read count profiles and Fragments Per

Kilobase per Million (FPKM) values. Genes with an expression rate

lower than 20% were excluded from the analysis. Read count data

were employed to perform differential expression analysis using the

“DESeq2” R package. The threshold for determining differentially

expressed genes (DEGs) was set at a false discovery rate

(FDR) <0.05. Genes with a fold change (FC) > 1 in the high ICD

group were considered up-regulated DEGs, while those with an FC

< 1 were considered down-regulated DEGs. For other analyses,

including downstream analysis of mutation data, we utilized the

“Maftools” package (19). Additionally, we obtained a validation set

(GSE17025) from the NCBI Gene Expression Omnibus (GEO)

database to validate our findings.
Single-sample gene set enrichment
analysis

Using the “GSVA”, “GSEABase”, and “limma” R packages, we

calculated ICD scores for each sample based on 74 ICD-related

genes through the ssGSEA algorithm. Samples were then stratified

into high- or low-ICD groups using the median ICD score as the

cutoff. Additionally, we applied the same ssGSEA approach to

quantify immune checkpoint expression levels and tumor

immune microenvironment (TIME) cell infiltration scores.
Function enrichment analysis and gene set
enrichment analysis

To compare the biological themes between the low- and high-ICD

cohorts, we performed Gene Ontology (GO) analysis using the

Bioconductor package “clusterProfiler” to identify enriched functional

categories among DEGs. The R package “ggplot2” was used to visualize

the top 10 GO terms and KEGG pathways with the highest enrichment

scores with adjusted P-value<0.05. Next, we distinguished the signal

pathway differences between high and low ICD groups by GSEA

software 3.0, and set “c2.cp.kegg.v2022.1.Hs.symbols.gmt” as the
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reference database. Visualize the top ten differential pathways based

on Normalized Enrichment Scores (NES).
Random intersection generation for GEO-
TCGA intersection validation

Through differential analysis, we obtained N up/down-DEGs

from the GEO gene set, M up/down-DEGs from the TCGA gene

set, and X intersection genes between these two gene sets. To further

investigate the significance of the overlap between the GEO and

TCGA DEGs, we performed a permutation test. We randomly

selected N genes from the GEO gene set and calculated the

intersection with the M DEGs from the TCGA gene set. This

process was repeated 10,000 times, and we obtained a distribution

of the number of intersecting genes (Y). Finally, we applied a t-test to

compare the observed value of X (the actual number of intersecting

genes) with the distribution (Y) obtained from the permutation test.

If the P-value from the t-test was less than 0.05, we considered the

difference between X and Y to be statistically significant.
Characterization of immune landscape

Gene expression data were used to characterize the immune

microenvironment of samples, using a variety of bioinformatics

tools. ESTIMATE (20) (Estimation of Stromal and Immune cells in

Malignant Tumor tissues using Expression data) algorithm was

used to evaluate the tumor purity and infiltration of immune/

stromal cells: the stromal score, which predicts the presence of

stromal cell types in the tumor bulk; the immune score, which infers

the infiltration of immune cells in tumor tissue; and the estimate

score, which estimates the tumor purity. To obtain a more

comprehensive understanding of immune cell composition, 118

tumor microenvironment cells were collected from the “IOBR”

package (21). Additionally, validation sets of immune cells were

acquired from the xCell (22), TIMER (23), MCPcounter (24), and

EPIC (25) platforms. The immunophenoscore (IPS) was used to

measure the immune state of the samples. The IPS score utilizes

various markers of immune response or immune tolerance to

quantify and visualize four different immunophenotypes in a

tumor sample: antigen presentation, effector cells, suppressor

cells, and checkpoint markers. It also generates a z-score that

summarizes these four categories. A higher z-score indicates a

more immunogenic sample (26).
Prediction of response to immunotherapy

The Tumor Immune Dysfunction and Exclusion (TIDE)

algorithm (27) was used to predict the efficacy of immune

checkpoint blockade (anti-PD-1/anti-CTLA-4) therapy. The web

application, source code and analysis results of TIDE are available at

http://tide.dfci.harvard.edu. A t-test was used to compare the

differences between the responder and non-responder groups.
frontiersin.org

http://tide.dfci.harvard.edu
https://doi.org/10.3389/fonc.2025.1588703
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yi et al. 10.3389/fonc.2025.1588703
Drug sensitivity exploration

The Genomics of Drug Sensitivity in Cancer (GDSC) database,

available at www.cancerRxgene.org, is a comprehensive public

resource providing information on drug sensitivity in cancer cells

and molecular markers associated of drug response (28). To analyze

the relationship between drug sensitivity and molecular markers, we

obtained IC50 values of drugs and gene expression profiles from the

GDSC database using “oncoPredict” algorithm (29). The IC50 value

represents the concentration required for 50% inhibition of cell

growth in a given cell line. We calculated correlations between ICD

scores and both drug IC50 values and drug response-associated

target genes. The inverse relationship between ICD score-IC50

value and ICD score-target genes were interpreted as effective

triangular feedback loops, indicating that the ICD score

influences drug sensitivity, which subsequently affects the IC50

values and target genes associated with drug response.
Construction of the ICD-related prognostic
model

