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Background: Perioperative venous thromboembolism (VTE) is a severe

complication in lung cancer surgery. Traditional prediction models have

limitations in handling complex clinical data, whereas machine learning (ML)

offers enhanced predictive accuracy. This study aimed to develop and validate an

ML-based model for preoperative VTE risk assessment.

Methods: A retrospective cohort of 1,013 lung cancer patients who underwent

surgery at the First Hospital of Jilin University (April 2021–December 2023) was

analyzed. Preoperative clinical and laboratory data were collected, and six key

predictors—age, mean corpuscular volume, mean corpuscular hemoglobin,

fibrinogen, D-dimer, and albumin—were identified using univariate analysis and

Lasso regression. Eight ML models, including extreme gradient boosting (XGB),

random forest, logistic regression, and support vector machines, were trained

and evaluated using AUC, precision-recall curves, decision curve analysis, and

calibration curves.

Results: VTE occurred in 175 patients (17.3%). The XGB model demonstrated the

highest predictive performance (AUC: 0.99 training, 0.66 validation; AUPRC:

0.323), with age and mean corpuscular volume identified as the most influential

predictors. An online prediction tool was developed for clinical application.

Conclusion: The ML-based XGB model provides a reliable preoperative risk

assessment for VTE in lung cancer patients, enabling early risk stratification and

personalized thromboprophylaxis.
KEYWORDS

lung cancer, perioperative period, venous thromboembolism, machine learning,
prediction model
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1 Introduction

Lung cancer remains a leading cause of cancer-related mortality

worldwide, accounting for a substantial proportion of global cancer

deaths (1). Surgical intervention plays a crucial role in the treatment

of lung cancer, particularly in the early stages of the disease, where it

not only has the potential to cure the disease but also significantly

improves patient survival rates (2). However, perioperative venous

thromboembolism (VTE), including deep vein thrombosis (DVT)

and pulmonary embolism (PE), remains one of the most serious

complications after surgery, significantly affecting patient morbidity

and mortality (3). Studies have shown that the incidence of VTE in

lung cancer patients can be as high as 13.2% in the first year after

surgery (4). During this period, the combination of surgical stress

and the hypercoagulable state associated with malignancy

significantly increases the risk of thrombotic events, leading to

severe complications, prolonged hospital stays, and increased

mortality (5). Therefore, how to effectively identify high-risk

patients before surgery and take timely, targeted interventions has

become an urgent clinical challenge.

Traditional risk assessment models, such as multivariable

logistic regression analysis, have played an important role in

identifying risk factors for VTE (6). These models provide

valuable insights into the relationships between various clinical

variables and the occurrence of VTE. However, as the complexity of

clinical data increases and the demand for more precise predictive

models rises, the limitations of traditional statistical methods have

become increasingly apparent. Therefore, there is an urgent need

for new reliable methods to predict perioperative thrombosis.

Machine learning (ML) is an innovative, computer-based

approach that has been widely applied in the field of medical data

analysis in recent years (7, 8). The core principle is to extract

patterns from data and generate predictions (9). Supervised

learning is one of the main methods, where models are trained

using fully labeled data to improve prediction accuracy. Unlike

traditional statistical methods, such as logistic regression, machine

learning does not rely on predefined models. By iteratively refining

algorithms, it can more effectively identify complex interactions

between variables (10).

In the past few years, machine learning (ML) algorithms,

including logistic regression (LR), decision trees (DT), random

forest (RF), naive bayes (NB), gradient boosting(GB), support

vector machines (SVM), and k-nearest neighbors (KNN), have

been increasingly applied to risk prediction in lung cancer (11)

and other cancers (12, 13) and cancer-related complications (14,

15), significantly improving the accuracy of risk assessment. These

findings indicate that machine learning holds great promise for
Abbreviations: ML, machine learning; VTE, venous thromboembolism; DVT,

deep vein thrombosis; PE, pulmonary embolism; SMOTE, Synthetic Minority

Oversampling Technique; XGB, extreme gradient boosting machine; RF, random

forest; DT, decision tree; KNN, K-nearest neighbors; MLP, multilayer perceptron;

LR, logistic regression; SVM, support vector machine; NB, Naive Bayes; AUC,

area under curve; AUPRC, area under the precision-recall curve; DCA, decision

curve analysis; CC, calibration curve.
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disease risk prediction, especially in uncovering complex patterns in

multidimensional data.

