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Changes in perioperative
serum transaminase levels:
predicting early recurrence
after hepatectomy for
hepatocellular carcinoma
Yingfei Wei, Guixiang Qian, Tao Meng and Zhong Tong*

Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital, Anhui Medical
University, Hefei, China
Background and purpose: Hepatocellular carcinoma (HCC) is associated with

poor prognosis due to its high propensity for early postoperative recurrence. In

this study, we aimed to develop a novel model based on changes in perioperative

aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels to

predict early recurrence following hepatectomy for HCC.

Methods: This study is a dual-center retrospective cohort study. Based on strict

inclusion and exclusion criteria, 317 hepatocellular carcinoma (HCC) patients

from Center 1 and 58 patients from Center 2 were enrolled. Patients from Center

1 were randomly allocated in a 7:3 ratio into a training set (n=221) and an internal

validation set (n=96), while Center 2 served as an independent external validation

set. In the training set, independent risk factors associated with early recurrence

after hepatectomy for HCC were identified through univariate and multivariate

analyses, and a predictive model was constructed. The predictive performance

was evaluated using the area under the receiver operating characteristic (ROC)

curve (AUC). Calibration curves and decision curve analysis (DCA) were

employed to assess model calibration and clinical utility, respectively.

Additionally, model interpretability was visualized through the SHapley Additive

exPlanations (SHAP) framework. Based on the combined model’s predictions,

this study further stratified patients’ two-year progression-free survival (PFS) and

five-year overall survival (OS) using Kaplan-Meier curves.

Results: Univariate and multivariate analyses revealed that alpha-fetoprotein

(AFP), total bilirubin (TB), postoperative ALT (ALTp), HBV infection history,

tumor size, and change in AST and ALT (CAA) were independent risk factors for

early recurrence (P<0.05). The predictive model incorporating these factors

achieved an AUC of 0.804, demonstrating robust predictive capability. The

model exhibited strong consistency between predicted outcomes and actual

observations in the training, internal validation, and external validation sets.
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Conclusion: This retrospective cohort study successfully established a predictive

model for early recurrence after hepatectomy in HCC patients, highlighting its

potential clinical utility.
KEYWORDS

hepatocellular carcinoma, hepatectomy, transaminases, early recurrence,
predictive model
1 Introduction

Hepatocellular Carcinoma (HCC) is one of the malignancies

with high global incidence and mortality rates. According to the

2020 Global Cancer Statistics, HCC ranks as the sixth most

common cancer worldwide, with approximately 906,000 new

cases annually, accounting for 4.7% of all cancer cases.

Simultaneously, HCC is the third leading cause of cancer-related

deaths, with about 830,000 annual deaths, representing 8.3% of all

cancer-related fatalities (1). China has the highest number of HCC

cases globally, contributing to approximately 45%-50% of the global

HCC burden. According to the latest data from the National Cancer

Center of China, there were about 410,000 new HCC cases and

390,000 deaths in China in 2022 (2). In recent years, with

advancements in ablation therapy and intravascular interventional

therapy, treatment options for HCC have become more

comprehensive. However, hepatectomy remains the primary

treatment modality for HCC patients. Despite surgical resection,

HCC has a high likelihood of recurrence (3). Early recurrence of

HCC is typically defined as tumor recurrence within 24 months

after curative treatment (surgical resection or ablation), as opposed

to late recurrence (>24 months) (4). Recent studies report that the

probability of early recurrence ranges between 25% and 50% (5).

Early recurrence significantly impacts patient prognosis: 1) It leads

to a sharp decline in survival rates, with a median survival of only 8–

15 months after recurrence (6); 2) It limits treatment options, as

only 20%-30% of patients are suitable for secondary curative

treatment due to reduced liver function reserve and multifocal

tumors (7); 3) It accelerates liver failure, particularly in patients with

underlying cirrhosis (8); 4) It increases financial burden and

psychological stress due to higher treatment costs post-

recurrence. Therefore, effective early prediction and intervention

strategies are crucial for HCC patients at high risk of recurrence.

Early prediction can provide timely treatment decisions, improve

survival rates, prolong survival, and significantly enhance patients’

quality of life.

During liver resection surgery, a low central venous pressure

(CVP) strategy is often employed to reduce hepatic blood flow,

which inevitably leads to hepatic ischemia/reperfusion injury (9–

11). Postoperative liver function impairment may accelerate tumor

recurrence, and changes in serum transaminase levels are the most

direct indicators reflecting alterations in liver function. CAA, or the
02
change in aspartate aminotransferase (AST) and alanine

aminotransferase (ALT) levels between postoperative day 3 and

preoperative values, is calculated using a fusion index formula based

on the Euclidean norm. Wang et al., in a recent issue of the “Annals

of Surgery”, proposed the CAA scoring model to predict

postoperative complications (12). Lu et al. further evaluated long-

term survival outcomes after hepatectomy by studying changes in

serum transaminases (13). In previous research, Kostakis et al. (14)

used preoperative ALT and AST changes to predict patient

prognosis. However, no studies have yet explored the changes in

preoperative and postoperative serum transaminases to predict

early recurrence in HCC patients after hepatectomy.