To evaluate the prognosis of UCEC patients, both clinical

factors and 64 common DEGs from TCGA and GEO datasets

were utilized. The workflow to explore prognostic signatures in

UCEC patients involved three steps: (1) Validation using Five-Fold

Cross-Validation: A five-fold cross-validation method was

employed to assess the robustness of the 64 common DEGs

modeling. This technique divides the dataset into five subsets or

folds, trains the model on four subsets, and validates it on the

remaining subset. This process is repeated five times to ensure

reliable results. (2) Construction of the Optimal Gene Model:

Initially, univariate Cox proportional hazards regression screening

was performed on the 64 common DEGs. This analysis helps

identify genes with a significant association with patient survival.

Subsequently, multivariate Cox proportional hazards regression

screening was applied to further refine the gene model. Based on

the findings from these regression analyses, an optimal gene model

was constructed. Using this model, risk scores were calculated for

each patient. These risk scores provided an indication of the

patient’s likelihood of adverse outcomes. (3) Assessment of

Overall Effect: The risk scores obtained from the DEGs-based

prognostic model were combined with clinical characteristics. The

combined information was then introduced into a multivariate Cox

proportional hazards regression model to evaluate the overall effect

on patient prognosis. The performance of the model was assessed

using the concordance index (C‐index), which measures the

accuracy of survival predictions. A higher C-index indicates better

predictive ability.
Statistical analysis

The Hotelling T2 test was performed to analyze the differential

expression of ICD-related genes between mutation and normal
Frontiers in Oncology 04
samples. For counting data, such as categorical variables, the Chi-

square test was used for analysis. To assess survival outcomes, the

Kaplan-Meier (KM) method was implemented. The correlations

between variables were examined using Pearson correlation. When

analyzing data from three or more groups, Analysis of Variance

analysis (ANOVA) was performed, and a t-test was employed when

comparing data between two groups.
Results

Identification of high- and low-ICD groups
with ssGSEA

The study workflow is presented in Supplementary Figure S1.

Based on the literature and references cited (16–18), a total of 74

ICD-related genes were identified (Supplementary Table S1). The

study analyzed expression profiles from 543 cancer tissues and 35

para-cancerous tissues obtained from the TCGA-UCEC dataset.

Visualization of ICD-related gene expression (Figure 1A) revealed

significant differences between cancer tissues and para-cancerous

tissues as determined by the Hotelling T2 test (T2 = 15.987,

P<0.001), indicating that some tumor cells underwent

immunogenic transformation, potentially rendering them more

susceptible to immune recognition and targeting.

To quantify the level of ICD in each sample, we calculated the

ICD score using the ssGSEA algorithm with the 74 ICD-related

genes. Samples were then categorized into high-ICD and low-ICD

groups based on the median ICD score. Principal Component

Analysis (PCA) demonstrated distinct differences in ICD scores

between the two groups (Figure 1B), indicating that the selected

ICD-related genes effectively distinguished samples with high

immunogenicity from those with low immunogenicity. However,

no significant association was observed between ICD scores and

various clinical characteristics such as age, BMI, stage, histological

type, new tumor event after initial treatment, and MSI status

(Supplementary Figure S2). Additionally, although the difference

did not reach statistical significance (P = 0.23), patients with high

ICD scores showed a non-significant trend toward better prognosis

compared to those with low ICD scores (Figure 1C).
Association of ICD scores and somatic
mutations

As is well known, somatic mutations (in this study, only non-

synonymous mutations were considered.) are frequently

encountered in human tumors. Our study investigated the

relationship between somatic mutations and ICD scores in tumor

cells. The results showed a positive correlation between the total

mutation frequency and the ICD score (r=0.16, P<0.001,

Figure 2A), indicating that a higher mutation burden is associated

with increased immunogenicity. Most classifications of mutations

were found to induce immunogenicity in tumor cells (r>0.1, P<0.05,

Supplementary Figure S3), except for nonstop mutation (P=0.099),
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in-frame insertions (P=0.52) and in-frame deletions (P=0.2). To

identify specific mutation genes that significantly affected

immunogenicity, a t-test was performed comparing ICD scores

between patients with mutant and wild-type genes (Figure 2B). The

analysis identified 2,739 mutated genes associated with ICD score

upregulation. These genes, such as VDAC3 etc., primarily function

in intercellular connections and transmembrane signal

transduction mechanisms (Figure 2C). Interestingly, only 10

genes, including the MHC Class I complex gene HLA-F, were

found to be responsible for downregulating ICD scores,

potentially suppressing the immune response against tumor cells

undergoing immunogenic cell death.