This study aims to combine traditional statistical methods with

advanced machine learning techniques to establish a preoperative

predictive model for perioperative VTE in lung cancer patients. By

incorporating preoperative indicators, we will select the optimal

predictive model based on the area under the receiver operating

characteristic curve (AUC), area under the precision-recall curve

(AUPRC), decision curve analysis (DCA), and calibration curve

(CC). Furthermore, we will rank the preoperative predictors in

order of importance and identify the most important predictors.

The findings of this study may significantly enhance clinical decision-

making and provide guidance for the development of preoperative

VTE prevention strategies for lung cancer surgical patients.
2 Materials and methods

2.1 Data collection

2.1.1 Study subjects
This study included 1,013 lung cancer patients who underwent

surgery at the First Hospital of Jilin University, Thoracic Surgery

Department, between April 2021 and December 2023. All patients

were diagnosed with primary malignant lung tumors postoperatively.

Clinical data, including perioperative bilateral lower limb ultrasound

examinations, were collected through the electronic medical

record system.

All patients underwent bedside bilateral lower limb color Doppler

ultrasonography before and after surgery to detect the presence or

absence of deep vein thrombosis (DVT). Examinations were

performed by trained vascular sonographers using standardized

protocols, and diagnostic criteria followed international guidelines

for compressibility and intraluminal filling defects.

2.1.1.1 Inclusion criteria
1. Underwent surgery at our hospital;

2. Postoperative pathological diagnosis confirmed primary

malignant lung tumor;

3. Preoperative bilateral venous color ultrasound examination

showed no thrombosis, and postoperative color ultrasound

was performed;

4. Patients were able to cooperate with medical history

inquiries and routine examinations, and clinical data

were complete.
2.1.1.2 Exclusion criteria
1. Postoperative diagnosis revealed benign lung disease, secondary

malignant tumor, or indeterminate pathological staging;

2. Preoperative or postoperative venous ultrasound of the

lower limbs was not performed, or thrombosis was

detected preoperatively;

3. Patients with hematological diseases (e.g., hemophilia,

thrombocytopenia);
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4. Use of anticoagulant drugs preoperatively;

5. History of VTE.
2.1.2 Clinical data collection
The data collection was classified into three primary categories:

general condition, preoperative laboratory assessments, and tumor

characteristics. A total of 43 variables were meticulously collected,

encompassing patient demographic information, preoperative

laboratory findings, and detailed pathological and imaging

characteristics of the tumor.
2.2 Data preprocessing

Missing values were handled differently for numerical and

categorical features. For numerical variables, missing data were

imputed iteratively using the Bayesian ridge regression estimator. In

contrast, categorical variables were treated as additional categories

to account for missing values. Subsequently, one-hot encoding was

applied to categorical variables such as “gender” to generate binary

representations. Numerical variables were standardized to have a

mean of zero and a variance of one. Continuous variables were

summarized using their count, mean, and standard deviation, while

categorical variables were described by their count.
2.3 Feature selection

Statistical analysis was conducted using IBM SPSS Statistics 29.

The Kolmogorov-Smirnov test was used to assess data normality.

For normally distributed continuous variables, data were presented

as mean ± standard deviation (Mean ± SD), and independent

sample t-tests were used to compare group differences. For non-

normally distributed data, medians and interquartile ranges were

used, with Mann-Whitney U tests applied for comparison.

Categorical variables were expressed as percentages (%), and

group differences were compared using the chi-square test (c²).
Statistical significance was set at a = 0.05, with P < 0.05 indicating a

significant difference.

Lasso regression was conducted using R version 4.3.1. All

variables were standardized, and the `cv.glmnet` function was

used for cross-validation to select the optimal regularization

parameter lambda. Lasso regression applied L1 regularization to

select important variables. The model’s fit was evaluated using the

mean squared error (MSE). All tests were set with a significance

level of a = 0.05, with P < 0.05 indicating statistical significance.

