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Introduction: Breast cancer is considered one of the most lethal diseases among

women worldwide. Invasive Ductal Carcinoma (IDC) and Invasive Lobular

Carcinoma (ILC) are the two most prominent subtypes of breast cancer. They

differ in epidemiology, molecular alterations, and clinicopathological features.

Patient treatment and management also differ due to these variations.

Aim: The study aimed to develop a predictive model to differentiate IDC and ILC

using machine learning techniques based on the morphological features of the

contralateral breast. Methods- 143 magnetic resonance imaging (MRI) images

were sourced from the “DUKE Breast-Cancer” collection on the Cancer Imaging

Archive website. Regions of interest were drawn on each slice to compute the

morphological features of the contralateral breast using the 3D Slicer application.

Supervised learning methods were applied to themorphological features to build

a predictive model incorporating a Random Forest Classifier to differentiate IDC

and ILC. Hyperparameters were tuned to optimize the model.

Results: Themodel was able to differentiate IDC and ILC with an accuracy of 79%

and an Area Under the Curve of 0.851 on the Receiver Operating Characteristic

Curve. Among the morphological features, the total volume of the contralateral

breast, surface area of the contralateral breast, breast density, and the ratio of the

total volume of the contralateral breast to its surface area had higher F-scores,

indicating that the dimensions of the contralateral breast could be an important

factor in differentiating IDC and ILC.
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Conclusion: This study successfully developed and optimized a predictive model

based on breast morphological features to differentiate IDC and ILC using

machine learning methods.
KEYWORDS

machine learning, breast MRI, invasive breast cancer, invasive ductal carcinoma, invasive
lobular carcinoma
1 Introduction

Breast cancer is the most common malignancy among women

worldwide and also the second most common cancer overall,

following only lung cancer (1). According to the World Health

Organization (WHO), approximately 2.3 million women were

diagnosed with breast cancer in 2020, and it accounted for an

estimated 685,000 deaths globally (2). Despite advancements in

early detection, it is projected that in 20 years, more than 60% of

new breast cancer cases and 70% of deaths will occur in low and

middle income countries (3).

Breast cancer is a heterogeneous disease, primarily originating

from the inner lining of the breast’s fibroglandular tissues, which

are responsible for milk production and supply. Heterogeneity can

be reflected in the diversity of histological and molecular subtypes

of breast cancer (4). Invasive breast cancer (IBC) is one of the major

histological categories of breast cancer and can be further divided

into various subtypes. IBC cells are proficient in invading through

the fibroglandular tissue wall into the surrounding connective and

fatty tissues. However, it should be noted that IBC can present

without necessarily spreading beyond the breast and adjacent

lymph nodes (5). The study of the different characteristics of IBC

subtypes can lead to understanding which strategies will be more

effect ive in developing therapies that could improve

patient outcomes.

Invasive ductal carcinoma (IDC) and invasive lobular

carcinoma (ILC) are the two most common types of IBC that

d i ff e r in the i r ep idemiology , molecu lar a l tera t ions ,

clinicopathological features, and natural history (6). ILC is the

second most common type after IDC. IDC occurs in

approximately three-fourths of patients, while ILC occurs in less

than one-tenth of patients (7). ILC is differentiated from IDC with

increased frequency of multifocality, bilaterality, multicentricity,

and difficulty in determining its margins during clinical

examinations (8, 9). Past research has shown that ILC patients

were older (10). This could be due to the low proliferative rate or
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difficulty detecting ILC (11). Tumor size was found to be larger in

ILC (11, 12). The incidence of contralateral breast cancer was also

higher in ILC (11). The metastatic pattern was also found to be

different for ILC and IDC since ILC is less likely to affect the lungs,

pleura, and CNS compared to IDC (11). Due to these differences,

patient management also differs between IDC and ILC. For ILC

patients, conservation therapy is not recommended unless it is

early-stage due to the multicentric, multifocal characteristic.

Radiation therapy controls the microscopic foci of multicentric

disease, as mentioned in several studies (13). The neoadjuvant

setting was used in several retrospective studies, which have

shown that patients with IDC benefit much more from

chemotherapy than those with ILC (14, 15).

Breasts are composed of glandular, fibrous, and adipose tissues.

The glandular tissues form the lobules and ducts, which are the

primary components of milk production. The lobules are present in

the background of fibrous, and adipose tissues. Adipose tissue plays

an integral role in the morphogenesis of the breast and participates

in mammary epithelial cell differentiation (16). Breast volume and

breast density, two features of this study, are related to the

dimensions of these tissues. Breast density refers to the ratio of

fibroglandular tissues to fatty tissues of a patient’s breast and may

vary between individuals and over the course of a patient’s life (17).

It is considered an independent risk factor for breast cancer (18).

Breast volume has been suggested as a controversial risk factor for

the last few decades. The study by Li et al. found that breast cancer

might not be entirely related to breast volume (19). But, according

to the study by Schutt et al., breast size was correlated to the

occurrence of breast cancer (20).

The total breast volume is calculated using several methods such

as the water displacement method, three-dimensional Ultrasound

scan, mammography, Computed Tomography, and Magnetic

Resonance Imaging. Among these, MRI is considered the

modality with the highest accuracy (16). According to recent

studies, breast MRI is considered a superior modality for

measuring fibroglandular tissue volume and breast density

because of its ability to segment the whole breast from the body

and segment fibroglandular tissues within the breast, slice by slice.

Breast MRI has become a revolutionary investigative tool in the

diagnosis of breast cancer due to its better performance compared

to mammography and US (21). Breast MRI adds anatomical

characterization, information on tumor vascularity and perfusion
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dynamics, and excellent lesion detection. Even though breast MRI

provides sensitivity above 88.1%, its specificity fluctuates between

83% and 98.4%, critically dependent on observer experience (22).

The sensitivity of breast MRI is usually higher than 95%, making it

vital for detection before symptoms emerge, especially in cases

where other imaging modalities are not precise enough. Similarly, it

has higher sensitivity in detecting breast cancers in denser

breasts (21).