Next, we aimed to identify the top mutation genes that could

potentially contribute to these differences. Among the top 30

mutant genes, there were 22 overlapping genes, including PTEN,

PIK3CA, ARID1A, TP53 and TTN et al. Previous research by Yeang

et al (30). demonstrated that dysregulated pathways often involve

mutations in key genes occurring in a mutually exclusive or co-

occurring manner. We utilized the somaticInteractions (31), which

employed pair-wise Fisher’s exact test to detect significant gene

pairs exhibiting co-occurrence or mutual exclusivity, to examine

interaction patterns in our cohort. Somatic interactions of high-ICD

cohort were significant more than low-ICD cohort (Figure 2D).

Specifically, there were 380 co-occurrence and 11 mutually

exclusive pairs in the high-ICD cohort, while 344 co-occurrence

and 9 mutually exclusive pairs were observed in the low-ICD

cohort. These findings suggest that patients with hyper-

immunogenicity may experience more frequent mutations in a

mutually exclusive or co-occurring manner.
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Identification of DEGs and signal pathways
between the high- and low-ICD groups

As two ICD groups showed different prognostic tendencies, we

aimed to identify key DEGs and signaling pathways in each group

in order to explore the biomarkers involved in prognosis

modulation. In this study, we identified a total of 587

dysregulated genes that were upregulated and 153 that were

downregulated in the high-ICD group compared to the low-ICD

group (Figure 3A; Supplementary Table S2). When examining the

relationship between these DEGs and ICD markers, interesting

patterns emerged. The majority of the upregulated genes showed

significant co-expression with ICD markers, with 17,054 positive

and 1,488 negative DEG-ICD relationships, suggesting a strong

association between these genes and ICD markers. Conversely,

downregulated genes exhibited a mutually exclusive expression

pattern with ICD markers, with 422 positive and 626 negative

DEG-ICD relationships. Chi-square test analysis revealed a

significant difference between the up- and down-regulated DEG-

ICD relationships (Figure 3B, P<0.001).

Next, we conducted Gene Ontology (GO) enrichment analysis

to gain insights into the functional characteristics of the

dysregulated genes in the two ICD groups. Upregulated genes

were primarily associated with immune-related processes,

including positive regulation of lymphocyte activation, activation

of immune response, B cell activation, and other immune system-

related processes (Figure 3C). On the other hand, the

downregulated genes showed enrichment in ion channel activity

and neuronal actions, indicating a potential role in neuronal
FIGURE 1

Distinguishability of 74 ICD-related DEGs. (A) The expression profiles of 74 ICD-related DEGs between cancer tissues and para-cancerous tissues.
(B) The PCA between low-ICD group and high-ICD group. (C) The survival probability between low-ICD group and high-ICD group.
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functions. To further investigate the functional implications of the

ICD score, we performed Gene Set Enrichment Analysis (GSEA).

Results from GSEA were consistent with GO analysis. We observed

that pathways associated with a high-ICD score were

predominantly related to immune pathways (Figure 3D). These

included cytokine-cytokine receptor interaction, nod-like receptor

signaling pathway, natural killer cell-mediated cytotoxicity, among

others. These findings reinforce the notion that a high ICD score is

closely associated with immune-related processes and pathways.

To validate our findings, we analyzed microarray expression

profiles from 79 endometrial cancer patients (GEO dataset),

stratified into high- and low-ICD groups based on ICD scores.

The high-ICD group showed 118 upregulated and 171

downregulated DEGs (Supplementary Figure S4A, Supplementary

Table S2). Association analyses revealed that most upregulated

genes positively correlated with ICD markers (1,342 positive vs.

69 negative relationships), while downregulated genes showed
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stronger negative correlations (1,058 positive vs. 1,512 negative

relationships), with statistically significant differences

(Supplementary Figure S4B, P<0.001). Gene Ontology enrichment

analysis (Supplementary Figure S4C) and GSEA (Supplementary

Figure S4D) further demonstrated that the upregulated genes were

primarily associated with the immune system. These results from

both the TCGA and GEO databases confirm the strong robustness

of ICD-related DEGs.

Finally, the intersections between the TCGA and GEO datasets

were depicted in Figure 3E. Among these intersections, there were

62 commonly upregulated genes and 2 commonly downregulated

gene. To assess the reliability, we conducted 10,000 randomized

interactions between GEO and TCGA datasets and compared them

with our actual datasets. As illustrated in Figure 3F, the actual

overlap was significantly higher than randomized expectations

(P<0.05), confirming the analysis’s validity and enhancing

confidence in the common DEGs.
FIGURE 2

Association of ICD score and somatic mutations. (A) The correlation between total mutation frequency and ICD score. (B) The mutation genes
dysregulated ICD score. (C) The GO enrichment functions of mutation genes up-regulated ICD score. (D) Mutually exclusive or co-occurring
mutations among top 30 mutant genes.
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Construction and validation of the
prognostic model based on ICD-related
DEGs

It is evident that DEGs associated with immunogenicity can

significantly impact cancer-related processes in UCEC patients.