Variables that showed statistical significance in both univariate

analysis and Lasso regression were included in the model.
2.4 Learning algorithms

The subjects were randomly divided into a training set (n = 710)

and a test set (n = 303) at a 7:3 ratio. To mitigate class imbalance,
tiers in Oncology 03
the Synthetic Minority Oversampling Technique (SMOTE) was

applied during the training phase. We evaluated the performance of

various models, including extreme gradient boosting machine

(XGB), random forest (RF), decision tree (DT), K-nearest

neighbors (KNN), multilayer perceptron (MLP), logistic

regression (LR), support vector machine (SVM), and Naive Bayes

(NB), selecting the best-performing classifier for prediction.

Hyperparameter optimization was performed using Bayesian

optimization on the validation set to prevent overfitting. A 10-

fold cross-validation was applied to each hyperparameter set, with

the validation set used for performance assessment. Eight models

were trained on the training set data. For hyperparameter tuning, a

random search was conducted, with 80% of the dataset allocated for

model fitting and 20% for validation. The resulting models were

subsequently validated and assessed using validation data. The final

network predictor was developed based on the model that exhibited

the best performance among the eight evaluated. The code for the

data analysis is provided in the supporting materials.

Feature importance was assessed during training through

permutation importance and impurity-based scores. Impurity-

based scores reflect the contribution of each feature by evaluating

its frequency as a decision node and its impact on entropy

reduction. Combined with permutation importance, which

measures accuracy loss from feature shuffling, we derived a robust

feature ranking.
2.5 Method evaluation

To assess the performance of the ML models, we calculated and

compared the area under the receiver operating characteristic curve

(AUROC). AUROC represents the probability that the model ranks

a randomly chosen VTE patient higher than a randomly chosen

non-VTE patient, with a higher AUROC indicating better

performance. However, AUROC can sometimes be misleading,

particularly in imbalanced datasets, where it may overestimate

performance compared to the area under the precision-recall

curve (AUPRC). To address this, we also calculated AUPRC (or

Average Precision) to account for AUROC’s limitations. Average

Precision is derived by summing the precision at each threshold,

weighted by the increase in recall from the previous threshold.

AUPRC provides a better understanding of the model’s ability to

correctly identify VTE patients while minimizing false positives.

In addition to AUROC, we incorporated decision curve analysis

(DCA) to evaluate the model’s clinical utility in real-world decision-

making. DCA calculates the net benefit at different thresholds by

balancing the correct identification of positive cases with the cost of

false positives. Unlike AUROC, which focuses solely on

classification performance, DCA considers the practical impact of

the model’s predictions across various clinical scenarios.

To further evaluate the performance of the ML models, we also

computed and analyzed the calibration curve (CC). The calibration

curve assesses the agreement between predicted probabilities and

actual outcomes, providing insight into how well the model’s

predicted probabilities align with real-world probabilities. Unlike
frontiersin.org
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AUROC and AUPRC, which focus on classification accuracy and

precision, the calibration curve emphasizes the model’s reliability in

estimating the likelihood of an event. This metric is essential in

determining how trustworthy the model’s predictions are for

clinical decision-making, ensuring that the predicted probabilities

are not biased or overestimated.
3 Results

3.1 Characteristics of the study cohort

Our analysis included a total of 1,013 patients, of whom 175

experienced VTE (venous thromboembolism). Our data indicate

that patients with venous thromboembolism (VTE) exhibit

significant differences in several clinical characteristics compared

to those without VTE. Patients with VTE are older and have a

slightly lower proportion of males. Notable biochemical markers

include higher preoperative D-dimer levels and lower albumin

levels in the VTE group. Additionally, statistically significant

differences were observed between the groups in preoperative

mean corpuscular volume (MCV), hemoglobin levels, and Cyfra

21–1 values. The details of all these clinical characteristics are

shown in Table 1.
Frontiers in Oncology 04
3.2 Feature selection

In the univariate analysis and Lasso regression analysis,

variables that showed statistical significance included age,

preoperative mean corpuscular volume (MCV), preoperative

mean corpuscular hemoglobin (MCH), preoperative fibrinogen

level, preoperative D-dimer level, and preoperative albumin level

(Table 2). These six predictors were selected to construct the model.
3.3 Model performance