Several methods currently exist to predict early recurrence in

HCC patients after hepatectomy, such as the Singapore Liver

Cancer Recurrence Score (15) and the Italian Liver Cancer

Program Score (16). While these scoring systems demonstrate

good predictive performance, they have limitations, including a

lack of extensive clinical studies and external validation. The

albumin-bilirubin (ALBI) score model proposed by Lee et al. (17)

shows excellent performance in predicting overall survival (OS) in

HCC patients after hepatectomy, outperforming the Child-Pugh

classification. However, research on recurrence-free survival

remains limited. This study aims to further investigate the

changes in preoperative and postoperative serum transaminases

to predict early recurrence in HCC patients after hepatectomy,

providing theoretical support for clinicians to develop subsequent

treatment plans and improve patients’ quality of life.
2 Patients and methods

This study is a dual-center retrospective investigation approved

by the Ethics Committees of the First Affiliated Hospital of the

University of Science and Technology of China (Anhui Provincial

Hospital) and the Third Affiliated Hospital of Anhui Medical

University (Hefei First People ’s Hospital). Due to the

retrospective nature of the study, patient informed consent was

waived. The research was conducted in strict accordance with the

ethical guidelines of the 1975 Declaration of Helsinki. The First

Affiliated Hospital of University of Science and Technology of

China (Anhui Prov inc ia l Hospi ta l ) Ethics Research

Approval:2024-KY585,The Third Affiliated Hospital of Anhui
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Medical University (Hefei First People’s Hospital) Ethics Research

Approval: NO.2025-031-01.

A total of 347 HCC patients from the First Affiliated Hospital of

the University of Science and Technology of China (Anhui

Provincial Hospital) (Center 1) between 2014 and 2018, and 63

HCC patients from the Third Affiliated Hospital of Anhui Medical

University (Hefei First People’s Hospital) (Center 2) between 2015

and 2020 were included in this study. The inclusion criteria were as

follows: (1) patients aged 18 years or older who underwent their first

hepatectomy at the respective hospital;(2) Patients with BCLC stage

0 and A (The possibility of major vascular invasion is ruled out by

enhanced CT);(3) Patients with Child-Pugh class A or those with

Child-Pugh class B who were downstaged to class A through

preoperative treatment; (4) postoperative pathological

confirmation of HCC; (5) postoperative pathological confirmation

of negative surgical margins. The exclusion criteria were: (1)

patients undergoing a second surgery due to HCC recurrence; (2)

patients with other malignancies or a history of related malignant

tumors; (3) incomplete clinical or follow-up data; and (4) patients

with a history of preoperative antitumor therapy. After preoperative

downstaging therapy, we assessed the patient’s liver function

recovery to Child-Pugh class A through the five parameters of the

Child-Pugh score (bilirubin, albumin, INR, ascites, and hepatic

encephalopathy), thereby confirming compliance with the

indications for hepatic resection surgery. The specific inclusion

and exclusion process is illustrated in Figure 1. Patients from Center
Frontiers in Oncology 03
1 were randomly divided into a training set (n=221) and an internal

validation set (n=96) in a 7:3 ratio, while Center 2 (n=58) served as

the external validation set.
2.1 Types and standards of clinical data
collection, related formulas, and definitions

The clinical data collected in this study consisted of the

following variables: (1) General demographic information:

Gender, age, and history of hepatitis B virus (HBV) infection; (2)

Laboratory tests: Neutrophils (N), lymphocytes (L), platelets (PLT),

aspartate aminotransferase (AST), alanine aminotransferase (ALT),

gamma-glutamyl transferase (GGT), total bilirubin (TB), albumin

(ALB), globulin (GLB), activated partial thromboplastin time

(APTT), fibrinogen (FIB), and alpha-fetoprotein (AFP); (3)

Tumor size; (4) History of cirrhosis; (5)Other relevant indicators:

Gamma-glutamyl transferase-to-platelet ratio (GPR), albumin-to-

fibrinogen ratio (AFR), aspartate aminotransferase-to-platelet ratio

index (APRI), and changes in transaminases (CAA). Related

calculation formulas: GPR = GGT/PLT; AFR = ALB/FIB; APRI =

(AST/upper limit of normal AST/PLT) × 100. To better align with

clinical decision-making and avoid potential uncertain effects of

nonlinear relationships inherent in continuous variables on the

model’s predictive performance, this study categorized clinical

variables based on their normal reference ranges.
FIGURE 1

Flowchart.
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2.2 Construction of the composite
variable CAA