The main challenges in breast cancer screening and imaging

diagnosis are the complexity and wide range of image features,

varying quality of images, and inconsistent interpretations by

different radiologists and medical institutions. Artificial

Intelligence could be incorporated to increase the accuracy and

precision of these interpretations. Furthermore, personalized

predictions and recommendations derived from individual patient

data through machine learning (ML) can optimize treatment

strategies, enhancing overall patient care. By handling complex,

high-dimensional datasets, ML algorithms can extract relevant

features from MRI images, facilitating the creation of robust

classification models. Several ML algorithms are popular in this

field. The Random Forest Classifier (22–24), Support Vector

Machine (25), and k-nearest neighbor (26) are some of the

algorithms used in medical image processing and building

predictive models. The Random Forest Classifier is a collection of

decision trees where each tree is trained individually with sub

datasets randomly, and the outputs of all the individual trees are

combined to make a prediction (27). In the training phase, a large

number of decision trees are created initially, which is called

bootstrap aggregating. Each tree is trained on a random subset of

the data and grows until it reaches its maximum depth. In the

testing phase, each case is passed through all the trees in the forest

and a class prediction is given for each tree. The final output is

determined by the majority vote. Jacques Wainer conducted a

comprehensive study on 14 classification algorithms to determine

which algorithm performs best under specific conditions. Random

Forest along with, Gradient Boosting Machines, and Radial Basis

Function Support Vector Machines were the top performing

algorithms. Random Forest was found to be more robust and

easier to use. It was also found to perform better with high-

dimensional datasets (28).

In recent years, many studies have been conducted using ML in

the field of breast cancer. There were a few studies that focused on IDC

and ILC differentiation using ML methods. In a study conducted in

2022 by Gunawan et al., a Support Vector Machine was used on 156

IDC and 8 ILCmammographic data to differentiate IDC and ILC (29).

They selected 9 mammographic physical parameters of the image:

entropy, contrast, MomentAng, MomentDiff, mean, deviation,

EntropyHDiff, MomentHDiff, and MeanHdiff. Their model scored

an accuracy of 76.56%. Maiti et al. did a study in 2024 in which he

explored the texture features extracted from DCE-MRI images to

differentiate IDC from ILC (30). These texture features included shape

feature, gray level dependence matrix (GLDM), gray level co-

occurrence matrix (GLCM), First order, gray level run length matrix

(GLRLM), gray level size zonematrix (GLSZM), and neighboring gray

tone difference matrix (NGTDM). The study was done on a dataset
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that included 58 patients (30 with IDC and 28 with ILC). They

acquired 0.998, 97.21%, and 96.2% for Area under Curve(AUC),

sensitivity, and specificity respectively. Faraz et al., extracted a total

of 342 radiomic features from MRI images(DCE-MRI, subtraction

and T2 weighted images) and selected 32 relevant features to

differentiate IDC from ILC (31). They achieved an AUC of 0.73

when using SVM to classify a dataset of MR images from 323 patients.

Previous studies primarily focused on demographic data,

laboratory-based data, and radiomic features of the tumor, with

limited research on the morphological features of the breast (29–

31). These studies were focused on the radiomic features of the

tumor and mammographic physical parameters of the image. This

has been the norm for the last few years. Prior to this, there were no

studies in this field using only morphological features of the

contralateral breast. Dimensions of the ipsilateral breasts, like

total volume and fibroglandular volume, would vary because of

tumors. Using threshold function on breast MRI images to delineate

fibroglandular tissues would be influenced by the presence of

tumors. Hence, contralateral breasts were chosen for this study.

Bilateral breasts are considered physiologically almost identical,

although slight asymmetries may be observable in most women.

These asymmetries can manifest in size, shape, or volume and are

typically within a normal range. Coltman et al. stated in their study

that there was no significant difference in the mean breast volume

between the women’s left and right breasts (32).

The aim of this study was to leverage ML techniques to develop

a predictive model capable of accurately distinguishing between

IDC and ILC, based on morphological features of the

contralateral breast.
2 Methods

This retrospective, quantitative study included 143 female

patients selected from a database of 922. The patients who were

40 years or older, had undergone a breast MRI examination, and

were diagnosed with IBC. The cohort consisted of 117 patients with

IDC and 26 with ILC, classified based on histopathological reports

available publicly in the “DUKE Breast-Cancer-MRI” database from

TCIA website. The patients who had undergone surgical

intervention in the contralateral breast (CLB), those with bilateral

breast cancer, MRI image artefacts, significant breast density

asymmetry, known benign mass lesions in the CLB, or those

lacking axial T1-weighted pre-contrast MRI images were

excluded. The flowchart of the patient selection protocol is

illustrated as Supplementary Figure S1 in supplementary materials.

The Ethics Review Committee of the Faculty of Allied Health

Sciences, University of Peradeniya, Sri Lanka, approved the study

protocol. All procedures were performed per relevant guidelines

and regulations.

Breast MRI images were sourced from the openly accessible

“Duke Breast-Cancer-MRI” collection on the Cancer Imaging

Archive website (33). This study adhered to The Cancer Imaging

Archive’s data usage policy and restrictions. The DUKE database

was collected at Duke Hospital, USA, between 2000 and 2014.
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Images were acquired using 1.5T or 3T scanner from General

Electric and Siemens. Digital Imaging and Communications in

Medicine (DICOM) images of the axial T1-weighted pre-contrast

sequence were included in the study. The workflow of the

supervised learning method used in the development of the IDC

and ILC classification model is illustrated in Figure 1.
2.1 Image processing and region of interest
selection

3D Slicer software (version 5.2.2) was used as the image

processing tool. The investigator manually selected the ROI

within the total breast area of the CLB as illustrated in Figure 2.

The anterior border was defined by the skin margin, and the

posterior border was delineated at the level of the sternum.