Leveraging the 64 common DEGs derived from the TCGA and

GEO datasets, we developed a prognostic model specifically tailored

to UCEC patients. This model holds great potential in predicting

outcomes and guiding treatment decisions.

To assess the predictive performance of the 64 common DEGs,

we employed a 5-fold cross-validation method. The dataset was

divided into five randomly selected subsets, with four subsets used

for training and the remaining subset for validation. This process

was repeated five times, with each subset serving as the validation

set once. The results (Supplementary Table S3) demonstrated that

the training models showed mediocre performance, with as average

concordance index (C-index) of 0.668. The average AUC values for

the training sets were 0.639 (1-year), 0.685 (3-year), and 0.733 (5-

year), while the corresponding values for the testing sets were 0.660

(1-year), 0.697 (3-year), and 0.745 (5-year). These findings

demonstrate the robustness of the prognostic model, as the

performance of the testing sets closely mirrored that of the

training sets.

To identify possible prognostic biomarkers, we performed

univariate Cox regression analysis of 64 common DEGs, and

genes with P<0.05 were selected for multivariate Cox proportional
Frontiers in Oncology 07
hazards regression to obtain optimal prognostic models. The gene

model we derived consisted of five optimal prognostic immune-

related genes (CD52, SLC30A3, ST8SIA5, STAT1, and TRBC1),

where all genes except TRBC1 was identified as a risk factor

(Figure 4A). Then the risk score of each patient was calculated by

the gene model and all patients were divided into high-risk and low-

risk groups based on the median risk score. The results, depicted in

scatterplots and heat maps (Supplementary Figure S5A), showed

that high-risk patients had a tendency for earlier mortality

compared to low-risk patients. Furthermore, KM survival analysis

revealed that overall survival was significantly poorer in the high-

risk group compared to the low-risk group (P< 0.001, Figure 4A).

The prognostic model demonstrated predictive performance, with

area under the curve (AUC) values of 0.624 (1-year), 0.686 (3-year),

and 0.736 (5-year), suggesting its potential as a prognostic tool for

UCEC patients.

Prognostic DEGs demonstrated powerful predictive

performance only at fifth year in both cross-validation and gene

model. In order to enhance the predictive power of the prognostic

model, we integrated clinical factors, such as age, BMI, MSI score,

stage, and ICD score, into the gene model. Univariate and

multivariate Cox regression analysis identified three prognostic

markers in the comprehensive model: the gene model risk score,

disease stage, and ICD score (Figure 4B). Among these markers, the

risk score and stage were found to be risk factors, while the ICD

score acted as a protective factor. KM survival analysis (Figure 4B)

and scatterplots (Supplementary Figure S5B) showed that the
FIGURE 3

Differential expression analysis between low-ICD group and high-ICD group based on TCGA. (A) The DEGs between low-ICD group and high-ICD
group. (B) Correlation between DEGs and ICD-related genes. (C) The GO enrichment functions of up-regulated DEGs. (D) The GSEA of up-
regulated DEGs. (E) The common DEGs between TCGA and GEO. (F) Stochastic Verification based on the Permutation Test.
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comprehensive risk score had high predictive power. Interestingly,

the comprehensive model demonstrated even better prediction

performance compared to the gene model alone. The area under

the curve (AUC) values for the comprehensive model were 0.763 for

1-year survival, 0.724 for 3-year survival, and 0.757 for 5-year

survival, indicating improved discriminatory power across

different time points. Additionally, the inclusion of clinical factors

significantly enhanced the model’s discrimination ability. The C-

index, which measures the model’s discriminatory power, increased

to 0.743 for the comprehensive model, whereas it was 0.665 for the

gene model alone. This implies that the comprehensive model,

which combines gene expression data with relevant clinical factors,

provides more accurate prognostic predictions.
Evaluation of the association of ICD score
and tumor microenvironment

It is widely recognized that the immune response plays a crucial

role in the process of ICD (1), such as in Head and Neck Squamous

Cell Carcinoma (32). Owing to the tight correlation between the

process of ICD process and immune-related biological pathways,

we conducted further investigations to explore the link between the

ICD score and tumor-infiltrating immune cells. Initially, we utilized

the ESTIMATE algorithm to quantify the overall infiltration of

immune cells. The results revealed a positive correlation between

the ICD score and Stromal Score, Immune Score, and ESTIMATE
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Score, while a negative correlation was observed between the ICD

score and Tumor Purity (Figure 5A). This indicates that patients

with active ICD are more likely to develop anti-tumor immunity,

and lower tumor purity is associated with better prognosis (33). To

validate these findings, we performed ssGSEA analysis to assess 118

types of tumor microenvironment cells selected from the “IOBR”

package (21). Out of these, 110 cells showed significant correlations

with the ICD scores, with 108 demonstrating positive associations

and 2 displaying negative associations (Figure 5G). It is worth

noting that the majority of the positively related cells were involved

in the immune microenvironment, while the remaining cells were

not directly associated with immunity, indicating that patients with

more frequent ICD had a more active immune response.