The last preoperative (tb) and postoperative day 3 (POD3)

values of aspartate aminotransferase (AST) and alanine

aminotransferase (ALT) were recorded. The changes in AST and

ALT were calculated based on the difference between the

measurements on postoperative day 3 (POD3) and the last

preoperative measurement. The difference value is defined as:

DALT3 = ALT(POD3) − ALT(tb)

DAST3 = AST(POD3) − AST(tb)

Since the numerical differences may span a magnitude range

from 100 to 103 (which could potentially affect algorithm

performance), the difference values were standardized using a

scaling factor of 100:

DALT3 =
ALT(POD3) − ALT(tb)

100

DAST3 =
AST(POD3) − AST(tb)

100

The standardized DALT3 and DAST3 can be regarded as a two-

dimensional vector, V = [DALT3, DAST3]. To quantify the

magnitude of vector V, the Euclidean norm was employed, which

intuitively represents the geometric distance from the origin to the

endpoint of the vector. The final AST and ALT change index (CAA)

was constructed using the following formula:

 CAA = Vk k2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(DALT3)

2 + DAST 2
3

q

3 Data processing and analysis

Statistical analysis was performed using RStudio (version 4.3.3).

Continuous variables conforming to a normal distribution were

expressed as mean ± standard deviation (M ± SD) and compared

using the t-test. Categorical variables were expressed as n (%) and

compared using the chi-square test. Variable screening was

conducted through univariate and multivariate logistic regression

analyses. In the univariate analysis, P value <0.1was considered

statistically significant, while in the multivariate analysis, P value

<0.05was considered statistically significant. The logistic regression

machine learning algorithm was used to construct the model. The

“regplot” package (version 4.3.2) in RStudio was utilized to

calculate and construct the nomogram. The “pROC” package

(version 6.8-1) in RStudio was employed to plot the receiver

operating characteristic curve (ROC), and the area under the

curve (AUC) was used to evaluate the predictive performance of

the nomogram. The “rms” package (version 6.8-1) in RStudio was

used to construct calibration curves to assess the consistency
Frontiers in Oncology 04
between predicted probabilities and actual probabilities. The

“ggDCA” package (version 1.1) in RStudio was applied to plot

the decision curve analysis (DCA) to evaluate the clinical

applicability of the model. Additionally, to enhance the

understanding of the “black box” nature of the logistic regression

machine learning model, the SHAP (SHapley Additive

exPlanations) framework was employed for visual interpretation

and analysis.
4 Results

4.1 General characteristics

The baseline data of the training set and internal validation set,

randomly divided from 317 patients in Center 1, as well as the

external validation set from Center 2, are shown in Table 1. As seen

in Table 1, there were no significant statistical differences in clinical

factors among the training set, internal validation set, and external

validation set (P > 0.05).
4.2 Analysis of independent factors
influencing early recurrence after
hepatectomy for HCC

Univariate analysis was used to evaluate the risk factors

influencing early recurrence after hepatectomy for HCC. To

include more variables for analysis, a cutoff value of P < 0.1 was

set. Risk factors with P < 0.1 were further analyzed using multivariate

regression to identify independent risk factors for early recurrence

after hepatectomy for HCC. The results showed that tumor size,

CAA, history of HBV infection, TB, AFP, and postoperative ALT

were independent risk factors for early recurrence after hepatectomy

for HCC (P < 0.05) (Table 2).
4.3 Model comparison and establishment

Through univariate and multivariate logistic regression

analysis, independent risk factors including tumor size, CAA,

history of HBV infection, TB, AFP, and postoperative ALT were

identified. We compared CAA, other clinical variables, and their

combination in the training set. The results showed that individual

variables had poor predictive performance, while their combination

significantly improved prediction accuracy (Figure 2A). This

finding was further validated in the internal validation set,

yielding consistent results (Figure 2B). Based on the model

comparison results, we constructed a nomogram for the

combined model to predict early recurrence after hepatectomy for

hepatocellular carcinoma (Figure 3). The results indicated that CAA

had the greatest impact, while the specific contributions of other

factors are illustrated in Figure 3.
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TABLE 1 Baseline clinical characteristics of HCC patients.