Pectoralis muscles, identified by their grey color in MRI images,

were excluded from the ROI selection process, with validation

provided by a board-certified radiologist. The ROI for the

fibroglandular area of the CLB was marked in each slice using the
Frontiers in Oncology 04
thresholding function of the 3D Slicer application and by manually

delineating the fibroglandular area. A comprehensive 3D image of

the CLB was generated by combining all the slices of the MRI image.
2.2 Quantification of morphological
features

The 3D Slicer application’s quantification feature was used to

determine parameters for each patient’s CLB. Specifically, the total

volume of the CLB, fibroglandular tissue volume of the CLB, surface

area of the CLB, and surface area of the fibroglandular tissue of the

CLB were computed. MRI breast density, a crucial metric in breast

health assessment, was calculated as the ratio of fibroglandular

tissue volume to the overall breast volume. In addition, the ratio of

fibroglandular tissue volume of the CLB, to the surface area of the

fibroglandular tissue of the CLB, and the ratio of total volume of the

CLB, to the surface area of the CLB were calculated.
2.3 Machine learning model development

After feature computation, supervised learning methods were

applied to build a model for predicting types of IBC (IDC or ILC).

The model was developed using Python 3.12 software. Given the

imbalance between IDC and ILC cases, the Synthetic Minority

Oversampling Technique (SMOTE) was applied to balance the

dataset. The resampled dataset was stratified and split into

training and testing subsets. Different proportions of training and

testing data set combined with different feature selections were used

to find the optimal splitting ratio(as shown in Table 1). A training

and testing data set with the proportion of 80:20 was chosen, with

all 7 features selected to build the model.
2.4 Feature selection and model training

The ANOVA F-test was used to select a subset of normalized

features most pertinent to distinguishing between IDC and ILC. All

7 features were selected based on a tenfold cross-validation method

which was employed to evaluate various algorithms, including

Support Vector Classifier (SVC), Random Forest (RF), Gaussian

Naive Bayes (GaussianNB), K-Nearest Neighbors (KNN), Decision

Tree Classifier (DT), Logistic Regression (LR), and Linear

Discriminant Analysis (LDA). The RF classifier, which provided

the best performance, was used to develop the final model. The

selected RF classifier is then validated on the testing set.
2.5 Model optimization and evaluation

GridSearchCV is a sklearn technique which uses grid search

algorithm to find the optimal hyperparameters for the model (34).

These hyperparameters include min_samples_split, n_estimators,

max_depth, max_features, bootstrap, and min_samples_leaf. Each
FIGURE 1

Supervised learning method to classify IDC and ILC was applied.
This flowchart illustrates the steps followed to establish a
prediction model.
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hyperparameter was tested within predefined ranges ;

min_samples_split: from 2 to 5, n_estimators: from 100 to 200

(with the steps of 10), max_depth: 10 to 100(with the steps of 10),

max_features: 3, 5, 10, boot_strap: True, False, min_samples_leaf: 1,

2, 4. Precision and recall scores of the model were acquired.

The model’s performance was evaluated using several metrics,

including accuracy, precision, recall, and F1 score as stated here by

the Equations 1–4.

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(1)

Where TP,TN,FP and FN specify true positive, true negative,

false positive and false negative, respectively. Here, Accuracy

represents the proportion of correct predictions out of the total

number of predictions made by the ML model.
Frontiers in Oncology 05
Precision =
TP

(TP + FP)
(2)

Where TP and FP represent true positive and false positive.

Precision represents the proportion of the correctly made p positive

predictions made by the ML model.

Recall =
TP

(TP + FN)
(3)

Where TP and FN indicate true positive and false negative.

Recall indicate the correctly predicted positive outcomes out of all

the positive individuals.

F1   =   2:½(Precision :  Recall)
(Precision + Recall)

� (4)

F1 score indicates the balance of precision and recall.
FIGURE 2

Example of MRI T1-weighted breast axial images were segmented to compute total breast volume and fibroglandular volume. (a) ROI for a single
slice of the right breast in the axial plane. (b) ROI for a single slice of the fibroglandular tissue of the right breast in the axial plane. (c) The
constructed 3D image of total volume of the contralateral breast. (d) The constructed 3D image of fibroglandular volume of the contralateral breast.
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The precision-recall curve was used to illustrate the trade-off

between sensitivity and specificity. The final decision threshold was

set at 0.5 to maximize the model’s performance. The area under the

ROC curve (AUC-ROC) was also evaluated to further assess the

model’s efficacy.
3 Results

3.1 Feature selection and ANOVA F-Test
Scores

The ANOVA F-test was used to identify the most significant

features for distinguishing between IDC and ILC. As shown in

Table 2, the feature “Total volume of the contralateral breast”

reported the highest ANOVA F-test score (mean value =

8.343721), indicating a strong correlation with the IDC and ILC
Frontiers in Oncology 06
differentiation. In contrast, “Fibroglandular volume of the

contralateral breast” (mean value = 0.001393) reported the lowest

score, suggesting minimal correlation with the cancer types.

Another notable feature is “Surface Area of the contralateral

breast” with a score of 6.921108.
3.2 Algorithm performance

Several ML algorithms were evaluated to determine the most

effective model for predicting IDC and ILC. Table 3 summarizes the

accuracy and standard deviation of each algorithm based on ten-

fold cross-validation.

The Random Forest Classifier demonstrated the highest mean

accuracy of 79.13%, outperforming other algorithms such as

Decision Tree Classifier(71.19%), Support Vector Classifier

(71.05%), and Gaussian Bayes (63.65%).This high performance,

combined with a relatively low standard deviation, indicated the

Random Forest Classifier’s robustness and reliability in

distinguishing between IDC and ILC.
TABLE 2 ANOVA F-test scores of 7 morphological features used in the
study for feature selection.

Feature ANOVA F-test score

Total volume of the contralateral breast 8.343721

Fibroglandular tissue volume of the
contralateral breast

0.001393

Breast density 6.382038

Surface area of the contralateral breast 6.921108

Surface area of fibroglandular tissue of the
contralateral breast

0.817569

Fibroglandular volume of the contralateral
breast/Surface area of fibroglandular tissue

1.735226

Total volume of the contralateral breast/Surface
area of the contralateral breast

5.226712
TABLE 3 Performance summary of different algorithms under cross
validation (mean accuracy and standard deviation).