Then we explored the relationship between 64 kinds of immune

cells and the ICD score utilizing the xCell algorithm (Figure 5F). In

detail, the ICD score was positively correlated with the majority of

immune cells, such as B cells, CD4 T cells, CD8 T cells,

Macrophages, Monocytes, NK cells, Neutrophils, DC cells,

Endothelial cells, and others, which were the primary effector cells

and Antigen presentation cells in the anti-tumor immune response.

The consistent results were obtained from TIMER (Figure 5B),

MCPcounter (Figure 5C), and EPIC (Figure 5D) algorithms,

indicating extensive infiltration of immune cells (such as B cells,

CD4 T cells, CD8 T cells, Macrophages, Neutrophils, DC cells, NK

cells, Monocytic, and Endothelial cells) in patients with active ICD.

Additionally, we found that ICD stimulated the aggregation of

fibroblasts in MCPcounter analysis. Fibroblasts play a crucial role in
FIGURE 4

Prognostic Model. (A) Gene model based on ICD-related DEGs. (B) Comprehensive model based on gene model and clinical factors.
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the tumor microenvironment, influencing tumor progression

through modulation of immune response and promotion of

tumor growth and invasion (34). Furthermore, we utilized the

immunophenoscore (IPS) method to evaluate the immune state

of the samples (Figure 5E). Notably, patients with active ICD

exhibited increased expression of MHC molecules and effector

cells involved in the anti-tumor immune response, while showing

lower expression of suppressor cells and immune checkpoint

molecules that may suppress the immune response. Moreover,

patients with higher levels of active ICD demonstrated higher IPS

z-scores, indicating a more immunogenic population (35).
Effect of ICD on immunotherapy response
and drug sensitivity

In recent years, immunotherapy has attracted significant

attention due to its ability to enhance the body’s natural immune

response against tumors. It works by blocking immune checkpoint

(ICP) ligand-receptor binding, thereby reactivating T cell activity

and promoting endogenous anti-tumor immunity (36). In our

study, we specifically selected seven common immune

checkpoints to predict the response to immunotherapy, and the

expression values of all seven genes showed a positive correlation

with the ICD score (r>0.3, P<0.001, Figure 6A). Next, we calculated
Frontiers in Oncology 09
the immune checkpoint score using the ssGSEA algorithm and

explored the correlation between the ICP score and the ICD score.

As expected, a higher ICP score was associated with stronger

immunogenic i ty ( r=0.756 , P<0.001) , suggest ing that

immunotherapy may be a preferred treatment option for patients

with a high ICD score. To assess the potential response to

immunotherapy for each sample, we utilized the TIDE web tool.

The analysis revealed that out of the total sample size, 204 patients

(37.6%) exhibited a positive response to immunotherapy, while 339

patients (62.4%) did not respond favorably (Figure 6B).

Additionally, the ICD scores were significantly higher (P=0.007)

in the response group (mean: 0.545 ± 0.141) compared to the no-

response group (mean: 0.508 ± 0.172). This suggests that patients

with stronger immunogenicity, as indicated by higher ICD scores,

are more likely to benefit from immunotherapy.

In addition to immunotherapy, chemotherapeutic agents and

molecular-targeted drugs are important in cancer therapy. In our

study, we screened 198 compounds from the GDSC database to

identify immunogenicity-related drugs. The results showed that

IC50 values of 69 drugs were significantly associated with ICD score

(Figure 6C; Supplementary Table S4). Among these drugs, patients

with high ICD score showed sensitivity to 52 drugs, including KU-

55933, AZD6482, and others, while those with low ICD score were

sensitive to 17 drugs (such as BI-2536, Linsitinib, et al.). Notably,

nine of these drugs belonged to the class of PI3K/MTOR inhibitors,
FIGURE 5

Association between ICD score and Tumor Microenvironment. (A) ESTIMATE. (B) TIMER. (C) EPIC. (D) MCPcounter. (E) IPS. (F) xCell. (G) IOBR.
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which exert anti-tumor effects by targeting the PI3K/MTOR