Variables Training (n=221) Internal validation (n=96) Externalvalidation (n=58) P value

Sex,n(%) 0.886

Female 32 (14.5%) 14 (14.6%) 7 (12.1%)

Male 189 (85.5%) 82 (85.4%) 51 (87.9%)

Age,n(%) 0.088

≤50 78 (35.3%) 23 (24.0%) 15 (25.9%)

>50 143 (64.7%) 73 (76.0%) 43 (74.1%)

Size,(mean ± SD) 6.71 ± 3.94 6.58 ± 3.51 5.54± 3.65 0.112

GPR,(mean ± SD) 0.77 ± 1.06 0.88 ± 1.01 1.00± 1.36 0.327

AFR,(mean ± SD) 15.4 ± 5.19 14.9 ± 4.69 15.7 ± 8.03 0.626

APRI,(mean ± SD) 0.97 ± 1.13 0.84 ± 0.69 1.36 ± 2.35 0.058

ALBI,n(%) 0.854

1 117 (52.9%) 51 (53.1%) 33 (56.9%)

2 102 (46.2%) 43 (44.8%) 25 (43.1%)

3 2 (0.90%) 2 (2.08%) 0 (0.00%)

CAA,n(%) 0.408

<5 126 (57.0%) 60 (62.5%) 38 (65.5%)

≥5 95 (43.0%) 36 (37.5%) 20 (34.5%)

HBV,n(%) 0.678

Negative 102 (46.2%) 48 (50.0%) 30 (51.7%)

Positive 119 (53.8%) 48 (50.0%) 28 (48.3%)

Cirrhosis,n(%) 0.538

Negative 52 (23.5%) 27 (28.1%) 17 (29.3%)

Positive 169 (76.5%) 69 (71.9%) 41 (70.7%)

N(×109/L),n(%) 0.389

<1.8 24 (10.9%) 15 (15.6%) 5 (8.62%)

1.8-6.3 188 (85.1%) 76 (79.2%) 48 (82.8%)

>6.3 9 (4.07%) 5 (5.21%) 5 (8.62%)

L(×109/L),n(%) 0.423

<1.1 64 (29.0%) 21 (21.9%) 16 (27.6%)

≥1.1 157 (71.0%) 75 (78.1%) 42 (72.4%)

PLT(×109/L),n(%) 0.9

>100 179 (81.0%) 79 (82.3%) 46 (79.3%)

≤100 42 (19.0%) 17 (17.7%) 12 (20.7%)

ALT(U/L),n(%) 0.082

≤50 177 (80.1%) 70 (72.9%) 39 (67.2%)

>50 44 (19.9%) 26 (27.1%) 19 (32.8%)

AST(U/L),n(%) 0.526

>40 96 (43.4%) 44 (45.8%) 30 (51.7%)

(Continued)
F
rontiers in Oncology
 05
 frontiersin.org

https://doi.org/10.3389/fonc.2025.1589884
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wei et al. 10.3389/fonc.2025.1589884
TABLE 1 Continued

Variables Training (n=221) Internal validation (n=96) Externalvalidation (n=58) P value

≤40 125 (56.6%) 52 (54.2%) 28 (48.3%)

TB(mmol/L),n(%) 0.514

≤21 160 (72.4%) 74 (77.1%) 40 (69.0%)

>21 61 (27.6%) 22 (22.9%) 18 (31.0%)

ALB(g/L),n(%) 0.74

≤40 108 (48.9%) 43 (44.8%) 26 (44.8%)

>40 113 (51.1%) 53 (55.2%) 32 (55.2%)

GLB(g/L),n(%) 0.51

≤35 192 (86.9%) 80 (83.3%) 52 (89.7%)

>35 29 (13.1%) 16 (16.7%) 6 (10.3%)

APTT(S),n(%) 0.488

<42 208 (94.1%) 87 (90.6%) 54 (93.1%)

≥42 13 (5.88%) 9 (9.38%) 4 (6.90%)

FIB(g/L),n(%) 0.739

≥2 186 (84.2%) 84 (87.5%) 49 (84.5%)

<2 35 (15.8%) 12 (12.5%) 9 (15.5%)

AFP(mg/L),n(%) 0.348

<400 175 (79.2%) 70 (72.9%) 42 (72.4%)

≥400 46 (20.8%) 26 (27.1%) 16 (27.6%)

GGT(U/L),n(%) 0.097

≤60 106 (48.0%) 37 (38.5%) 20 (34.5%)

>60 115 (52.0%) 59 (61.5%) 38 (65.5%)

ALTp(U/L),n(%) 0.922

≤50 7 (3.17%) 4 (4.17%) 2 (3.45%)

>50 214 (96.8%) 92 (95.8%) 56 (96.6%)

ASTp(U/L),n(%) 0.062

>40 218 (98.6%) 96 (100%) 55 (94.8%)

≤40 3 (1.36%) 0 (0.00%) 3 (5.17%)

GGTp(U/L),n(%) 0.642

≤60 115 (52.0%) 45 (46.9%) 31 (53.4%)

>60 106 (48.0%) 51 (53.1%) 27 (46.6%)

TBp(mmol/L),n(%) 0.314

≤21 119 (53.8%) 59 (61.5%) 29 (50.0%)