Algorithm Mean Accuracy (%)
Standard
Deviation

Logistic Regression 56.6 0.128070

Linear
Discriminant Analysis

57.16 0.121735

k-Nearest
Neighbors Classifier

65.17 0.112232

Decision Tree Classifier 71.19 0.116184

Gaussian Bayes 63.65 0.131818

Support
Vector Classifier

71.05 0.143569

Random
Forest Classifier

79.13 0.096389
TABLE 1 Results from tenfold cross validation and test set validation
based on various combination of train and test data splits and
feature selection.

Testing
set (%)

Features
RFC ten-fold cross
validation score

Accuracy

15

4 77.13 72.22

5 78.26 58.33

6 81.78 66.66

7 81.76 69.44

20

4 74.325 68.08

5 75.46 70.21

6 78.07 74.46

7 79.12 70.21

25

4 72.38 69.49

5 74.24 69.49

6 75.94 72.81

7 75.42 76.27

30

4 71.98 69.01

5 71.36 74.64

6 73.78 69.01

7 70.73 69.01

35

4 69.16 63.41

5 71.11 75.6

6 71.83 69.51

7 69.16 75.6

40

4 69.28 74.46

5 71.42 76.59

6 69.28 79.78

7 70.71 79.78
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3.3 Model evaluation and performance
metrics

The Random Forest Classifier, identified as the best-performing

model, was further evaluated using the test set. The evaluation

metrics included precision, recall, and F1-score for both IDC and

ILC. Table 4 presents the detailed performance metrics.

The Random Forest model achieved an overall accuracy of 70%

with IDC and ILC classifications. ILC exhibited a higher precision

score (75%) while IDC exhibited a higher Recall score (78%). The

F1-score, which balances both precision and recall, is higher for

IDC (72%) compared to ILC (68%).
3.4 Hyperparameter tuning and decision
threshold adjustment

To further enhance the model’s performance, hyperparameter

tuning and decision threshold adjustments were conducted.

Precision and Recall scores were maximized by running

GridSearchCV on the model to find the optimal hyperparameters

within a pre-defined range. Table 5 describes the details of

optimized hyperparameters for maximizing precision and

recall, respectively.

After tuning, the Random Forest model with maximum

precision correctly predicted 19 cases of IDC and 17 cases of ILC,

with 4 false negatives and 7 false positives. The performance metrics

for this optimized model are shown in Table 6.

For maximum recall, the model accurately predicted 19 cases of

IDC and 18 cases of ILC, with 4 false negatives and 6 false positives.

The performance metrics are detailed in Table 7.

Further adjustments were made to the decision threshold based

on the precision-recall curve (illustrated in Figure 3), which

optimized the balance between precision and recall. The decision

threshold was adjusted to 0.5 to achieve optimal values. The final

model achieved an accuracy of 79%.

The ROC curve, shown in Figure 4, plots the true positive rate

against the false positive rate across different decision thresholds,

providing insight into the trade-offs between precision and recall.

An AUC value of 0.851 was obtained which indicates the model’s

ability to distinguish positive and negative outcomes.

The confusion matrix in Figure 5 visually represents the

performance of the optimized classification model. The matrix
Frontiers in Oncology 07
highlights the 19 true negatives, 18 true positives, 6 false positives,

and 4 false negatives. In this aspect, true negatives and true positives

are identified as correctly predicted IDCs and correctly predicted

ILCs, respectively. False positives are identified as actual ILCs,

falsely predicted to be IDCs, and false negatives are identified as

actual IDCs, falsely predicted to be ILCs. The confusion matrix

corroborates the model’s high accuracy and balanced performance

in distinguishing between IDC and ILC.
4 Discussion

Past studies incorporating the RF Classifier in building ML

models for breast cancer prediction reported various accuracies and

sensitivities (32, 35). However, they focused entirely on the affected

breast, while the focus was on the contralateral breast in this study.

Among the morphological features extracted from the contralateral

breast, total volume of the breast, surface area of the breast, and

breast density had higher ANOVA F-test scores, indicating higher

predictive power when differentiating IDC and ILC. A study by

Egan et al. observed a significant positive association between breast

size and breast cancer (36). Wanders et al., in their study, found a

correlation between breast density, and both interval and screening

breast cancers (37). A study by Nara et al. found a significant

correlation between fibroglandular volume and breast cancer (38).

Past studies related to classifying IDC and ILC primarily focused on

the tumor’s radiomic features, and they did not consider the

morphological features of the breast. Gunawan et al. acquired an

accuracy of 76% based on mammographic physical parameters (29).

A study by Faraz et al. focused on radiomic features to achieve an

AUC of 0.73 (31). We have selected morphological features of the

contralateral breast in contrast to their studies and achieved a
TABLE 4 Performance of the random forest classifier on the test set.

Cancer Type Precision (%) Recall (%) F1-Score (%) Support

Ductal 67 78 72 23

Lobular 75 62 68 24

Accuracy 70 47

Macro Average 71 70 70 47

Weighted Average 71 70 70 47
TABLE 5 Optimized hyperparameters for maximum precision and
maximum recall.

Hyperparameter
Maximized
precision

Maximized
recall

Max Depth 20 30

Max Features
Min samples leaf

3
1

7
1

Min Samples Split 2 2

Number of Estimators 133 177
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modest accuracy of 79% and an AUC of 0.851. Compared to their

models, our machine learning model performed slightly better in

differentiating IDC and ILC. A study by Maiti et al. achieved an

AUC of 0.998 for building a model based on the radiomic features

of the tumor (30). Compared to other studies, they achieved an

impressive AUC but didn’t use machine learning or deep learning

methods because of the smaller sample size. It can be reasoned that

using ML model would not be ideal for smaller datasets like our

study. In 2023, Bouasria et al. explored the optimal sample size

needed for a RF model (39). They mentioned that a 300–500 sample

size was recommended for optimal performance, but the accuracy

difference above 50 sample size was shown to be minimal, not

accounting for deeper analysis. Hence, the ML model could be

advantageous since it could handle high dimensional datasets and

precision-recall tradeoffs. Contralateral breast cancer refers to

development of cancer in the opposite breast after a patient has

already been diagnosed with cancer in one breast. Giannakeas et al.,

in their study observed that 3.2% of patients were diagnosed with

the CLB cancer, and the 25-year actuarial risk of contralateral

invasive breast cancer was 9.9% (40). There are several risk factors

for the CBC cancer- age, genetic mutations, tumor type and

hormone receptors. Several studies have discussed correlation

between histological type of primary breast cancer(IDC and ILC),

and the development of contralateral breast cancer (41, 42).