signaling pathway (Figure 6D). This highlights the importance of

PI3K/MTOR-related targets in tumor therapy. Additionally, other

common targetable pathways for drug involvement in anti-cancer

activities include ERK MAPK signaling, WNT signaling, and

kinases (Figure 6D). To evaluate the efficacy of these 69 drugs

more accurately, we explored the triangular feedback loops among

ICD score, drugs, and target genes. The results revealed that 11

drugs formed triangular feedback loops. For example, PCI-34051

and Vorinostat inhibited HDAC family genes and demonstrated

anti-tumor effects, particularly in patients with hypo-

immunogenicity (Figure 6D), where HDAC family genes were

highly expressed (Supplementary Figure S6). On the other hand,

drugs like AZD5991, Ibrutinib, Osimertinib, AGI-5198, Savolitinib,

Sapitinib, AZ960, AZD3759 and Ruxolitinib were sensitive to

patients with hyper-immunogenicity (Figure 6D), and their target

genes (including MCL1, BTK, EGFR, IDH1, MET, JAK1, JAK2,

JAK3, etc.) were generally highly expressed in the hyper-

immunogenic state (Supplementary Figure S6). These findings

suggest that the mentioned drugs can be used to guide the

treatment of patients with endometrial carcinoma, taking into

account their immunogenicity profiles.
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Discussion

ICD constitutes a prominent pathway for the activation of the

immune system against cancer, which determines the prognosis of

patients and the efficacy of anti-cancer therapies to some extent.

The application of ICD features has already shown promise in

predicting the prognosis and guiding treatment decisions for

various tumors such as gastric cancer (37), head and neck

squamous cell carcinoma (32), and high-grade glioma (38). In

this UCEC-focused study, we conducted a comprehensive analysis

to investigate the important role of ICD. First, we calculated the

ICD score for each sample using the ssGSEA algorithm based on 74

ICD markers and stratified samples into high- or low-ICD groups

according to the median of the ICD score. This allowed us to

explore the relationship between the ICD score and various

molecular events, including DNA variation, gene expression, and

the tumor microenvironment. Through this exploration, we aimed

to uncover potential mechanisms underlying the occurrence and

development of UCEC. Additionally, we utilized ICD-related DEGs

to construct a prognostic model. By incorporating clinical data, we

aimed to enhance the robustness of the model and improve their

predictive accuracy for patient outcomes. Lastly, we used the ICD
FIGURE 6

Drug response prediction. (A) Correlation between immune checkpoints and ICD score. (B) Immunotherapeutic efficacy based on TIDE web tool.
(C) Chemotherapeutic agents and molecular-targeted drugs based on GDSC database. (D) Targeting pathways for sensitive drugs.
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scores obtained from our analysis to guide the treatment of patients

diagnosed with UCEC. This approach holds promise for tailoring

treatment strategies to individual patients based on their ICD

profiles, potentially leading to improved therapeutic outcomes.

In this study, we observed that UCEC patients with high ICD

scores exhibited both a higher frequency of mutations and increased

immune cell infiltration. Mutations can alter amino acid coding

sequences, leading to tumor expression of mutant proteins that are

absent in normal cells. These abnormal protein sequences serve as

neoantigens, which can be recognized by T cells and trigger an

immune response against tumor cells. The presentation of

neoantigens occurs through the major histocompatibility complex

(MHC, also known as human leukocyte antigen (HLA) in humans)

molecules on the tumor cell surface, and these cells are

immunogenic (39). Furthermore, we found that different

mutations vary in their immunogenicity. Insertion/deletion and

frameshift mutations were particularly immunogenic due to their

significant alterations in the amino acid sequence and spatial

structure. These types of mutations have a stronger binding

affinity to MHC molecules, increasing the likelihood of being

recognized as neoantigens by T cells.

Indeed, the immune response plays a crucial role in the process

of ICD. In our study, we also discovered a positive correlation

between ICD scores and immune cell infiltration in UCEC patients.

Yoshihara et al. described an ESTIMATE method to assess the score

of stromal and immune cells in tumor samples, and the estimate

score was positively related to tumor purity (20). In our study,

patients with hyper-immunogenicity tended to have higher

ESTIMATE scores and lower tumor purity, and lower tumor

purity means better prognosis (33), which could explain why

these UCEC patients were associated with favorable prognosis.

During ICD, dying cells release specific molecules known as

damage-associated molecular patterns (DAMPs). These DAMPs

act as “danger signals” and are recognized by antigen-presenting

cells (APCs), such as dendritic cells (DCs) (40). Subsequently,

activated DCs migrate to lymphoid organs, like lymph nodes,

where they present the processed antigens to T cells (41). The

interaction between major histocompatibility complex (MHC)-

antigen complexes on dendritic cells and T cell receptors (TCRs)

on T cells leads to the activation of specific T cell subsets, including

CD8+ cytotoxic T cells and CD4+ helper T cells (42). Activated T

cells then undergo proliferation and differentiation into effector

cells, which can directly kill target cancer cells and generate anti-

tumor immunity (43).