Figure 1A illustrates the results of ten-fold cross-validation,

demonstrating that the RF model achieved the highest performance

with an average AUC of 0.88 (std = 0.04), outperforming XGB

(AUC = 0.85, std = 0.05), LR (AUC = 0.73, std = 0.04), SVM (AUC

= 0.74, std = 0.04), MLP (AUC = 0.73, std = 0.03), KNN (AUC =

0.81, std = 0.04), BNB (AUC = 0.72, std = 0.04), and DT (AUC =

0.71, std = 0.04). However, the RF model exhibited overfitting, as

indicated by its AUPR in the training set. After excluding RF, the

XGB model demonstrated the highest AUPR of 0.978 (Figure 1B).

Additionally, XGB had the lowest Brier score among all models,

measuring 0.0588. Based on training data, the DCA curve further

confirmed the high reliability of XGB (Figures 1C, D).
TABLE 1 Clinical Characteristics of Patients with and without Lower Limb VTE.

Variable Category VTE Group (n=175) Non-VTE Group (n=838)) P-value

Gender Male
Female

54(31.4%)
121(68.6%)

301(35.7%)
537(64.3%)

P=0.04

Age (years) 63.02±7.21 56.69±10.40 P<0.01

Height (cm)
Weight (kg)

163.41±6.12
62.84±9.83

164.22±7.21
64.49±10.98

P=0.19
P=0.09

BMI 23.50±3.24 23.83±3.17 P=0.24

Hypertension Yes
No

36(19.8%)
139(80.2%)

172(16.7%)
666(83.3%)

P=0.64

Diabetes Yes
No

15(8.1%)
160(91.9%)

99(11.8%)
739(88.1%)

P=0.25

Smoking Yes
No

44(24.4%)
131(75.6%)

150(17.9%)
688(82.1%)

P=0.27

Alcohol Consumption Yes
No

19(9.3%)
156(90.7%)

70(7.2%)
768(92.8%)

P=0.46

Stroke Yes
No

9(3.5%)
166(96.5%)

24(2.4%)
814(97.6%)

P=0.62

FEV1/FVC% 87.31±5.20 87.57±6.96 P=0.82

Ejection Fraction (EF%) 64.11±3.39 64.62±3.76 P=0.26

ESR (mm/h) 12.20±8.16 13.31±12.40 P=0.42

Blood Type A
B
AB
O

41(23.3%)
69(39.5%)
30(17.4%)
35(19.8%)

223(26.8%)
265(31.6%)
127(15.0%)
223(26.6%)

P=0.67

(Continued)
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In the validation set, XGB achieved a notable AUC of 0.66,

along with superior accuracy, precision, sensitivity, and F1 score

(Figures 2A, 3B). Moreover, it outperformed other models in terms

of AUPR (Figure 2B). The XGB model also attained the highest

MCC in the validation set, reaching 0.61. As shown in Figure 3A,

XGB also demonstrated excellent prediction performance in the

training set. Both DCA and clinical decision curves indicated that

XGB had better clinical decision-making and predictive capabilities

than the other seven models (Figures 2C, D). Given its robust

predictive performance in the validation set, we designated XGB as

the optimal model.
Frontiers in Oncology 05
3.4 Importance of features in making
predictions