>21 102 (46.2%) 37 (38.5%) 29 (50.0%)

ALBp(g/L),n(%) 0.134

≤40 192 (86.9%) 87 (90.6%) 46 (79.3%)

>40 29 (13.1%) 9 (9.38%) 12 (20.7%)

GLBp(g/L),n(%) 0.213

(Continued)
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4.4 Visualization of the SHAP framework

The SHAP method integrates multiple additive feature

attribution techniques. By leveraging classical Shapley values and

their extensions, SHAP establishes a connection between optimal

credit allocation and local explanations, thereby enabling visualized

interpretation of machine learning models. Building on this,

researchers employed SHAP to elucidate the aforementioned

models. Figure 4 demonstrates the application of SHAP waterfall

plots on an internal validation set, facilitating localized visualization

(with independent risk factors delineated). Red denotes the positive

contribution of high feature values to model predictions, while blue

represents the negative impact of low feature values on predictions.

As illustrated in the figure, the CAA indicator exerts the most

significant influence on the model.
4.5 Validation of the predictive model

The predictive ability of the combined model was further

validated by plotting ROC curves and calculating the AUC. The

AUC values for the training set (Figure 5A), internal validation set

(Figure 5B), and external validation set (Figure 5C) were 0.804,

0.786, and 0.772, respectively, indicating that the model has strong

predictive performance. To further validate the calibration

performance and clinical applicability of the model, calibration

curves and decision curve analysis (DCA) curves were also plotted

for the combined model. The calibration curves (Figures 5D–F)

demonstrated that the nomogram has excellent clinical calibration

ability. The DCA curves showed that the combined model has

significant clinical benefits (Figures 5G–I).
4.6 Stratification of PFS and OS by the
combined model

In this study, the maximum Youden index (0.519) from the

training set of the combined model was used as the optimal cutoff

value. This cutoff value was applied to the training set, internal

validation set, and external validation set to stratify patients into

low-risk and high-risk groups. The stratified patients were analyzed

for 2-year progression-free survival (PFS) and 5-year overall

survival (OS) using Kaplan-Meier curves. As shown in the figures,

the predictive values of the combined model effectively stratified

patients for 2-year PFS (Figures 6A–C) and 5-year OS

(Figures 6D–F).
Frontiers in Oncology 07
5 Discussion

Hepatocellular carcinoma (HCC) is the most common primary

liver tumor and the fifth most prevalent malignant tumor

worldwide (1). Surgical resection remains the primary treatment

modality for HCC (17). However, early recurrence (typically

defined as recurrence within 2 years postoperatively) after

hepatectomy remains the most significant factor affecting long-

term survival (4).In recent years, with advancements in

laparoscopic techniques and the application of the Da Vinci

robotic system, surgical trauma and postoperative complications

have significantly decreased (18), and mortality rates have declined.

However, the recurrence rate remains as high as 25%-50% (5). This

study included 317 patients who underwent hepatectomy for HCC

at the First Affiliated Hospital of the University of Science and

Technology of China and 58 patients from the Third Affiliated

Hospital of Anhui Medical University. Baseline characteristics

showed no significant statistical differences. Univariate and

multivariate logistic regression analyses were used to screen

relevant variables. To include more variables, factors with a P-

value < 0.1 in univariate analysis were included in multivariate

analysis. This study identified tumor size, CAA, history of HBV

infection, TB, AFP, and postoperative ALT as independent risk

factors (P < 0.05) influencing early postoperative recurrence. We

compared CAA, other clinical variables, and their combination,

constructing a nomogram to predict early postoperative recurrence.

The study found that when the tumor diameter exceeds 5 cm,

the probability of early postoperative recurrence is significantly

higher than in patients with tumors smaller than 5 cm, consistent

with multiple studies (19, 20). A tumor diameter greater than 5 cm

is a high-risk factor for postoperative recurrence. Li et al. also noted

that when the tumor diameter exceeds 5 cm, the probability of early

recurrence increases significantly, and the mortality rate is 4.5 times

higher than in patients with smaller tumors. When the tumor

diameter exceeds 10 cm, the risk of extrahepatic recurrence also

increases significantly (21). This may be related to microvascular

invasion, as the incidence of microvascular invasion increases with

tumor size. Further analysis suggests that, anatomically, the early

recurrence of large tumors may be related to their anatomical

relationships. Larger tumors are more likely to breach the Glisson

sheath, leading to portal vein tumor thrombus (PVTT). Wang et al.

pointed out that HCC associated with PVTT results in faster

intrahepatic metastasis and liver dysfunction, leading to early

recurrence and poorer prognosis. Additionally, at the molecular

level, when the tumor size exceeds 5 cm, the hypoxic

microenvironment and accumulation of inflammatory factors lead
TABLE 1 Continued

Variables Training (n=221) Internal validation (n=96) Externalvalidation (n=58) P value