Furthermore, the expression of immune checkpoint molecules on

immune cells inhibits immune cell function, thereby preventing the

body from mounting effective anti-tumor immune responses. These

“checkpoints”may be exploited by tumors to facilitate immune evasion

within tumor tissue (44). Immunotherapy works by reactivating anti-

tumor immunity through the blockade of immune checkpoint

pathways. In our study, we discovered a positive correlation between

immune checkpoint expression score and ICD score in UCEC patients.

This suggests that patients with higher levels of immunogenicity also

exhibit increased expression of immune checkpoint molecules.

Importantly, based on predictions made from the TIDE web
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platform (45), we anticipated that patients with high ICD score

would demonstrate a favorable response to immunotherapy. This

indicates that individuals with stronger immunogenicity could derive

greater benefits from immunotherapeutic treatments. Our findings

align with previous research that has demonstrated the potential of

immunotherapy in treating hyper-immunogenic cancers, such as colon

cancer (46) and head-and-neck squamous cell cancer (32).

Not all patients with hyper-immunogenicity are suitable for

immunotherapy due to individual differences and the risk of severe

side effects (47). Therefore, it is necessary to explore alternative

treatment options. In our study, we used the “oncoPredict”

algorithm to estimate the susceptibility of 198 compounds

screened from the GDSC database. We found that 69 drugs

showed a significant association with ICD scores. Among these

drugs, AZD5991, Ibrutinib, Osimertinib, AGI-5198, Savolitinib,

Sapitinib, AZ960, AZD3759, and Ruxolitinib demonstrated

sensitivity in patients with hyper-immunogenicity. These drugs

target genes such as MCL1, BTK, EGFR, IDH1, MET, JAK1, JAK2,

and JAK3, which are generally highly expressed in hyper-

immunogenicity. Ruxolitinib, for instance, is an oral selective

JAK1/JAK2 inhibitor that has gained FDA approval for treating

certain conditions. Recent studies have shown that Ruxolitinib can

enhance the immunogenicity of cancer cells and promote ICD in

various cancer types, including diffuse large B-cell lymphoma

(DLBCL) (48). It achieves this by increasing the production of

cytokines and chemokines that attract immune cells to the tumor

microenvironment, thereby facilitating antigen presentation and T-

cell activation (49, 50). Ruxolitinib also upregulates MHC class I

expression on cancer cells, further facilitating T-cell recognition and

activation (51). AZ960, which is also a JAK2 inhibitor, has shown

promising results in inducing growth arrest and apoptosis in adult

T-cell leukemia cells (52). Furthermore, EGFR tyrosine kinase

inhibitors (TKIs) such as AZD3759, Sapitinib, and Osimertinib

have been found to enhance ICD and increase the expression of

DAMPs, including calreticulin and HMGB1 (53). These DAMPs

play a crucial role in promoting dendritic cell maturation and T cell

activation. AZD-5991, a highly selective inhibitor of MCL1, may

participate in the mechanism that induces ICD by affecting the

metabolic pathways of SphK and S1P (54). Although specific studies

on the relationship between Savolitinib, AGI-5198, Ibrutinib and

ICD are lacking, our results suggest that these inhibitors may be

effective for patients with hyper-immunogenicity in UCEC. It is

important to note that while most immunogenic drugs are effective

for high immunogenicity, there are exceptions. For example, PCI-

34051 and Vorinostat, which are effective for low immunogenicity,

inhibit HDAC family genes. HDAC family genes play a role in

inhibiting cancer cell apoptosis and promoting cancer angiogenesis

(55). Inhibitors targeting HDAC offer a potential therapeutic

strategy for cancer by affecting proliferation, differentiation,

angiogenesis, and migration.

The identification of prognostic biomarkers plays a crucial role

in predicting patient outcomes and guiding personalized treatment

decisions. In this study, we conducted a comprehensive analysis to

identify prognostic biomarkers and develop a predictive model for a

specific condition. The results demonstrated the significant impact
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of combining gene expression data with clinical factors in

improving the accuracy of prognostic predictions. The resulting

gene model consisted of five immune-related genes, including four

risk factors (CD52, SLC30A3, ST8SIA5, and STAT1) and one

protective factor (TRBC1). These five genes each exhibit

mechanistic links to ICD or UCEC progression through immune-

related pathways. CD52, a glycoprotein highly expressed on

lymphocytes and dendritic cells, may facilitate immune cell

interactions within the tumor microenvironment (TME) or

modulate immune synapse formation during antigen presentation

(56), potentially influencing the efficiency of ICD-induced immune

responses in UCEC. SLC30A3 (ZnT3) regulates zinc transport, and

zinc homeostasis is intricately linked to various cell death modalities

and immune function (57). Aberrant expression of SLC30A3 may

disrupt intracellular zinc homeostasis, exacerbate oxidative stress,

and contribute to epithelial damage and tumor immune evasion in

endometrial tissue. ST8SIA5 encodes a sialyltransferase (58) that

modifies glycan structures on the tumor surface, and this

glycosylation remodeling may shield UCEC cells from immune

surveillance, limiting ICD-mediated immune activation. STAT1, a

well-established immune-related transcription factor, is frequently

activated in endometrial carcinoma (59) and plays a critical role in

upregulating MHC class I molecules and mediating interferon-

induced antitumor responses (60)—both essential components of

ICD signaling. In contrast, TRBC1, identified as a protective factor,

is integral to T-cell receptor diversity and antigen recognition.