The significance of each feature in thrombosis prediction was

evaluated using the importance ranking principle, with results

shown in Figure 4. In most machine-learning models, age and

mean erythrocyte volume were identified as the most influential

predictors. Conversely, albumin consistently ranked as the least

significant variable, though it still played a role in prediction. In the

XGB model, features were ranked in descending order of

importance as follows: age, mean erythrocyte volume, D-dimer,
TABLE 1 Continued

Variable Category VTE Group (n=175) Non-VTE Group (n=838)) P-value

Preoperative WBC count(10^9/L) 5.90±1.96 5.78±1.62 P=0.67

Preoperative Neutrophil 0.55±0.09 0.55±0.09 P=0.8

Preoperative Lymphocyte 0.35±0.09 0.35±0.08 P=0.84

Preoperative Monocyte 0.07±0.02 0.07±0.02 P=0.94

Preoperative Neutrophil count(10^9/L) 3.59±2.70 3.23±1.21 P=0.08

Preoperative Lymphocyte count(10^9/L) 1.96±0.62 1.96±0.62 P=0.94

Preoperative Monocyte count(10^9/L) 0.43±0.15 0.42±0.14 P=0.71

Preoperative Hematocrit(L/L) 0.40±0.04 0.40±0.04 P=0.23

Preoperative Mean Corpuscular Volume(fL) 92.42±4.06 90.38±7.55 P=0.02

Preoperative Mean Corpuscular Hemoglobin(pg) 30.87±1.44 30.24±2.75 P=0.04

Preoperative Mean Corpuscular Hemoglobin Concentration(g/L) 334.08±12.55 334.78±13.56 P=0.57

Preoperative Red Cell Distribution Width(%) 12.48±0.64 12.70±1.25 P=0.09

Preoperative Platelet Distribution Width(fL) 12.32±1.95 12.85±1.57 P=0.68

Preoperative Hemoglobin Level(g/L) 134.05±14.01 137.06±51.42 P=0.54

Preoperative Platelet Count(10^9/L) 210.33±59.82 219.41±55.91 P=0.16

Preoperative Fibrinogen(g/L) 2.90±0.84 2.72±0.63 P=0.04

Preoperative Fibrin Degradation Products(mg/L) 2.71±0.59 2.58±0.42 P=0.10

Preoperative D-Dimer(mg/L) 0.63±0.77 0.39±0.38 P<0.01

Preoperative Albumin(g/L) 38.45±5.04 39.90±3.66 P<0.01

Preoperative Sodium Level(mmol/L) 141.84±2.10 141.46±1.98 P=0.12

Tumor Location Left
Right

75(41.9%)
100(58.1%)

367(44.0%)
471(56.0%)

P=0.58

Tumor Number Single
Multiple

126(72.1%)
49(27.9%)

630(75.1%)
208(24.9%)

P=0.65

Type Adenocarcinoma
Squamous Cell
Carcinoma
Others

150(86.0%)
19(3.5%)
6(10.5%)

734(87.7%)
79(2.9%)
25(9.4%)

P=0.61

Tumor Size(cm) 1.57±1.41 1.39±0.92 P=0.14

CEA Level(ng/mL) 2.15±1.59 2.78±16.86 P=0.74

NSE Level(ng/mL) 11.73±2.39 11.56±2.31 P=0.73
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mean erythrocyte hemoglobin volume, fibrinogen, and albumin.

Although individual models exhibited slight differences in ranking,

the overall trend remained consistent.
3.5 Risk prediction of postoperative
thrombosis in patients with lung cancer

To enhance clinical utility, we developed an online prediction

tool based on the XGB model to assess postoperative thrombosis

risk in lung cancer patients. Although the XGB model exhibits

strong predictive capabilities, its complexity limits direct

application in clinical practice. This web-based calculator (https://

cz2679994624.shinyapps.io/dynnomapp/) enables clinicians to
Frontiers in Oncology 06
input preoperative clinical and laboratory parameters to estimate

an individual’s thrombosis risk after surgery. Figure 5 provides a

visual representation of the calculator interface.
4 Discussion

In this study, we developed and validated an XGBoost-based

machine learning model to predict postoperative thrombosis risk in

lung cancer patients. The model incorporates six key preoperative

features: Age, Mean Corpuscular Volume, D-Dimer Level, Mean

Corpuscular Hemoglobin, Fibrinogen Level and Albumin Level.

The importance ranking of these variables aligns with previous

research, reinforcing their predictive value in thrombosis

risk assessment.

Several studies have explored the association between

hypoalbuminemia and increased VTE risk. For example, Lionaki

et al. (16) found that decreased albumin was an independent risk

factor for VTE in patients with membranous nephropathy—a

population already known to have a high baseline thrombotic

risk. While this limits the generalizability of their findings, the

proposed mechanisms remain biologically plausible and relevant

across different populations. Albumin serves as a cofactor

interacting with plasminogen, fibrin, and tissue plasminogen

activators, thereby exerting anticoagulant effects by inhibiting

fibrin polymerization and platelet aggregation (17, 18). It also
TABLE 2 Univariate and Lasso Regression Analysis Results.