Langland et al. observed that there were no risks in developing

contralateral breast cancer based on primary cancer histology(IDC

and ILC) (42). However, a study by Park et al., based on a

retrospective analysis of 1071 patients found that the risk of

developing contralateral breast cancer was higher in patients with

ILC(7.1%) compared to those with IDC(1.5%). This finding aligns

with an earlier study by Arpino et al. in 2004 which observed that
Frontiers in Oncology 08
the incidence of CLB cancer was higher in ILC patients than in IDC

patients (20.9% vs 11.9%) (11). Therefore, our study could be

extended in the future to explore relationship between the

morphological features of the CLB, histological types of primary

cancer(IDC and ILC), and the risk of CLB cancer.

We had an unequal number of IDC and ILC patients, with 117

and 26, respectively. The SMOTE oversampling method was used to

balance the data set. The sample size of ILC was equalized to that of

IDC, since IDC had the largest sample size in the population.

Without balancing the dataset, ANOVA feature selection scores of

0.440811, 0.000123, 1.012839, 0.280833, 0.009705 and 0.198752

were obtained for total volume of the contralateral breast,

fibroglandular volume of the contralateral breast, breast density,

surface area of the contralateral breast, surface area of

fibroglandular tissue, fibroglandular volume of the contralateral

breast/surface area of fibroglandular tissue and total volume of the

contralateral breast/surface area of the contralateral breast,

respectively. The scores were very low across all the features and

showed no distinct variations compared to the ANOVA F-test

scores we obtained (see Table 2) after using the SMOTE

oversampling method. Using SMOTE positively increased the

performance of the ML model. When splitting train and test data,

we had to go through all the combinations, as pointed out in

Table 1, to find the ideal combination to build a robust model. Even

though split ratios of 65:35 and 60:40 gave higher accuracies, the

accuracies decreased significantly after hyperparameter tuning.

Therefore, an 80:20 ratio was selected to reduce the variance and

overfitting of the data. Overfitting is when the model performs

exceptionally well on the training data set and poorly on the testing

data set. Overfitting happens when the model tries to memorize the

data instead of generalizing it in the training phase. Optimal
TABLE 6 A summary of performance metrics for the model optimized for precision.

Cancer Type Precision (%) Recall (%) F1-Score (%) Support

Ductal 73 83 78 23

Lobular 81 71 76 24

Accuracy 77 47

Macro Average 77 77 77 47

Weighted Average 77 77 77 47
Precision, Recall, F1-score and support score were obtained.
TABLE 7 A summary of performance metrics for the model optimized for recall.

Cancer Type Precision (%) Recall (%) F1-Score (%) Support

Ductal 76 83 79 23

Lobular 82 75 78 24

Accuracy 79 47

Macro Average 79 79 79 47

Weighted Average 79 79 79 47
Precision, Recall, F1-score and support score were obtained.
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hyperparameters were selected for the maximized precision and

recall scores. Given the need to address IDC and ILC, it is essential

to balance false positives and false negatives to optimize the

performance of the machine learning model. Hence, precision

and recall were maximized, and the threshold was set to 0.5 to

acquire balanced precision and recall.

Based on this study, IDC and ILC can be differentiated without

invasive procedures, which would immensely benefit medicine. This
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could complement biopsy procedures moving forward. In situations

where performing biopsies are considered challenging, this model

could be of service in such circumstances. It should be evaluated on

a large data set in the future to be considered reliable. Data

acquisition can also be accomplished quickly since we only focus

on the fat-suppressed T1 weighted imaging. This can be achieved

within minutes, and patient comfort is not compromised. The

acquisition takes approximately 1 minute for standard resolution

and 6 minutes for higher resolution at 3T (43).

However, there are several limitations in this study. The

difference in the dataset sizes of IDC and ILC could have affected

the model’s performance. Gunawan et al. also faced the same

struggle with an unbalanced dataset(156 IDC and 8 ILC), which

resulted in almost identical accuracy to our study (29). Decreasing

the number of IDC cases to balance the dataset would also affect the

model, as the ability to learn complex patterns would be

compromised. As stated by Bouasria et al., decreasing the overall

sample size to around 50 would marginally decrease the model’s

accuracy (39). Hence, we proceeded with 117 IDCs and 26 ILCs as

our dataset. Even though data acquisition is quicker with fat-

suppressed T1 weighted imaging, the time needed to extract the

morphological features of the breast would still be longer when

using 3D Slicer. Multiple recent studies have focused on building

automatic segmentation models based on deep learning methods

like deep convolutional neural networks (44–46). These automatic

segmentation methods could be incorporated into our study to

speed up the segmentation process further. Further advancements

should be made to expedite the acquisition of morphological

features of the breast. Another limitation of this machine learning

model is the lack of an external data set comprising IDC and ILC

patients for validation. External and multi-center validation is

needed to gauge the accuracy and reliability of the model across

various clinical settings. It would also prevent the overfitting of the

model. Therefore, future studies should focus on incorporating

external validation into this model.
FIGURE 3

Precision- recall curve of the machine learning model with
threshold level.
FIGURE 4

Receiver Operating Characteristic (ROC) Curve of the machine
learning model.
FIGURE 5

Confusion matrix of machine learning model with predicted and
actual cancer types.
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5 Conclusion

This study developed and optimized a predictive model using

morphological features of the contralateral breast and ML methods

to differentiate IDC and ILC. The RF Classifier was identified as the

most effective algorithm, achieving a high level of accuracy through

extensive feature selection and hyperparameter tuning.