≤35 218 (98.6%) 95 (99.0%) 57 (98.3%)

>35 3 (1.36%) 1 (1.04%) 1 (1.72%)
N, Neutrophils; L, Lymphocytes; PLT, Platelets; AST, Aspartate Aminotransferase; ALT, Alanine Aminotransferase; GGT, Gamma-Glutamyl Transferase; TB, Total Bilirubin; ALB, Albumin;
GLB, Globulin; APTT, Activated Partial Thromboplastin Time; FIB, Fibrinogen; AFP, Alpha-Fetoprotein; GPR, Gamma-Glutamyl Transferase-to-Platelet Ratio; AFR, Albumin-to-Fibrinogen
Ratio; APRI, Aspartate Aminotransferase-to-Platelet Ratio Index; ALBI, Albumin-Bilirubin Grade; CAA, Change in Transaminases; ASTp, Postoperative Aspartate Aminotransferase; ALTp,
Postoperative Alanine Aminotransferase; GGTp, Postoperative Gamma-Glutamyl Transferase; TBp, Postoperative Total Bilirubin; ALBp, Postoperative Albumin; GLBp, Postoperative Globulin.
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to the enrichment of CD133+ liver cancer cells, which is

approximately 3.5 times higher than in patients with smaller

tumors (22). Man KF et al. also noted that CD133+ liver cancer

cells can maintain stemness through signaling pathways such as
Frontiers in Oncology 08
SPINK1 and Akt/PKB and actively expel chemotherapeutic drugs,

leading to chemoresistance. Furthermore, CD133+ liver cancer cells

enhance their invasiveness through epithelial-mesenchymal

transition (EMT) and promote distant metastasis by secreting
TABLE 2 Univariate and multivariate logistic regression analysis of early recurrence after hepatectomy for HCC in the training set.

Variables
Univariate Multivariate

OR value 95CI P value OR value 95CI P value

Size 1.03 1.02-1.05 <0.001 1.02 1.00-1.04 0.017

GPR 1.08 1.01-1.15 0.018 1.02 0.96-1.09 0.516

ALBI

1

2 1.04 0.91-1.19 0.524

3 1.00 0.50-2.03 0.991

CAA

<5

≥5 1.45 1.28-1.64 <0.001 1.42 1.25-1.60 <0.001

HBV

Negative

Positive 1.13 0.99-1.29 0.075 1.21 1.08-1.37 0.002

AST(U/L)

>40

≤40 0.86 0.75-0.98 0.021 0.94 0.82-1.08 0.389

AFP(mg/L)

<400

≥400 1.29 1.10-1.51 0.002 1.18 1.02-1.37 0.030

GGT(U/L)

≤60

>60 1.24 1.09-1.41 0.002 0.96 0.80-1.14 0.639

TB(mmol/L)

≤21

>21 1.19 1.02-1.37 0.023 1.15 1.00-1.31 0.047

ALTp(U/L)

≤50

>50 0.70 0.48-1.02 0.067 0.64 0.45-0.89 0.010

GGTp(U/L)

≤60

>60 1.18 1.04-1.35 0.012 1.10 0.94-1.29 0.240

ALBp(g/L)

≤40

>40 0.82 0.68-1.00 0.048 0.95 0.79-1.14 0.576
AST, Aspartate Aminotransferase; GGT, Gamma-Glutamyl Transferase; AFP, Alpha-fetoprotein; GPR, Gamma-glutamyl Transferase-to-Platelet Ratio; ALBI, Albumin-Bilirubin Grade; CAA,
Change in Transaminases; TB, Total Bilirubin; ALTp, Postoperative Alanine Aminotransferase; GGTp, Postoperative Gamma-glutamyl Transferase; ALBp, Postoperative Albumin.
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angiogenic factors such as VEGF (23), significantly increasing the

risk of early recurrence.

In this study, the CAA index reflects the changes in serum

transaminase levels during the perioperative period, including

changes in postoperative ALT levels. Transaminases are the most

direct indicators of liver function, and their changes not only reflect

the degree of hepatocyte damage but also correlate closely with early
Frontiers in Oncology 09
recurrence after liver cancer surgery (24). In this study, we observed

that when CAA ≥ 5, the probability of early recurrence increases

significantly. Similarly, when postoperative ALT exceeds 50 U/L,

the risk of recurrence also rises significantly. After hepatectomy,

serum transaminase levels increase, likely due to the use of low

central venous pressure and permissive hypotension during surgery,

which inevitably leads to ischemia/reperfusion injury. Maspero
FIGURE 3

Nomogram for evaluating early recurrence after hepatectomy for hepatocellular carcinoma.
FIGURE 2