Variable b P-value

Age 0.0712 P<0.01

Preoperative Mean Corpuscular Volume (fL) 0.130 P=0.02

Preoperative Mean Corpuscular Hemoglobin (pg) 0.161 P=0.04

Preoperative Fibrinogen Level (g/L) 0.269 P=0.04

Preoperative D-Dimer Level (mg/L) 0.592 P<0.01

Preoperative Albumin Level (g/L) -0.113 P<0.01
FIGURE 1

(A) Ten-fold cross-validation results of different machine models in the training set. (B) PR curves of different machine learning models in the
training set. (C) DCA curves of different machine learning models in the training set. (D) Calibration curves of the best models in the training set. LR,
logistic regression; XGB, extreme gradient boosting; BNB, Bernoulli Naïve Bayes; RF, random forest;MLP, multilayer perceptron;KNN, k-nearest
neighbor;SVM, support vector machine; DT, decision tree.
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enhances antithrombin activity, similar to the action of heparin

(19). Importantly, this association has also been observed in broader

populations. Folsom et al. (20) reported that lower serum albumin

levels were associated with a higher risk of VTE in the general

population, and Chi et al. (21) demonstrated an inverse relationship

between albumin levels and VTE risk in acutely ill hospitalized

patients. These studies suggest that hypoalbuminemia may reflect a

prothrombotic state through its influence on coagulation and

fibrinolysis pathways. When albumin levels fall below 35 g/L, the

risk of thrombosis appears to increase, potentially due to elevated

levels of fibrinogen and coagulation factors and impaired

fibrinolytic activity (21).

Fibrinogen is a large and complex glycoprotein that is converted

to fibrin in the coagulation cascade, forming a fibrin clot to stop

bleeding (22). Studies have shown (23) that fibrinogen is an acute

phase reactant produced by the liver during inflammation or

ischemia, and its elevation is associated with an increased risk of

VTE. The cause may be that surgery in lung cancer patients causes

vascular trauma, activating internal coagulation factors and
Frontiers in Oncology 07
promoting a large release of thrombin, which converts soluble

plasma fibrinogen into insoluble fibrin, leading to coagulation and

venous thrombosis (24).

In the Khorana clinical prediction model, the Caprini clinical

prediction model, and other studies (25, 26), older patients are

considered to have a higher risk of VTE, with postoperative VTE

risk doubling for every 10 years of age. This may be due to poor

venous conditions in older patients, loss of muscle tone, and age-

related degeneration, leading to increased venous stasis and

endothelial damage. Older patients may also have venous diseases

that increase outflow resistance, making thrombosis more likely (24,

27, 28). Studies (29) have shown that the postoperative VTE

incidence in patients over 60 years of age is significantly higher

than in those under 60.

Previous studies (25, 29) have confirmed that D-dimer is an

independent risk factor for VTE formation, and higher preoperative

D-dimer levels indicate a higher risk of VTE (30, 31). D-dimer is a

specific molecular marker produced by the enzymatic breakdown of

cross-linked fibrin by plasmin, and it reflects the degree of
FIGURE 2

(A) ROC curves of different machine learning models in the validation set. (B) PR curves of different machine learning models in the validation set.
(C) DCA curves of different machine learning models in the validation set. (D) Calibration curves of different machine learning models in the
validation set; LR, logistic regression; XGB, extreme gradient boosting; BNB, Bernoulli Naïve Bayes; RF, random forest; MLP, multilayer perceptron;
KNN, k-nearest neighbor; SVM, support vector machine; DT, decision tree.
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secondary fibrinolysis in the body. It is a sensitive indicator of

fibrinolytic activity and coagulation status. Monitoring preoperative

D-dimer levels helps clinicians identify patients at high risk for VTE

or those in a pre-thrombosis state. Some studies suggest setting the

D-dimer threshold for VTE risk assessment at 0.2 mg/L.