The significant predictive power of features such as the total

volume of the CLB, surface area of the CLB and breast density

underscores the importance of comprehensive feature selection in

developing robust ML models. Classification of IDC and ILC

through non-invasive method like this could be further developed

in the future to complement biopsies in challenging situations.

Future directions should include expanding the dataset size and

incorporating additional features to enhance model accuracy. By

improving diagnostic accuracy, the developed model represents a

valuable advancement in breast cancer management, ultimately

contributing to better patient outcomes and more efficient

healthcare delivery.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Ethics statement

The studies involving humans were approved by Ethics Review

Committee, Faculty of Allied Health Sciences, University of

Peradeniya, Peradeniya, Sri Lanka. The studies were conducted in

accordance with the local legislation and institutional requirements.

Written informed consent for participation was not required from the

participants or the participants’ legal guardians/next of kin in

accordance with the national legislation and institutional requirements.
Author contributions

NP: Conceptualization, Investigation, Methodology, Validation,

Writing – original draft, Writing – review & editing. WN:

Conceptualization, Investigation, Methodology, Writing – review

& editing. HP: Conceptualization, Investigation, Methodology,

Writing – review & editing. SV: Formal analysis, Methodology,

Software, Writing – review & editing. PH: Supervision, Writing –

review & editing. LS: Supervision, Writing – review & editing. MJ:

Conceptualization, Project administration, Software, Supervision,

Writing – review & editing.
Frontiers in Oncology 10
Funding

The author(s) declare that no financial support was received for

the research and/or publication of this article.
Acknowledgments

I would like to acknowledge the support provided by University

of Peradeniya and express my gratitude to all the staff members of

Department of Radiography/Radiotherapy for their guidance,

resources and knowledge which were needed for the successful

completion of this study.
Conflict of interest

The authors declare that the research was conducted without

any commercial or financial relationships that could be interpreted

as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2025.1588787/

full#supplementary-material

SUPPLEMENTARY FIGURE 1

This flow chart illustrates the patient selection protocol from “Duke Breast-

Images-MRI” data base in TCIA website.
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2025.1588787/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2025.1588787/full#supplementary-material
https://doi.org/10.3389/fonc.2025.1588787
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Paripooranan et al. 10.3389/fonc.2025.1588787
References
1. Petracci E, Decarli A, Schairer C, Pfeiffer RM, Pee D, Masala G, et al. Risk factor
modification and projections of absolute breast cancer risk. J Natl Cancer Inst. (2011)
103:1037–48. doi: 10.1093/jnci/djr172

2. Lei S, Zheng R, Zhang S, Wang S, Chen R, Sun K, et al. Global patterns of breast
cancer incidence and mortality: A population-based cancer registry data analysis from
2000 to 2020. Cancer Commun. (2021) 41:1183. doi: 10.1002/cac2.12207

3. Harford JB. Breast-cancer early detection in low-income and middle-income
countries: do what you can versus one size fits all. Lancet Oncol. (2011) 12:306–12.
doi: 10.1016/S1470-2045(10)70273-4

4. Weigelt B, Geyer FC, Reis-Filho JS. Histological types of breast cancer: How
special are they? Mol Oncol. (2010) 4:192–208. doi: 10.1016/j.molonc.2010.04.004

5. Malhotra GK, Zhao X, Band H, Band V. Histological, molecular and functional
subtypes of breast cancers. Cancer Biol Ther. (2010) 10:955. doi: 10.4161/
cbt.10.10.13879

6. Barroso-Sousa R, Metzger-Filho O. Differences between invasive lobular and
invasive ductal carcinoma of the breast: results and therapeutic implications. Ther Adv
Med Oncol. (2016) 8:261–6. doi: 10.1177/1758834016644156

7. Li CI, Anderson BO, Daling JR, Moe RE. Trends in incidence rates of invasive
lobular and ductal breast carcinoma. JAMA. (2003) 289:1421–4. doi: 10.1001/
jama.289.11.1421

8. Manning P, Fazeli S, Lim V, Ladd WA, Eghtedari M, Chong A, et al. Invasive
lobular carcinoma: A multimodality imaging primer. Radiographics. (2022) 42:E115–6.
doi: 10.1148/rg.210058

9. Cornford EJ, Wilson ARM, Athanassiou E, Galea M, Ellis IO, Elston CW, et al.
Mammographic features of invasive lobular and invasive ductal carcinoma of the
breast: a comparative analysis. Br J Radiology. (1995) 68:450–3. doi: 10.1259/0007-
1285-68-809-450

10. Li CI, Uribe DJ, Daling JR. Clinical characteristics of different histologic types of
breast cancer. Br J Cancer. (2005) 93:1046–52. doi: 10.1038/sj.bjc.6602787

11. Arpino G, Bardou VJ, Clark GM, Elledge RM. Infiltrating lobular carcinoma of
the breast: Tumor characteristics and clinical outcome. Breast Cancer Res. (2004) 6:1–8.
doi: 10.1186/bcr767

12. Iorfida M, Maiorano E, Orvieto E, Maisonneuve P, Bottiglieri L, Rotmensz N,
et al. Invasive lobular breast cancer: Subtypes and outcome. Breast Cancer Res Treat.
(2012) 133:713–23. doi: 10.1007/s10549-012-2002-z

13. Kurtz JM, Jacquemier J, Torhorst J, Spitalier J -M, Amalric R, Hünig R, et al.
Conservation therapy for breast cancers other than infiltrating ductal carcinoma.
Cancer. (1989) 63:1630–5. doi: 10.1002/1097-0142(19890415)63:8<1630::AID-
CNCR2820630833>3.0.CO;2-U

14. Mathieu MC, Rouzier R, Llombart-Cussac A, Sideris L, Koscielny S, Travagli JP,
et al. The poor responsiveness of infiltrating lobular breast carcinomas to neoadjuvant
chemotherapy can be explained by their biological profile. Eur J Cancer. (2004) 40:342–
51. doi: 10.1016/j.ejca.2003.08.015