ROC model comparison. (A, B) ROC model comparison for the training and internal validation.
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et al. noted that the ischemic phase primarily manifests as

mitochondrial dysfunction, with hepatocytes unable to function

normally under hypoxic conditions, leading to cell death. After

reperfusion, the release of reactive oxygen species (ROS) triggers

microvascular dysfunction. In the later stages of ischemia/

reperfusion injury (IRI), the immune system is activated, with

massive infiltration of neutrophils, macrophages, and T cells,

further exacerbating ROS production and hepatocyte damage

(25). Guan et al. found that ROS production activates the Hippo-

YAP pathway, promoting the proliferation of residual tumor cells

and accelerating recurrence (26). Additionally, after hepatectomy,

due to ischemia/reperfusion injury, liver sinusoidal endothelial cells

(LSECs) undergo swelling and apoptosis due to oxidative stress and

inflammatory factors such as TNF-a, leading to structural damage

in the liver sinusoids. Damaged LSECs release vascular endothelial

growth factor (VEGF) and angiopoietin-2 (ANGPT2), increasing

vascular permeability and providing a physical pathway for

circulating tumor cells (CTCs) to extravasate (27), thereby

promoting intrahepatic metastasis and early recurrence.

In this study, we found that patients with a history of HBV

infection had a significantly higher probability of early

postoperative recurrence compared to those without HBV

infection, consistent with the findings of Lu et al. (28)In patients

with HBV infection, persistent antigen stimulation may induce PD-

1 overexpression in CD8+ T cells, leading to T-cell exhaustion and

weakening the immune response to pathogens and tumors (29).

Additionally, in chronic liver disease, NKG2D function is inhibited,

likely due to the chronic inflammatory microenvironment.

NKG2D, an important activating receptor in the innate immune

system, plays a crucial role in immune regulation against tumors,

initiating immune surveillance and clearance in the early stages of

tumor development. The downregulation of NKG2D function

impairs immune surveillance and antitumor capabilities, leading

to a state of “immune exhaustion” (30). When patients are infected

with HBV, the direct carcinogenic effects of viral proteins may

further influence early postoperative recurrence. Kgatle et al. noted
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that the HBV-related HBx protein upregulates DNA

methyltransferases, leading to the suppression of tumor

suppressor genes (31). When tumor suppressor genes are

i n h i b i t e d , t h e l i k e l i h o o d o f t umo r d e v e l o pmen t

increases significantly.

The study found that elevated total bilirubin (TB) levels often

indicate metabolic dysfunction in hepatocytes. Bilirubin, a common

oxidative stress substance, induces oxidative stress by increasing

ROS levels. Oxidative stress dynamically regulates the expression of

SLC7A11 (32), which reduces the generation of lipid peroxidation

products, thereby decreasing the production of intracellular

ferroptosis inducers and reducing ferroptosis. Consequently,

upregulation of SLC7A11 significantly enhances tumor cell

resistance to ferroptosis. This mechanism not only helps tumor

cells survive under oxidative stress but may also affect the efficacy of

tumor treatment (33). In this study, TB > 21 mmol/L was defined as

elevated total bilirubin, which, although not causing visible

jaundice, falls within the range of subclinical jaundice (21–34.2

mmol/L). This cutoff value can be used for early identification of

potential bilirubin metabolism abnormalities. We found that when

TB > 21 mmol/L, the risk of early postoperative recurrence increased

significantly, consistent with the aforementioned research.

AFP, a commonly used tumor marker, is particularly significant

in the diagnosis of liver cancer. Studies have shown that when AFP

levels consistently exceed 400 ng/mL, liver cancer can be highly

suspected (34). Recent research has found that AFP not only serves

as a tumor marker but also promotes liver cancer recurrence by

regulating the characteristics of liver cancer stem cells (35).

Additionally, Ashokachakkaravarthy et al. discovered that liver

cancer stem cells possess the ability to undergo mitotic dormancy,

allowing them to remain quiescent during treatment and recur after

therapy (36). The immune escape effect of AFP is another reason for

the high early recurrence rate after liver cancer surgery. AFP

inhibi ts immune responses and remodels the tumor

microenvironment through various mechanisms, further

suppressing antitumor immunity (37). Recent studies have found
FIGURE 4

SHAP waterfall plot of risk factors in the internal validation set.
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that AFP-L3, a glycosylated isoform of AFP, demonstrates higher

clinical utility. Patients positive for AFP-L3 have a significantly

increased risk of postoperative recurrence and are associated with

poor tumor differentiation and vascular invasion (38). In this study,

when AFP > 400 ng/mL, the risk of early postoperative recurrence

was higher than in patients with AFP < 400 ng/mL, consistent with

international research. AFP is not only a diagnostic marker in liver

cancer but also a multifunctional molecule driving tumor

progression. By regulating stem cell characteristics, immune

escape, and remodeling the tumor microenvironment, AFP forms

a pro-tumor network. Although targeting AFP therapy remains

challenging due to tumor heterogeneity and drug resistance, the
Frontiers in Oncology 11
growing understanding of AFP-L3 and its prognostic value provides

new directions for personalized treatment.