The characteristics of red blood cells are closely related to

thrombosis, although there is limited research on the relationship

between red blood cell volume and VTE formation. Some studies

suggest that as the fibrin network contracts during thrombosis, red

blood cells undergo morphological changes from their biconcave
Frontiers in Oncology 08
shape to various forms. When red blood cell volume increases, these

cells have more difficulty changing shape, and their deformability

decreases. Reduced deformability can result in insufficient clot

contraction and microvascular occlusion, which may be a

mechanism for VTE formation (32).

There is limited research on the relationship between changes in

MCH and VTE. However, elevated MCH indicates increased blood

viscosity and slower blood flow, which may activate platelets and

fibrin, increasing the risk of venous stasis and thrombosis in the

lower extremities.
FIGURE 3

(A) Prediction performance of different models in the training set. (B) Prediction performance of different models in the validation set. RF, random
forest; KMN, k-nearest neighbor; LR, logistic regression; MLP, multilayer perceptron; SVM, support vector machine; DT, decision tree; BNP, Bernoulli
Naïve Bayes; XGB, extreme gradient boosting.
FIGURE 4

The importance of Variables in each prediction model. (A) Feature Importance of XGB. (B) Feature Importance of RF. (C) Feature Importance of DT.
(D) Feature Importance of LR. (E) Feature Importance of NBC. (F) Feature Importance of KNN. (G) Feature Importance of SVM. (H) Feature
Importance of MLP. LR, logistic regression; DT, decision tree; RF, random forest; XGB, extreme gradient boosting; NBC, Naïve Bayes Classifier; MLP,
multilayer perceptron; SVM, support vector machine; KMN, k-nearest neighbor.
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To the best of our knowledge, this study represents the first

instance of using machine learning algorithms and real-world data

to predict the risk of postoperative thrombosis in lung cancer

patients. A key strength of this research is the selection of six

readily available variables to construct the model, enhancing its

clinical applicability. Our predictive model enables clinicians to

accurately assess the likelihood of postoperative thrombosis in lung

cancer patients, allowing for preoperative optimization of

anticoagulation strategies—such as adjusting low-molecular-

weight heparin or anticoagulant regimens—for high-risk

individuals. For patients who cannot tolerate anticoagulation,

alternative preventive measures such as intermittent pneumatic

compression (IPC) or graduated compression stockings (GCS)

can be utilized. These approaches may help reduce the incidence

of postoperative deep vein thrombosis (DVT) and pulmonary

embolism (PE), ultimately improving postoperative safety.

Nevertheless, we acknowledge several limitations in our study.

First, as a single-center retrospective study utilizing real-world data,

there is a potential risk of bias. Second, our model was developed

based on data from Chinese patients, and additional data from

international populations are needed to refine the model and

enhance its generalizability. Third, although we evaluated the

model’s performance using an internal validation cohort,

independent external validation from other medical centers or

diverse populations is still required. Fourth, although tumor

histological type was included in the univariate analysis and did

not show a significant association with perioperative VTE, we note
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that the majority of patients (87.3%) had adenocarcinoma, which

limited the feasibility of a meaningful histological subgroup analysis.

In addition, tumor stage may influence laboratory parameters and

VTE risk. However, due to incomplete staging data in this

retrospective dataset, we were unable to include this factor in the

current analysis. Future prospective studies with comprehensive

staging data are warranted to further explore the relationship

between tumor characteristics and thrombosis risk. Finally, another

notable limitation pertains to the thromboprophylaxis strategy

employed in our cohort. Postoperative patients did not receive

routine prophylactic anticoagulation. Instead, a reactive approach

was adopted, where low-molecular-weight heparin (LMWH) was

initiated only after ultrasound-confirmed thrombosis. This strategy

may have contributed to the observed VTE incidence and

complicates comparisons with studies that employed standardized

prophylactic anticoagulation protocols.
5 Conclusion

In conclusion, we developed and validated a novel model using

machine learning algorithms, which incorporates six commonly used

clinical variables and demonstrates overall good performance, with

an AUROC of 0.66, an AUPRC of 0.323, an accuracy of 0.78, a

precision of 0.49. This model effectively identifies high-risk

individuals and aids in preventing the development of perioperative

venous thromboembolism (VTE) in lung cancer patients.
FIGURE 5

A web calculator for predicting the risk of thrombus in postoperative patients with lung cancer.
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