15. Cristofanilli M, Gonzalez-Angulo A, Sneige N, Kau SW, Broglio K, Theriault RL,
et al. Invasive lobular carcinoma classic type: response to primary chemotherapy and
survival outcomes. J Clin Oncology. (2005) 23:41–8. doi: 10.1200/JCO.2005.03.11

16. Dorrius MD, Jansen-Van Der Weide MC, Van Ooijen PMA, Pijnappel RM,
Oudkerk M. Computer-aided detection in breast MRI: a systematic review and meta-
analysis. Eur Radiol. (2011) 21:1600. doi: 10.1007/s00330-011-2091-9

17. Gilbert FJ, Hickman SE, Baxter GC, Allajbeu I, James J, Caraco C, et al.
Opportunities in cancer imaging: risk-adapted breast imaging in screening. Clin
Radiol. (2021) 76:763–73. doi: 10.1016/j.crad.2021.02.013

18. McCormack VA, Dos Santos Silva I. Breast density and parenchymal patterns as
markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev.
(2006) 15:1159–69. doi: 10.1158/1055-9965.EPI-06-0034

19. Li X, Zhou C, Wu Y, Chen X. Relationship between formulaic breast volume and
risk of breast cancer based on linear measurements. BMC Cancer. (2020) 20:1–8.
doi: 10.1186/s12885-020-07499-5

20. Scutt D, Manning JT, Whitehouse GH, Leinster SJ, Massey CP. The relationship
between breast asymmetry, breast size and the occurrence of breast cancer. Br J
Radiology. (1997) 70:1017–21. doi: 10.1259/bjr.70.838.9404205

21. Chen HL, Zhou JQ, Chen Q, Deng YC. Comparison of the sensitivity of
mammography, ultrasound, magnetic resonance imaging and combinations of these
imaging modalities for the detection of small (≤2cm) breast cancer. Med (United
States). (2021) 100:E26531. doi: 10.1097/MD.0000000000026531

22. Bluemke DA, Gatsonis CA, Chen MH, DeAngelis GA, DeBruhl N, Harms S,
et al. Magnetic resonance imaging of the breast prior to biopsy. JAMA. (2004)
292:2735–42. doi: 10.1001/jama.292.22.2735

23. Nguyen C, Wang Y, Nguyen HN, Nguyen C, Wang Y, Nguyen HN. Random
forest classifier combined with feature selection for breast cancer diagnosis and
prognostic. J BioMed Sci Eng. (2013) 6:551–60. doi: 10.4236/jbise.2013.65070
Frontiers in Oncology 11
24. Anisha PR, Reddy CKK, Apoorva K, Mangipudi CM. Early diagnosis of breast
cancer prediction using random forest classifier. IOP Conf Ser Mater Sci Eng. (2021)
1116:12187. doi: 10.1088/1757-899X/1116/1/012187

25. Mu T, Nandi AK. Breast cancer detection from FNA using SVM with different
parameter tuning systems and SOM–RBF classifier. J Franklin Inst. (2007) 344:285–
311. doi: 10.1016/j.jfranklin.2006.09.005

26. Ghazavi SN, Liao TW. Medical data mining by fuzzy modeling with selected
features. Artif Intell Med. (2008) 43:195–206. doi: 10.1016/j.artmed.2008.04.004

27. Breiman L. Random forests. Mach Learn. (2001) 45:5–32. doi: 10.1023/
A:1010933404324

28. Wainer J. Comparison of 14 different families of classification algorithms on 115
binary datasets. (2016). doi: 10.48550/arXiv.1606.00930

29. Gunawan AAN, Suardana P, Sulaiman A, Negara AANFK, Mahendra AANS,
Negara AANFC. Classification of invasive lobular carcinoma (ILC) and invasive ductal
carcinoma (IDC) using the support vector machine (SVM) method. Appl Math Sci.
(2022) 16:261–71. doi: 10.12988/ams.2022.916783

30. Maiti S, Nayak S, Hebbar KD, Pendem S. Differentiation of invasive ductal and
lobular carcinoma of the breast using MRI radiomic features: a pilot study.
F1000Research. (2024) 13:91. doi: 10.12688/f1000research.146052.2

31. Faraz K, Dauce G, Bouhamama A, Leporq B, Sasaki H, Bito Y, et al.
Characterization of breast tumors from MR images using radiomics and machine
learning approaches. J Personalized Med. (2023) 13:1062. doi: 10.3390/jpm13071062

32. Rabiei R, Ayyoubzadeh SM, Sohrabei S, Esmaeili M, Atashi A. Prediction of
breast cancer using machine learning approaches. J BioMed Phys Eng. (2022) 12:297.
doi: 10.31661/jbpe.v0i0.2109-1403

33. Saha A, Harowicz MR, Grimm LJ, Kim CE, Ghate SV, Walsh R, et al. A machine
learning approach to radiogenomics of breast cancer: a study of 922 subjects and 529
DCE-MRI features. Br J Cancer. (2018) 119:508. doi: 10.1038/s41416-018-0185-8

34. Zöller MA, Huber MF. Benchmark and survey of automated machine learning
frameworks. J Artif Intell Res. (2021) 70:409–72. doi: 10.48550/arXiv.1904.12054

35. Aroef C, Rivan Y, Rustam Z. Comparing random forest and support vector
machines for breast cancer classification. TELKOMNIKA (Telecommunication
Computing Electron Control). (2020) 18:815–21. doi: 10.12928/telkomnika.v18i2.14785

36. Egan KM, Newcomb PA, Titus-Ernstoff L, Trentham-Dietz A, Baron JA, Willett
WC, et al. The relation of breast size to breast cancer risk in postmenopausal women
(United States). Cancer Causes Control . (1999) 10:115–8. doi: 10.1023/
A:1008801131831

37. Wanders JOP, Holland K, Karssemeijer N, Peeters PHM, Veldhuis WB, Mann
RM, et al. The effect of volumetric breast density on the risk of screen-detected and
interval breast cancers: A cohort study. Breast Cancer Res. (2017) 19:1–13. doi: 10.1186/
s13058-017-0859-9

38. Nara M, Fujioka T, Mori M, Aruga T, Tateishi U. Prediction of breast cancer risk
by automated volumetric breast density measurement. Jpn J Radiol. (2023) 41:54–62.
doi: 10.1007/s11604-022-01320-y