In this study, we introduced the new CAA index to construct a

combined predictive model for early recurrence after hepatectomy

for HCC, significantly improving predictive performance. Based on

ROC model comparisons, in the training set, the AUC value was

0.735 when using other clinical indicators without CAA, 0.681

when using only CAA, and 0.804 when combining CAA with other

indicators. To further validate these results, the internal validation

set was analyzed, showing an AUC of 0.594 without CAA and 0.786

with CAA, consistent with the training set results. Based on the

model comparison results, a nomogram for the combined model
FIGURE 5

ROC curves, calibration curves, and DCA curves for the training, internal validation, and external validation. (A–C) ROC curves for the training,
internal validation, and external validation; (D–F) Calibration curves for the training, internal validation, and external validation; (G–I) Decision curve
analysis (DCA) curves for the training, internal validation, and external validation.
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was constructed, with CAA having the greatest impact.

Additionally, to visualize the interpretation of the combined

model, SHAP plots were generated, indicating that CAA

contributed the most to the prediction results. This suggests that

higher CAA values are associated with a higher risk of early

recurrence after hepatectomy. The SHAP plots also illustrate the

contribution distribution of each feature, helping to better

understand the factors influencing early recurrence. To further

evaluate the reliability of the combined model, calibration curves

were plotted. To assess the clinical utility and value of the combined

model, decision curve analysis (DCA) was performed. The DCA

curves demonstrated that the combined model has strong clinical

decision-making capabilities, indicating that the model

incorporating CAA exhibits superior predictive performance for

early recurrence after hepatectomy.

To further analyze the survival time proportions of patients

after treatment, Kaplan-Meier curves were plotted. The study found

that the 2-year progression-free survival (PFS) of HCC patients

after hepatectomy gradually declined over time, while the risk of

recurrence increased. Using the maximum Youden index (0.519) as

the optimal cutoff value, patients were divided into high-risk and

low-risk groups. The high-risk group showed a faster decline in
Frontiers in Oncology 12
survival probability and a higher risk of recurrence compared to the

low-risk group. Similarly, in the 5-year overall survival (OS)

analysis, the high-risk group exhibited a faster decline in survival

probability and a higher risk of recurrence. These findings were

consistent in both the internal and external validation sets.

The current study has several limitations. For instance, this

research only collected serological indicators while lacking surgical-

related parameters. Additionally, the limited sample size and single-

region design resulted in insufficient external validation due to the

absence of data from high-incidence regions such as East Asia and

sub-Saharan Africa. Although only patients with Child-Pugh class

A were included, this category encompasses both scores of 5 and 6,

which may reflect different levels of liver functional reserve. Due to

the limited sample size, we did not perform a further subgroup

analysis between these two scores. Future studies with larger cohorts

are warranted to investigate potential differences within the class A

group. Although patients initially classified as Child-Pugh B

achieved restoration to Child-Pugh A after treatment,

heterogeneity in hepatic functional reserve or residual portal

hypertension may still exert a significant impact on clinical

outcomes. Future studies should incorporate long-term follow-up

and comprehensive multidimensional assessments of liver function
FIGURE 6

K-M curves. (A–C) Two-year progression-free survival (PFS) for the training, internal validation, and external validation; (D–F) Five-year overall
survival (OS) for the training, internal validation, and external validation.
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(e.g., HVPG, ICG clearance, and imaging biomarkers) to further

validate these findings. Furthermore, microvascular invasion might

influence early recurrence risk, necessitating prospective studies

incorporating pathological indicators to further validate the model’s

efficacy. Therefore, future multicenter, large-scale, and prospective

studies are warranted to validate and refine this model by

integrat ing perioperat ive biochemical dynamics with

intraoperative and pathological variables. Such comprehensive

approaches may enhance early risk stratification and support

more individualized postoperative surveillance strategies.
6 Conclusion

In conclusion, this study successfully constructed a predictive

model for early recurrence after hepatectomy for HCC based on

perioperative changes in serum transaminase levels. The model

identified independent risk factors, including tumor size, CAA,

history of HBV infection, TB, AFP, and postoperative ALT.

Furthermore, this study highlights the importance of closely

monitoring perioperative changes in serum transaminase levels to

predict the likelihood of early postoperative recurrence. As research

on early recurrence after hepatectomy for HCC continues to

advance, it will provide critical support for improving patient

prognosis and achieving personalized treatment.
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