Higher expression of TRBC1 may indicate preserved cytotoxic T-

cell function and enhance tumor cell elimination through ICD-

associated adaptive immunity (61). Moreover, incorporating both

the gene risk score and relevant clinical factors (risk factors: Stage;

protective factor: ICD score) in the comprehensive model provides

more accurate prognostic predictions.

While our study provides novel insights into immunogenic cell

death (ICD)-related biomarkers and therapeutic implications in

uterine corpus endometrial carcinoma (UCEC), several limitations

must be acknowledged. First, the entire analysis was conducted in

silico based on publicly available retrospective datasets, including

TCGA and GEO. Although these databases are widely used and well-

curated, their reliance may introduce inherent biases (e.g., sample

selection, batch effects) and limit the generalizability of our findings

to broader or more diverse patient populations (62). Second,

although we performed internal validation of our prognostic model

using five-fold cross-validation and confirmed DEG patterns across

TCGA and GEO datasets, we acknowledge the lack of an independent

external validation cohort. Without external clinical validation, there

remains a potential risk of model overfitting, which could

overestimate its real-world predictive performance (63). Future

studies incorporating prospective UCEC cohorts or independent

multicenter datasets are needed to further confirm the robustness

and clinical utility of our model. Third, our study did not incorporate

any in vitro or in vivo experimental validation of the key findings.

Specifically, the expression and biological function of the identified

prognostic ICD-related genes, the immune landscape differences, and

the predicted drug sensitivities have not yet been validated through

laboratory assays such as RT-qPCR, immunohistochemistry, or drug
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response experiments in UCEC models. While such experiments are

beyond the scope of this bioinformatics study, we fully recognize their

importance and have highlighted them as critical next steps for future

translational research. Finally, the predictions of drug sensitivity were

based solely on correlative analysis using the GDSC database and the

oncoPredict algorithm. These predictions, while valuable for

hypothesis generation, do not account for the full complexity of

tumor-drug interactions in vivo and should be interpreted with

caution. Mechanistic studies and pharmacological validation in

experimental UCEC models are warranted to verify the efficacy and

relevance of these candidate compounds. In summary, while our

study offers a comprehensive and integrative computational

framework for exploring ICD in UCEC, further experimental and

clinical investigations are essential to validate, refine, and translate

these findings into practical clinical applications.
Conclusion

Our research emphasizes the significant role of ICD in UCEC,

highlighting its correlation with DNA mutations, gene expression,

immune cell infiltration, and its potential for improving prognosis

and targeted therapy. These results are expected to provide valuable

support and guidance for more effective clinical practice and

treatment recommendations.
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Glossary

ICD Immunogenic Cell Death
Frontiers in Oncology
UCEC Uterine Corpus Endometrial Carcinoma
ssGSEA Single-sample Gene Set Enrichment Analysis
DEGs Differentially Expressed Genes
GDSC Genomics of Drug Sensitivity in Cancer
RCD Regulated Cell Death
DAMPs Damage-associated Molecular Patterns
HMGB1 High Mobility Group Protein B1
CRT Calreticulin
TCGA The Cancer Genome Atlas
FPKM Fragments per Kilobase per Million
FDR False Discovery Rate
FC Fold Change
GEO Gene Expression Omnibus
GO Gene Ontology
GSEA Gene Set Enrichment Analysis
NES Normalized Enrichment Scores
ESTIMATE Estimation of Stromal and Immune cells in Malignant Tumor

tissues using Expression data
15
IPS Immunophenoscore
TIDE Tumor Immune Dysfunction and Exclusion
C‐index Concordance index
KM Kaplan-Meier
ANOVA Analysis of Variance Analysis
PCA Principal Component Analysis
AUC Area Under the Curve
ICP Immune Checkpoint
HLA Human Leukocyte Antigen
APCs Antigen-presenting Cells
DCs Dendritic Cells
MHC Major Histocompatibility Complex.
TCRs T cell receptors
DLBCL Diffuse Large B-cell Lymphoma
TKIs Tyrosine Kinase Inhibitors
MPNs Myeloproliferative Neoplasms
TIME Tumor immune microenvironment.
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