39. Bouasria A, Bouslihim Y, Gupta S, Taghizadeh-Mehrjardi R, Hengl T.
Predictive performance of machine learning model with varying sampling
designs, sample sizes, and spatial extents. Ecol Inform. (2023) 78:102294.
doi: 10.1016/j.ecoinf.2023.102294

40. Giannakeas V, Lim DW, Narod SA. The risk of contralateral breast cancer: a
SEER-based analysis. Br J Cancer. (2021) 125:601–10. doi: 10.1038/s41416-021-01417-7

41. Dawson LA, Chow E, Goss PE. Evolving perspectives in contralateral breast
cancer. Eur J Cancer. (1998) 34:2000–9. doi: 10.1016/S0959-8049(98)00208-1

42. Langlands F, White J, Kearins O, Cheung S, Burns R, Horgan K, et al.
Contralateral breast cancer: Incidence according to ductal or lobular phenotype of
the primary. Clin Radiol. (2016) 71:159–63. doi: 10.1016/j.crad.2015.10.030

43. Brown R, Storey P, Geppert C, McGorty K, Leite APK, Babb J, et al. Breast MRI
at 7 Tesla with a bilateral coil and T1-weighted acquisition with robust fat suppression:
Image evaluation and comparison with 3 Tesla. Eur Radiol. (2013) 23:2969–78.
doi: 10.1007/s00330-013-2972-1

44. Moeskops P, Wolterink JM, van der Velden BHM, Gilhuijs KGA, Leiner T,
Viergever MA, et al. (2017). Deep learning for multi-task medical image segmentation
in multiple modalities, in: Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Germany:
Springer Verlag. pp. 478–86, 9901 LNCS. doi: 10.48550/arXiv.1704.03379

45. Piantadosi G, Sansone M, Fusco R, Sansone C. Multi-planar 3D breast
segmentation in MRI via deep convolutional neural networks. Artif Intell Med.
(2020) 103:101781. doi: 10.1016/j.artmed.2019.101781

46. Guo YY, Huang YH, Wang Y, Huang J, Lai QQ, Li YZ. Breast MRI tumor
automatic segmentation and triple-negative breast cancer discrimination algorithm
based on deep learning. Comput Math Methods Med. (2022) 2022:2541358.
doi: 10.1155/2022/2541358
frontiersin.org

https://doi.org/10.1093/jnci/djr172
https://doi.org/10.1002/cac2.12207
https://doi.org/10.1016/S1470-2045(10)70273-4
https://doi.org/10.1016/j.molonc.2010.04.004
https://doi.org/10.4161/cbt.10.10.13879
https://doi.org/10.4161/cbt.10.10.13879
https://doi.org/10.1177/1758834016644156
https://doi.org/10.1001/jama.289.11.1421
https://doi.org/10.1001/jama.289.11.1421
https://doi.org/10.1148/rg.210058
https://doi.org/10.1259/0007-1285-68-809-450
https://doi.org/10.1259/0007-1285-68-809-450
https://doi.org/10.1038/sj.bjc.6602787
https://doi.org/10.1186/bcr767
https://doi.org/10.1007/s10549-012-2002-z
https://doi.org/10.1002/1097-0142(19890415)63:8%3C1630::AID-CNCR2820630833%3E3.0.CO;2-U
https://doi.org/10.1002/1097-0142(19890415)63:8%3C1630::AID-CNCR2820630833%3E3.0.CO;2-U
https://doi.org/10.1016/j.ejca.2003.08.015
https://doi.org/10.1200/JCO.2005.03.11
https://doi.org/10.1007/s00330-011-2091-9
https://doi.org/10.1016/j.crad.2021.02.013
https://doi.org/10.1158/1055-9965.EPI-06-0034
https://doi.org/10.1186/s12885-020-07499-5
https://doi.org/10.1259/bjr.70.838.9404205
https://doi.org/10.1097/MD.0000000000026531
https://doi.org/10.1001/jama.292.22.2735
https://doi.org/10.4236/jbise.2013.65070
https://doi.org/10.1088/1757-899X/1116/1/012187
https://doi.org/10.1016/j.jfranklin.2006.09.005
https://doi.org/10.1016/j.artmed.2008.04.004
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.48550/arXiv.1606.00930
https://doi.org/10.12988/ams.2022.916783
https://doi.org/10.12688/f1000research.146052.2
https://doi.org/10.3390/jpm13071062
https://doi.org/10.31661/jbpe.v0i0.2109-1403
https://doi.org/10.1038/s41416-018-0185-8
https://doi.org/10.48550/arXiv.1904.12054
https://doi.org/10.12928/telkomnika.v18i2.14785
https://doi.org/10.1023/A:1008801131831
https://doi.org/10.1023/A:1008801131831
https://doi.org/10.1186/s13058-017-0859-9
https://doi.org/10.1186/s13058-017-0859-9
https://doi.org/10.1007/s11604-022-01320-y
https://doi.org/10.1016/j.ecoinf.2023.102294
https://doi.org/10.1038/s41416-021-01417-7
https://doi.org/10.1016/S0959-8049(98)00208-1
https://doi.org/10.1016/j.crad.2015.10.030
https://doi.org/10.1007/s00330-013-2972-1
https://doi.org/10.48550/arXiv.1704.03379
https://doi.org/10.1016/j.artmed.2019.101781
https://doi.org/10.1155/2022/2541358
https://doi.org/10.3389/fonc.2025.1588787
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Machine learning-based classification model to differentiate subtypes of invasive breast cancer using MRI
	1 Introduction
	2 Methods
	2.1 Image processing and region of interest selection
	2.2 Quantification of morphological features
	2.3 Machine learning model development
	2.4 Feature selection and model training
	2.5 Model optimization and evaluation

	3 Results
	3.1 Feature selection and ANOVA F-Test Scores
	3.2 Algorithm performance
	3.3 Model evaluation and performance metrics
	3.4 Hyperparameter tuning and decision threshold adjustment

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


